

Windward Environmental, LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 ATTN: Amara Vandervort amarav@windwardenv.com August 19, 2020

SUBJECT: Revised Duwamish AOC4, Data Validation

Dear Ms. Vandervort,

Enclosed are the revised validation reports for the fractions listed below. Please replace the previously submitted reports with the enclosed revised reports.

LDC Project #48680RV1:

<u>SDG #</u>

Fraction

20F0039, 20F0075 Semivolatiles, Hexachlorobenzene, Polychlorinated Biphenyls, Metals 20F0094, 20F0157

The data validation was performed under Stage 2B & 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation; May 2020
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review; January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review; January 2017
- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review; April 2016
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Ferry

Pei Geng pgeng@lab-data.com Project Manager/Senior Chemist

Windward Environmental, LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 ATTN: Amara Vandervort amarav@windwardenv.com August 13, 2020

SUBJECT: Duwamish AOC4, Data Validation

Dear Ms. Vandervort,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on July 17, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #48680:

SDG #	Fraction
20F0039, 20F0075, 20F0094	Semivolatiles, Hexachlorobenzene, Polychlorinated
20F0105, 20F0109, 20F0157	Biphenyls, Metals, Wet Chemistry, Polychlorinated
20F0186, 20F0191, 20F0194	Dioxins/Dibenzofurans

The data validation was performed under Stage 2B & 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation; May 2020
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review; January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review; January 2017
- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review; April 2016
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Freng

Pei Geng pgeng@lab-data.com Project Manager/Senior Chemist

	14,171 pages-ADV		R1 (Adde												nmer																				
S	tage 2B/4 (client Select)) EDD	LD	С #	486	680	(W	ind	wai	rd E	Inv	iror	nme	enta	al, L	LC	- S	eat	tle	WA	/ D	uw	am	ish	AO	C4))								
LDC	SDG#	DATE REC'D	(3) DATE DUE		/OA 70E)	(82	AHs 70E IM)	Pe	1) est 31B)		Bs B2A)	Me (602	tals 20A)	Н (747	lg 71B)	Dio> (161	cins 3B)	тс (906		To Sol (254	ids														
Mat	rix: Water/Sediment			w	s	w	s	w	s	w	s	W	s	W	s	W	s	W	s	W	S	W	s	W	s	W	s	W	s	W	S	W	S	W	S
А	20F0039	07/17/20	08/07/20	0	1	0	1	0	1	0	2	0	1	0	1	0	1	0	2	0	2														
В	20F0075	07/17/20	08/07/20	0	7	0	10		7	0	13	0	10	0	7	0	1	0	11	0	11														
С	20F0094	07/17/20	08/07/20	0	8	0	12	0	8	0	15	0	12	0	8	0	1	0	15	0	15														
D	20F0105	07/17/20	08/07/20	-	-	-	-	<u> </u>	-	0	4	0	1	-	-	0	1	0	4	0	4														
Е	20F0109	07/17/20	08/07/20	0	3	0	3	0	3	0	10	0	5	0	3	-	-	0	9	0	9														
F	20F0157	07/17/20	08/07/20	0	5	0	4	0	4	0	4	0	4	0	4	0	1	0	4	0	4														
G	20F0186	07/17/20	08/07/20	0	3	0	2	0	2	0	6	0	6	0	2	0	4	0	6	0	6														
н	20F0191	07/17/20	08/07/20	0	4	0	6	0	4	0	11	0	10	0	4	0	4	0	10	0	10														
1	20F0194	07/17/20	08/07/20	0	13	0	13	0	13	0	13	0	13	0	13	0	4	0	13	0	13														
																-																			
																							1												
]																
_																																			
																2							ē												
																-																			
_																-																			
																																	\square		
																1							1												
ota	J/PG			0	44	0	51	0	42	0	78	0	62	0	42	0	17	0	74	0	74	0	0	0	0	0	0	0	0	0	0	0	0	0	484

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 18, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0039

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC109	20F0039-04	Sediment	06/01/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0310-SRM1	Phenol Naphthalene Acenaphthylene Anthracene	36.2 (42-150) 22.2 (33-167) 41.7 (52-148) 56.7 (57-143)	All samples in SDG 20F0039	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Ρ

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to SRM %R, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0039

Sample	Compound	Flag	A or P	Reason
LDW20-SC109	Phenol Naphthalene Acenaphthylene Anthracene	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Ρ	Standard reference materials (%R)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>48680A2a</u> VALI SDG #: <u>20F0039</u> Laboratory: <u>Analytical Resources, Inc.</u>

F

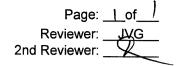
_

Date: 08/05/2	20
Page:of	
Reviewer: <u>V</u>	
2nd Reviewer:	

7

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.


	Validation Area				Comments	
١.	Sample receipt/Technical holding times	AIA				
١١.	GC/MS Instrument performance check	A			· ····································	
	Initial calibration/ICV	AIA	104	$\frac{1 \leq 20\%}{1 \leq 20\%}$	10	= 303
IV.	Continuing calibration	A	c0	NE 20%		
V.	Laboratory Blanks	A				
VI.	Field blanks	H H				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	Ň			· · · · · · · · · · · · · · · · · · ·	
IX.	Laboratory control samples	SN		LOS SR	.M	
X.	Field duplicates	N		· /		
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	N				
XIII.	Target compound identification	N				
XIV.	System performance	N				
	Overall assessment of data	A				
Note:	N = Not provided/applicable R = R	No compounds tinsate Field blank	s detected	D = Duplicate TB = Trip bla EB = Equipr	ink OTHER:	ce blank
	Client ID			Lab ID	Matrix	Date
1	LDW20-SC109			20F0039-04	Sediment	06/01/20
2						
3						
4						
5						
6						
7						
8						
la Notes:						
	BIF0310-BUKE					

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

METHOD: GC/MS SVOA				
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o''-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachiorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) / SRM

METHOD: GC/MS BNA (EPA SW 846 Method 8270Ø)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Y N N/A</u>

Was a LCS required? Y N N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIF0310-SR	M1 A	36.2 (42-158)	()	()	All (Det)	J/uJ/P
		ΞVΛ	22.2 (33-167)) ()	()		
		DD	41.7 (52-198)	()	()		
		v v	56.7 (57-143	()	()		
			()	()	()		4
			()	()	()		
			()	()	()		
			()	()	()		
)	()_	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0039

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC109	20F0039-04	Sediment	06/01/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
02/28/20	N-Nitrosodiphenylamine	34.4	All samples in SDG 20F0039	UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/16/20	Benzoic acid	29.2	All samples in SDG 20F0039	J (all detects) UJ (all non-detects)	Α
	Pentachlorophenol	40.6) (all detects) UJ (all non-detects)	

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0310-SRM2	1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,4-Dimethylphenol 1,2,4-Trichlorobenzene	11.7 (34-166) 11.6 (36-164) 26.5 (40-160) 28.6 (38-162)	All samples in SDG 20F0039	J (all detects) UJ (all non-detects)	Ρ

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and SRM %R, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0039

Sample	Compound	Flag	A or P	Reason
LDW20-SC109	N-Nitrosodiphenylamine	UJ (all non-detects)	А	Initial calibration verification (%D)
LDW20-SC109	Benzoic acid Pentachlorophenol	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)
LDW20-SC109	1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,4-Dimethylphenol 1,2,4-Trichlorobenzene	J (all detects) UJ (all non-detects)	Р	Standard reference materials (%R)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

LDC #:	VAL
--------	-----

LIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 08/0	5/20
Page: <u></u> of	1
Reviewer: <u>M</u>	
2nd Reviewer:	

Laboratory: Analytical Resources, Inc.

SDG #: 20F0039

SVOA

METHOD: GC/MS Polynuclear-Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
١١.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	A,SW	10AL = 20% rr 101 = 30%. CONE 20%
IV.	Continuing calibration	SW	CONE 20%
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	SW	LCS SRM
X.	Field duplicates	N	
XI.	Internal standards	Á	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

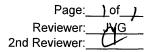
A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	LDW20-SC109	 	20F0039-04	Sediment	06/01/20
2					
3					
4					
5					
6					
7					
8					
9					
Notes:					
_	BIF0310-BLK2				

VALIDATION FINDINGS WORKSHEET


METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	0000. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

LDC #: 486 50 A 26

VALIDATION FINDINGS WORKSHEET

Initial Calibration Verification

Svoa E METHOD: GC/MS PAH (EPA SW 846 Method 8270Ø-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y(N)N/A Were all %D within the validation criteria of $\leq 2\theta/30\%$ %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><20.9%</u> /30%) 34.4	Associated Samples	Qualifications
	02/28/20	Standard ID SI CO29-SCVI	Compound RQ	34.4	AII (ND)	J/45/A
			······································			
				· · · · · · · · · · · · · · · · · · ·		
	·····					
			· · · · · · · · · · · · · · · · · · ·			

VALIDATION FINDINGS WORKSHEFT

Page:	<u>] of /</u>
Reviewer:	"ŲG
2nd Reviewer:	$\langle $

Qualifications J/UJ/A

	·	-	••	Continuing C		
исти	IOD: GC/MS D	ん 名(EPA SW 846 Metho	NH 82701 SIM			
Please	e see qualificati	ions below for all questi	ons answered "N". Not a	applicable questions are	e identified as "N/A"	
YN	<u>N/A</u> Wa	as a continuing calibra	ation standard analyze	ed at least once every	12 hours for each inst	rument?
YN	<u>N/A</u> We	ere percent difference	es (%D) ≤20 % and re	lative response factor	s (RRF) within the met	hod criteria?
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples
	06/16/20	NT10200616 03	s PPP	29,2		All (ND + Det
			TT	40.6		
						V
		······································				
					······································	
	1					
						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
]			
					} 	
			1	<u> </u>		
						· · · · · · · · · · · · · · · · · · ·
			+			
				1		
l						
┣						
	·					

LDC #: 486 80 A 26

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) / SRM

Page:of	
Reviewer:	
2nd Reviewer:	

SV7A METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y/N N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	%R	LCS R (Limits)	LCSD %R (Limits)		RPD (Limits)		Associated Samples	Qualifications
	BIF 0310- SRM2	E	11.7	(34-166)	()	()	All (ND + Det)	J/UJ/P
		F	11.6	(36-164)	()	()		
		0	26.5	(40-160)	()	()		
		R	28.6	(38-162)	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
	······································			()	()	()		
				()	()	()		
	······			()	()	()		
			<u> </u>	()	((
				()	()	()		
				()	()	()		
				()	()	()		
			_	()	()	()		
			 	()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()	(\rightarrow		
			<u> </u>	()	()	()		
		l	L	()	<u> </u>)	()		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4

LDC Report Date: August 7, 2020

Parameters: Hexachlorobenzene

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0039

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC109	20F0039-04	Sediment	06/01/20
LDW20-SC109MS	20F0039-04MS	Sediment	06/01/20
LDW20-SC109MSD	20F0039-04MSD	Sediment	06/01/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
All samples in SDG 20F0039	Hexachlorobenzene	ICV not performed.	ICV required prior to each analytical run.	UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC109MS/MSD (LDW20-SC109)	Hexachlorobenzene	165 (26-120)	165 (26-120)	NA	-

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to no ICV performed, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 20F0039

Sample	Compound	Flag	A or P	Reason
LDW20-SC109	Hexachlorobenzene	UJ (all non-detects)	A	Initial calibration verification (%D)

Duwamish AOC4

Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

LDC #:	48680A3a	VALIDATION COMPLETENESS WORKSHEET
SDG #:	20F0039	Stage 2B
Laborato	ory: Analytical Resour	ces, Inc.

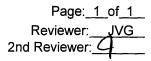
Date: 08/04 /	'n
Page:of	
Reviewer:	
2nd Reviewer:	-

METHOD: GC Hexachlorobenzene (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments				
1.	Sample receipt/Technical holding times	AI A					
١١.	GC Instrument Performance Check	N					
- 111.	Initial calibration/ICV	A', SW		GAL 5208 VE 206	Iava	20?	
IV.	Continuing calibration	' A	CO	NE 20%			
V.	Laboratory Blanks	Á					
VI	Field blanks	Ň					
VII.	Surrogate spikes / 19	A/4	f				
VIII.	Matrix spike/Matrix spike duplicates	SIN					
IX.	Laboratory control samples	A		us			
<u> </u>	Field duplicates	Ň					
XI.	Compound quantitation/RL/LOQ/LODs	N					
<u></u>	Target compound identification	N					
XIII.	System Performance	N					
	Overall assessment of data	A	L				
Note:	N = Not provided/applicable R = Rin	o compounds Isate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Sourc OTHER: ank	e blank	
	Client ID			Lab ID	Matrix	Date	
1-	LDW20-SC109			20F0039-04	Sediment	06/01/20	
2	LDW20-SC109MS			20F0039-04MS	Sediment	06/01/20	
3	LDW20-SC109MSD			20F0039-04MSD	Sediment	06/01/20	
4							
5			•				
6							
7							
8 9 10							
9							
10							
Notes:							
	BIF0122-Buk 1			<u> </u>			
┣──		······					
				······			

VALIDATION FINDINGS WORKSHEET


METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

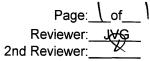
A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ cis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychior	Z. Aroclor-1248	JJ. Aroclor 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	W
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	WW.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:

LDC #: 48680A3a

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)


Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". What type of initial calibration verification calculation was performed? $\underline{/}$ %D or $\underline{-}$ %R <u>Y N / I/A</u>) Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y N WA Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
		No ICV performed		Hexachlorobenzene		All (ND)	J/UJ/A
						l	
							
						 	
L) 			 	L
						 	
						ļ	
					L		

LDC #: 48680 A3a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YN N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? YN N/A

Was a MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

N)N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	2/3	FF	165 (26-120)	()	()	I (ND)	J dets/A
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
╟──┼			()	()	()		
╟──┼			· · · · · · · · · · · · · · · · · · ·	()	()		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 7, 2020
Parameters:	Polychlorinated Biphenyls
Validation Level:	Stage 2B

Laboratory:Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0039

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC109	20F0039-04	Sediment	06/01/20
LDW20-SC113	20F0039-05	Sediment	06/01/20
LDW20-SC109MS	20F0039-04MS	Sediment	06/01/20
LDW20-SC109MSD	20F0039-04MSD	Sediment	06/01/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
06/10/20	SIF0176-SCV1	2C	Aroclor-1260	21.0	All samples in SDG 20F0039	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) UJ (all non-detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC109MS/MSD (LDW20-SC109)	Aroclor-1260	-	198 (58-120)	J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LDW20-SC109MS/MSD (LDW20-SC109)	Aroclor-1260	40.5 (≤30)	J (all detects)	A

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and MS/MSD %R and RPD, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0039

Sample	Compound	Flag	A or P	Reason
LDW20-SC109 LDW20-SC113	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) UJ (all non-detects)	A	Initial calibration verification (%D)
LDW20-SC109	Aroclor-1260	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)(RPD)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

VALIDATION	COMPL	ETENESS	WORKSHEET
VALIDATION	COMILE	LILNLSS	VUNNSIILLI

Stage 2B

LDC #:_	48680A3b	V
SDG #:_	20F0039	
Laborato	ny: Analytical Resource	c

......

.

Laboratory: Analytical Resources, Inc.

Date: 08/04/10 Page: 1 of Reviewer: 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments	
1.	Sample receipt/Technical holding times	A/A			
11.	Initial calibration/ICV	A, SW	ICAL = 20? CONE ZO2		INE ZOZ
	Continuing calibration	A	Care rol		
IV.	Laboratory Blanks	A			
V.	Field blanks	Ň			
VI.	Surrogate spikes / 15	A/A			
VII.	Matrix spike/Matrix spike duplicates	SW			
VIII.	Laboratory control samples	A	LCS SRI	М	
IX.	Field duplicates	N	•		
<u> </u>	Compound quantitation/RL/LOQ/LODs	N			
XI.	Target compound identification	N			
	Overall assessment of data				

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

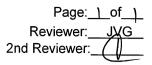
D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC109	20F0039-04	Sediment	06/01/20
2	LDW20-SC113	20F0039-05	Sediment	06/01/20
u	LDW20-SC109MS	20F0039-04MS	Sediment	06/01/20
3 4 5 6	LDW20-SC109MSD	20F0039-04MSD	Sediment	06/01/20
5				
7 8 9 10				
8				
9				
10				
11				
12		<u> </u>		
Notes				
	RTEADED RALL			

-	BIF0284-BUKL				

VALIDATION FINDINGS WORKSHEET

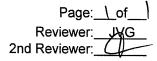

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ çis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Arocior-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	WW.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:_____

LDC #:	48680	A35
--------	-------	-----

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification



METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Pleas	Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". What type of initial calibration verification calculation was performed?%D or%R								
Wha	t type of ini	tial calibration verification	ation calculation was ation verification star	performed? <u></u> %D	or <u>%</u> R	notrum onto			
	<u>N/A</u>)N/A	Did the initial calibra	ation verification stan	dards meet the %D /	%R validation criter	ia of <u><</u> 20.0% / 80-120%?			
					%D				
#	Date	Standard ID	Detector/ Column	Compound	(Limit ≤ 20.0)	Associated Samples	Qualifications		
	06/10/20	SIF0176-SCV1	20	BB	21.0	All (ND +Det)	J/UJ/A		
							(mal Z. AA. BB)		
							· · · · · ·		
				·					

LDC #:___ 48680A36

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\underbrace{N N/A}$ Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SD Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? N/A

Was a MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? 小/A

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	3/9	BB	()	98 (58-120)	()	1 (Pet)	J dets/A
		BB BB	()	()	40.5 (30)		
			()	()			
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
	1		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	· · · · ·	······································
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		· · · · · · · · · · · · · · · · · · ·
			()	()	()		
			()	()	()		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
Projecuone Name.	Duwamish AUC4

LDC Report Date: August 10, 2020

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0039

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC109	20F0039-04	Sediment	06/01/20
LDW20-SC109MS	20F0039-04MS	Sediment	06/01/20
LDW20-SC109MSD	20F0039-04MSD	Sediment	06/01/20
LDW20-SC109DUP	20F0039-04DUP	Sediment	06/01/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

Although the low level check standard exceeded QC limits for arsenic, no data was qualified since all associated results were greater than 2X the reporting limit.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC109MS/MSD (All samples in SDG 20F0039)	Silver	41.5 (75-125)	49.8 (75-125)	J (all detects)	A

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC109MS/MSD (All samples in SDG 20F0039)	Copper	130 (75-125)	-	J (all detects)	A

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD %R, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0039

Sample	Analyte	Flag	A or P	Reason
LDW20-SC109	Silver Copper	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

Stage 2B

Date: 7/30/20 Page: 1 of 1 Reviewer: ATL 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

LDC #: 48680A4a

SDG #: 20F0039

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
П.	ICP/MS Tune	A	
111.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	А	
V.	Laboratory Blanks	A	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	SW	(2,3)
VIII.	Duplicate sample analysis	А	4
IX.	Serial Dilution	N	
Х.	Laboratory control samples	А	LCS/SRM
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	Α	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC109	20F0039-04	Sediment	06/01/20
2	LDW20-SC109MS	20F0039-04MS	Sediment	06/01/20
3	LDW20-SC109MSD	20F0039-04MSD	Sediment	06/01/20
4	LDW20-SC109DUP	20F0039-04DUP	Sediment	06/01/20
5				
6				
7				
8				
9				
10				
11				
12				
13				
Notes	6:			

CVAA

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
	1 Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
QC	
2,3,4	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
· · · · · · · · · · · · · · · · · · ·	
	Analysis Method
ICP	
ICP-MS	

VALIDATION FINDINGS WORKSHEETS Matrix Spike/Matrix Spike Duplicates

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS/MSD analysis was performed by the laboratory.	All MS/MSD percent recoveries (%R) and relative percent differences (RPDs) were within the
acceptable limits with the following exceptions:	

MS/MSD						1				
ID	Matrix	Analyte	MS %R	MSD %R	%R Limit	RPD	RPD Limit	Associated Samples	Qualification	Det/ND
2&3	S	Ag	41.5	49.8	75-125			all	J/UJ/A	Det
		Cu	130		75-125			all	Jdet/A	Det
			1							
	1									
						1				
						1				
		1	1							

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date:	August 10, 2020
------------------	-----------------

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0039

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC109	20F0039-04	Sediment	06/01/20
LDW20-SC113	20F0039-05	Sediment	06/01/20
LDW20-SC109MS	20F0039-04MS	Sediment	06/01/20
LDW20-SC109DUP	20F0039-04DUP	Sediment	06/01/20

- - - - -

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A Total Solids by Standard Method 2540G

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Total organic carbon	0.02%	All samples in SDG 20F0039

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

١	1	A	L	ID	A	١T	1	0	Ν	(0	MF	۱	Ε.	ΓE	NE	SS	; V	VC	R	K	Sł	ΗE	E	Т
			_		-		-	-						_	-			-					_	_	

Stage 2B

Date: <u>7/30/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>ATL</u> 2nd Reviewer: <u>4</u>

Laboratory: Analytical Resources, Inc.

LDC #: 48680A6

SDG #: 20F0039

METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
11	Initial calibration	А	
- 111.	Calibration verification	А	
IV	Laboratory Blanks	sw	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	А	3
VII.	Duplicate sample analysis	А	4
VIII.	Laboratory control samples	A	LCS/SRM
IX.	Field duplicates	N	
Х.	Sample result verification	N	
XI.	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet

- ND = No compounds detected R = RinsateFB = Field blank
- D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC109	20F0039-04	Sediment	06/01/20
2	LDW20-SC113	20F0039-05	Sediment	06/01/20
3	LDW20-SC109MS	20F0039-04MS	Sediment	06/01/20
4	LDW20-SC109DUP	20F0039-04DUP	Sediment	06/01/20
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
lote	s:			

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1,2	TS, TOC	
QC		
4	TS, TOC	
3	TOC	
		_
·····		

METHOD: Inorganics

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: %

Associated Samples: all Sample Identification Maximum PΒ Action ICB/CCB Analyte (units) Level (%) 0.02 тос

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is establised

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duv	wamish AOC4
------------------------	-------------

LDC Report Date: August 10, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0039

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC109	20F0039-04	Sediment	06/01/20
LDW20-SC109DUP	20F0039-04DUP	Sediment	06/01/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Affected Compound	Flag	A or P
06/25/20	13C12-1,2,3,4,7,8,9-HpCDF	73.9 ng/mL (77-129)	All samples in SDG 20F0039	1,2,3,4,7,8,9-HpCDF	J (all detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0465-BLK1	06/22/20	1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF OCDF OCDD Total PeCDD Total HpCDF	0.175 ng/Kg 0.0946 ng/Kg 0.166 ng/Kg 0.521 ng/Kg 1.32 ng/Kg 0.175 ng/Kg 0.166 ng/Kg	All samples in SDG 20F0039

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LDW20-SC109DUP (LDW20-SC109)	OCDF	46.2 (≤25)	J (all detects)	А

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20F0039	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration, DUP RPD, and compounds reported as EMPC, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0039

Sample	Compound	Flag	A or P	Reason
LDW20-SC109	1,2,3,4,7,8,9-HpCDF	J (all detects)	Р	Continuing calibration (concentration)
LDW20-SC109	OCDF	J (all detects)	A	Duplicate sample analysis (RPD)
LDW20-SC109	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0039

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary -SDG 20F0039

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u>08/07/20</u> Page: <u>1_of 1</u> Reviewer: <u>VG</u> 2nd Reviewer: <u>4</u>

Laboratory: Analytical Resources, Inc.

LDC #: 48680A21

SDG #: 20F0039

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A/A	
11.	HRGC/HRMS Instrument performance check	A	
- 111.	Initial calibration/ICV	A/A	ICAL ≤20/35% ICV ≤ QC Limits
IV.	Continuing calibration	sw	CCV ≤ QC Limits
V.	Laboratory Blanks	sw	
VI.	Field blanks	N	
VII.	Matrix spike/Matrix spike duplicates/LD	N/SW	
VIII.	Laboratory control samples	A	OPR, SRM
IX.	Field duplicates	N	
X .	Labeled Compounds	А	
XI.	Compound quantitation RL/LOQ/LODs	N	EMPC = Jdets/A
XII.	Target compound identification	N	
XIII.	System performance	N	
XIV.	Overall assessment of data	А	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID					Lab ID	Matrix	Date
1	LDW20-SC109		20F0039-04	Sediment	06/01/20			
2	LDW20-SC109DUP					20F0039-04DUP	Sediment	06/01/20
3							·	
4						······		
5								
5 6 7								
7				_				
F -								
8 9								
10								
Notes	:							
	BIF0465-BLK1							

1

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

LDC #: 48680A21_

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page:_	1	_of	1_
Reviewer:		W(3
2nd Reviewer:	2	₽	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a routine calibration performed at the beginning of each 12 hour period? <u>Y</u>

N Y Were all concentrations within method QC limits for unlabeled and labeled compounds?

Did all routine calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	Conc:ng/mL (Limits)	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	06/25/20	SIF0380-ICV1	13C12-P	73.9 (77-129)		All (Det)	J/UJ/P (qual P)
							······································

LDC #: 48680A21

VALIDATION FINDINGS WORKSHEET

Blanks

Page 1_of 1 Reviewer: JVG 2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

- Was a method blank performed for each matrix and whenever a sample extraction was performed?
- Y Y Y Was the method blank contaminated?

Blank extraction date: 06/22/20 Blank analysis date: 06/25/20 Associated samples: All (>5x)

Conc. units: ng/Kg

Compound	Blank ID		Sample Identification							
	BIF0465-BLK1	(5x)								
В	0.175	0.88								
м	0.0946*	0.47								
0	0.166	0.83								
Q	0.521*	2.61								
G	1.32	6.60								
S	0.175	0.88	 							
Y	0.166	0.83						L	L	

*EMPC

LDC #: 48680A21

VALIDATION FINDINGS WORKSHEET Duplicate Analysis

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y Was a duplicate sample analyzed for each matrix in this SDG?

N Were all duplicate sample relative percent differences (RPD) < 25?

#	Duplicate ID	Compound	RPD (Lin	nits)	Associated Samples	Qualifications
	2	Q	46.2	(≤25%)	1 (Det)	Jdets/A
				(≤		
				(≤)		
				(≤)		
				(≤)		
			· · · · · · · · · · · · · · · · · · ·	(≤)		
				(≤)		
			, 	(≤)		
				(≤)		
L			,	(≤)		
				(≤)		
L			· · · · · · · · · · · · · · · · · · ·	(≤)		
				(≤)		
			·	<u>(</u> ≤)		
				(≤)		
				(≤)		
L			·	(≤)		
				(≤)		
				<u>(</u> ≤)		
<u> </u>		· · · · · · · · · · · · · · · · · · ·		(≤)		
				<u>(≤</u>)		
			· · · · · · · · · · · · · · · · · · ·	(\leq)		
				(≤)	<u> </u>	

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0075

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC102	20F0075-02	Sediment	06/02/20
LDW20-SC101	20F0075-03	Sediment	06/02/20
LDW20-SC117	20F0075-04	Sediment	06/02/20
LDW20-SC123	20F0075-06	Sediment	06/02/20
LDW20-SC123FD	20F0075-07	Sediment	06/02/20
LDW20-SC125	20F0075-08	Sediment	06/02/20
LDW20-SC130	20F0075-10	Sediment	06/02/20
LDW20-SC102MS	20F0075-02MS	Sediment	06/02/20
LDW20-SC102MSD	20F0075-02MSD	Sediment	06/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 9.6°C, 11.6°C, and 12.8°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0380-SRM1	Phenol Naphthalene Acenaphthylene Acenaphthene Anthracene Benzo(a)pyrene	40.0 (42-158) 16.2 (33-167) 32.4 (52-148) 46.9 (51-149) 44.6 (57-143) 53.8 (54-146)	All samples in SDG 20F0075	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Р

X. Field Duplicates

Samples LDW20-SC123 and LDW20-SC123FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SC123 LDW20-SC123FD		RPD
Phenol	14.1	18.6	28
Naphthalene	11.0	12.3	11
2-Methylnaphthalene	13.1	11.9	10
Acenaphthylene	7.6	6.8	11
Dimethylphthalate	7.4	19.3U	Not calculable
Acenaphthene	6.6	5.4	20

	Concentra		
Compound	LDW20-SC123 LDW20-SC123FD		RPD
Dibenzofuran	9.3	7.8	18
Fluorene	7.8	7.2	8
Phenanthrene	57.5	48.6	17
Anthracene	18.5	15.6	17
Fluoranthene	115	105	9
Pyrene	142	136	4
Butylbenzylphthalate	74.7	22.6	107
Benzo(a)anthracene	56.5	48.1	16
Chrysene	80.5	67.1	18
Bis(2-ethylhexyl)phthalate	141	124	13
Benzofluoranthenes, total	183	159	14
Benzo(a)pyrene	71.0	61.6	14
Indeno(1,2,3-cd)pyrene	46.6	42.2	10
Dibenzo(a,h)anthracene	12.7	11.8	7
Benzo(g,h,i)perylene	56.2	49.2	13

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to SRM %R, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0075

Sample	Compound	Flag	A or P	Reason
LDW20-SC102 LDW20-SC101 LDW20-SC117 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-SC130	Phenol Naphthalene Acenaphthylene Acenaphthene Anthracene Benzo(a)pyrene	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Ρ	Standard reference materials (%R)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

Stage 4

LDC #: <u>48680B2a</u> VALI SDG #: <u>20F0075</u> Laboratory: <u>Analytical Resources, Inc.</u> Date: <u>68/05/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>0</u>/0 2nd Reviewer: ____

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	SV41A	Cooler temps, = 9.6°C, 12.8°C 11.6°C (Insufficient
11.	GC/MS Instrument performance check	A	
<u>III.</u>	Initial calibration/ICV	AA	1921 = 20 ? 101 = 30'S CWE 202
IV.	Continuing calibration	Á	CWEZZ
V.	Laboratory Blanks	A	
VI.	Field blanks	Z	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	SVA	$\frac{LCS}{D} = \frac{4}{5}$
Х.	Field duplicates	SW	p=4/5
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	Á	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC102	20F0075-02	Sediment	06/02/20
2	LDW20-SC101	20F0075-03	Sediment	06/02/20
3	LDW20-SC117	20F0075-04	Sediment	06/02/20
4	LDW20-SC123	20F0075-06	Sediment	06/02/20
5	LDW20-SC123FD	20F0075-07	Sediment	06/02/20
6	LDW20-SC125	20F0075-08	Sediment	06/02/20
7	LDW20-SC130	20F0075-10	Sediment	06/02/20
8	LDW20-SC102MS	20F0075-02MS	Sediment	06/02/20
9	LDW20-SC102MSD	20F0075-02MSD	Sediment	06/02/20
10				
11				
12				
1 3	BIF0350-BKL			
14				

VALIDATION FINDINGS CHECKLIST

Page: <u>1 of 2</u> Reviewer: <u>JVG</u> 2nd Reviewer:

E

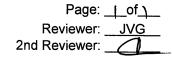
Method: Semivolatiles (EPA SW 846 Method 8270)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				······································
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?		1		
Illa. Initial calibration	,,			
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations ($(RSD) \leq 20\%$ and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?		а. С	/	
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) < 30%?	/			· · · · · · · · · · · · · · · · · · ·
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	<			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/	-		
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.		/		
VI. Field blanks				
Were field blanks were identified in this SDG?	٣	/		
Were target compounds detected in the field blanks?			/	
VII. Surrogate spikes		<u> </u>		
Were all surrogate percent recovery (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R ?			/	-
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	1			

VALIDATION FINDINGS CHECKLIST

Page: <u>2_of_2</u> Reviewer: <u>JVG</u> 2nd Reviewer: ____

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch?	\square			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?	\square			
XI. Internal standards	-			
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	1			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	-		
XIII. Target compound identification			•	
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?	\langle			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	<			
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.	\square			
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	\square			


VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

METHOD: GC/MS SVOA	والمتحافظ والمراجع المراجع المراجع والمراجع والمراجع والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ			Marine
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	0000. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW. 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

A2. Benzofluoranthenes, total

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) /SRM

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

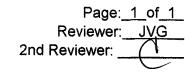
<u>YN N/A</u> Was a LCS required?

<u>N N/A</u> Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIF0380-5RM1	A	FO.0 (42-158)	()	()	All (bet)	J/UJ/P
		Ś	16.2 (33-167)	()	()		1
		DD	32,4 (52-148)	()	()		
		GG	46,9 (51-149)	()	()		
		^∨ √	44.6 (57-143)	()	()		
		III	53.8 (54-146)	()	()		
			()	()	()		
			()	()	()		
				())		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
				()	()		
			()	()	()		
		· · · · · · · · · · · · · · · · · · ·	()	()	()		
			()	()	()		
			()	()	()		
			()	()	: ()		
			()	()	()		
			()	()	()		

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page: 1_of_1 Reviewer 2nd Reviewer:


METHOD: GCMS SVOA (EPA SW 846 Method 8270E)

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs? YNNA

	Concentra	Concentration (ug/Kg)					
Compound	4	5	RPD				
A	14.1	18.6	28				
S	11.0	12.3	11				
w	13.1	11.9	10				
DD	7.6	6.8	11				
сс	7.4	19.3U	NC				
GG	6.6	5.4	20				
JJ	9.3	7.8	18				
NN	7.8	7.2	8				
UU	57.5	48.6	17				
w	18.5	15.6	17				
YY	115	105	9				
ZZ	142	136	4				
AAA	74.7	22.6	107				
ccc	56.5	48.1	16				
DDD	80.5	67.1	18				
EEE	141	124	13				
A2	183	159	14				
11	71.0	61.6	14				
JJJ	46.6	42.2	10				
ккк	12.7	11.8	7				
LLL	56.2	49.2	13				

V:\Josephine\FIELD DUPLICATES\48680B2a windward duwamish.wpd

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

$RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$
average RRF = sum of the RRFs/number of standards
%RSD = 100 * (S/X)

 A_x = Area of Compound C_x = Concentration of compound, S= Standard deviation of the RRFs, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

#	Standard ID	Calibration Date	Compoun	d (IS)	Reported RRF (RRF 10 std)	Recalculated RRF (RRF 10 std)	Reported Average RRF (Initial)	Recalculated Average RRF (Initial)	Reported %RSD	Recalculated %RSD
1	ICAL	02/28/20	Phenol	(DCB)	1.59347	1.59347	1.65585	1.65585	7.959	7.959
			Naphthalene	(NPT)	0.92453	0.92453	0.92758	0.92758	1.339	1.339
	NT10		Diethylphthalate	(ANT)	1.37384	1.37384	1.35321	1.35321	7.313	7.313
			Phenanthrene	(PHN)	1.03992	1.03992	1.02052	1.02052	1.897	1.897
			Chrysene	(CRY)	1.20105	1.20105	1.21232	1.21232	3.091	3.091
			BEHP	(DNOP)	0.49495	0.49495	0.48711	0.48710	3.070	3.070
			Benzo(g,h,i)peryler	ne (PRY)	1.23732	1.23732	1.24193	1.24193	6.014	6.014

LDC # 48680B2a

VALIDATION FINDINGS WORSHEET Continuing Calibration Calculation Verification

Page: 1 of 1 Reviewer: JVG 2nd Reviewer: 4

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

щ.	Chanderd ID	Calibration	Compound	(10)	Average RRF	Reported RRF	Recalculated RRF	Reported % D	Recalculated %D
#	Standard ID	Date	Compound	(IS)	(Initial)	(CCV)	(CCV)		
1	NT1020062302.	6/23/2020	Phenol	(DCB)	1.65585	1.62455	1.62455	1.9	1.9
			Naphthalene	(NPT)	0.92758	0.94636	0.94636	2.0	2.0
	NT10		Fluorene	(ANT)	1.55760	1.32268	1.32268	15.1	15.1
			Phenanthrene	(PHN)	1.02052	1.01094	1.01094	0.9	0.9
			Chrysene	(CRY)	1.21232	1.15605	1.15605	4.6	4.6
			BEHP	(DNOP)	0.48711	0.47106	0.47106	3.3	3.3
			Benzo(g,h,i)perylene) (PRY)	1.24193	1.17446	1.17446	5.4	5.4

LDC #: _____48680 B2A

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: 1_of_1_ Reviewer: JVG, 2nd reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:	SS = Surrogate Spiked								
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference				
Nitrobenzene-d5	5.00	3.040	60.8	60.8	0				
2-Fluorobiphenyl		3.626	72.5	72.5					
Terphenyl-d14		4. 536 3. 372	. 67.4	67.9					
Phenol-d5	7.50	3,953 4,536	60.5	60.5					
2-Fluorophenol		3.957	52.7	52.7					
2,4,6-Tribromophenol		5.666	75.6	75.6					
2-Chlorophenol-d4		5.019	66,9	66.9					
1,2-Dichlorobenzene-d4	5.00	3.229	64.6	64.6					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl			-		
Terphenyl-d14					
Phenoi-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

.

LDC #: 48680 B22

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page:_	<u>1_of 1</u>
Reviewer:	JVG
2nd Reviewer:	0

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

8

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC | * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: _____

		ike ded	Sample Concentration		Spiked Sample		Matrix Spike		Matrix Spike Duplicate		MS/MSD	
Compound		(kg)	(ng/kg		15,	Percent Recovery		Percent Recovery		RPD		
	MS	MSD		MS	MISD	Reported	Recalc	Reported	Recalc	Reported	Recalc	
Phenol	504	504	92.5	424	448	66.1	66.2	70,4	70.5	4,94	5.03	
N- Nitroso-di-n-propylamin e												
4-Chloro-3-methylphenol												
Acenaphthene			7.1	412	414	80,3	80.3	80.6	80.7	0,459	6.48	
Pentachlorophenol												
Pyrene	/		216	659	667	87.8	87.9	89.4	89.5	1.26	1.21	

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 48680BZa

VALIDATION FINDINGS WORKSHEET

Page: 1_of_1_

Reviewer: JVG

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: _____

3I	FO	380-	PS	1

	Sp	ike ded		Spike Concentration (\L_ /Fa,)		LCS Percent Recovery		L CSD Percent Recovery			
Compound	(119)	4								PD	
and the second					Reported	Recalc	Reported	Recalc	Reported	Recalculated	
Phenol	500	MA	397	MAX	79,3	79.3					
N-Nitroso-di-n-propylamine		1								~	
4-Chloro-3-methylphenol										1	
Acenaphthene			350		69.9	69-9					
P entachlorophen ol											
Pyrene	~		400		80.0	80,0					
······································											
				1							

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

(-	YNN	Į/A	Were all recalculated results for detected t	arget compounds agree within 10.0% of the reported results?
	Concer	ntratio	$n = \frac{(A_{s})(I_{s})(V_{t})(DF)(2.0)}{(A_{ts})(RRF)(V_{o})(V_{t})(\%S)}$	Example:
	A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D, Chrysene
	A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
	l _s	=	Amount of internal standard added in nanograms (ng)	$Conc. = \frac{(107564)(4.0)(101)(1000)}{(308779)(1.21232)(16.65g)(0.56980)(0)}$
	V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
	V	=	Volume of extract injected in microliters (ul)	= 115.4 ug kg
	Vt	=	Volume of the concentrated extract in microliters (ul)	0
	Df	=	Dilution Factor.	
	%S	=	Percent solids, applicable to soil and solid matrices only.	
	2.0	=	Factor of 2 to account for GPC cleanup	

Were all reported results recalculated and verified for all level IV samples?

#	Sample ID	Compound	Reported Concentration (巧な	Calculated Concentration (\G \KG)	Qualification
		Chrysene	115	115	_
		1			
			· · · · · · · · · · · · · · · · · · ·		
				-	
				II	

LDC #: 48 \$ 80 \$ 20 VA

<u>YN N/A</u>

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0075

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT106	20F0075-01	Sediment	06/02/20
LDW20-SC102	20F0075-02	Sediment	06/02/20
LDW20-SC101	20F0075-03	Sediment	06/02/20
LDW20-SC117	20F0075-04	Sediment	06/02/20
LDW20-SC123	20F0075-06	Sediment	06/02/20
LDW20-SC123FD	20F0075-07	Sediment	06/02/20
LDW20-SC125	20F0075-08	Sediment	06/02/20
LDW20-IT105	20F0075-09	Sediment	06/02/20
LDW20-SC130	20F0075-10	Sediment	06/02/20
LDW20-IT127	20F0075-11	Sediment	06/02/20
LDW20-IT127MS	20F0075-11MS	Sediment	06/02/20
LDW20-IT127MSD	20F0075-11MSD	Sediment	06/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 9.6°C, 12.8°C, and 11.6°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
02/28/20	N-Nitrosodiphenylamine	34.4	LDW20-SC102 LDW20-SC101 LDW20-SC117 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-SC130	J (all detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/23/20	Benzoic acid	29.2	LDW20-SC102 LDW20-SC101 LDW20-SC117 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-SC130	J (all detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0656-BLK2	06/23/20	1,4-Dichlorobenzene 1,2-Dichlorobenzene	0.7 ug/Kg 0.8 ug/Kg	All samples in SDG 20F0075

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-SC102	1,4-Dichlorobenzene 1,2-Dichlorobenzene	3.0 ug/Kg 1.3 ug/Kg	3.0U ug/Kg 1.3U ug/Kg
LDW20-SC101	1,4-Dichlorobenzene	3.6 ug/Kg	3.6U ug/Kg
LDW20-SC117	1,4-Dichlorobenzene	1.8 ug/Kg	1.8U ug/Kg
LDW20-SC123	1,4-Dichlorobenzene	2.1 ug/Kg	2.1U ug/Kg
LDW20-SC123FD	1,2-Dichlorobenzene	1.2 ug/Kg	1.2U ug/Kg
LDW20-SC125	1,4-Dichlorobenzene	1.5 ug/Kg	1.5U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT127MS/MSD (LDW20-IT127)	Chrysene	126 (48-120)	-	J (all detects)	A

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

Samples LDW20-SC123 and LDW20-SC123FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SC123	LDW20-SC123FD	RPD
1,4-Dichlorobenzene	2.1	27.3	171
1,2-Dichlorobenzene	4.9U	1.2	Not calculable
Benzyl alcohol	13.2	17.5	28
Benzoic acid	38.5	54.3	34
N-Nitrosodiphenylamine	3.1	2.9	7

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and MS/MSD %R, data were qualified as estimated in eight samples.

Due to laboratory blank contamination, data were qualified as not detected in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0075

Sample	Compound	Flag	A or P	Reason
LDW20-SC102 LDW20-SC101 LDW20-SC117 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-SC130	N-Nitrosodiphenylamine	J (all detects)	A	Initial calibration verification (%D)
LDW20-SC102 LDW20-SC101 LDW20-SC117 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-SC130	Benzoic acid	J (all detects)	A	Continuing calibration (%D)
LDW20-IT127	Chrysene	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0075

Sample	Compound	Modified Final Concentration	A or P
LDW20-SC102	1,4-Dichlorobenzene 1,2-Dichlorobenzene	3.0U ug/Kg 1.3U ug/Kg	A
LDW20-SC101	1,4-Dichlorobenzene	3.6U ug/Kg	A
LDW20-SC117	1,4-Dichlorobenzene	1.8U ug/Kg	A
LDW20-SC123	1,4-Dichlorobenzene	2.1U ug/Kg	A
LDW20-SC123FD	1,2-Dichlorobenzene	1.2U ug/Kg	A
LDW20-SC125	1,4-Dichlorobenzene	1.5U ug/Kg	A

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

LDC #:_	48680B2b
SDG #:	20F0075

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Laboratory: Analytical Resources, Inc.

Date: 08/05 /20 Page: Reviewer: 2nd Reviewer:

SVOA METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	SIN / A	Cooler temps = 9.6°C, 12.8°C, 11.6°C (Insufficient
11.	GC/MS Instrument performance check	Ă .	
III.	Initial calibration/ICV	A Sul	IGALE 20% M LAVE
IV.	Continuing calibration	ŚW	$CW \in 203$
V.	Laboratory Blanks	SVA	
VI.	Field blanks	Z	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	ŚW	
IX.	Laboratory control samples	A	LLS SRM
Х.	Field duplicates	SW	b = 5/s
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	Â	
XV.	Overall assessment of data	Á	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
2 1	LDW20-IT106	20F0075-01	Sediment	06/02/20
21	LDW20-SC102	20F0075-02	Sediment	06/02/20
3 1	LDW20-SC101	20F0075-03	Sediment	06/02/20
4 1	LDW20-SC117	20F0075-04	Sediment	06/02/20
₅ 1	LDW20-SC123	20F0075-06	Sediment	06/02/20
6 1	LDW20-SC123FD	20F0075-07	Sediment	06/02/20
₇ ۱	LDW20-SC125	20F0075-08	Sediment	06/02/20
8 2	LDW20-IT105	20F0075-09	Sediment	06/02/20
9 I	LDW20-SC130	20F0075-10	Sediment	06/02/20
10 2	LDW20-IT127	20F0075-11	Sediment	06/02/20
11	LDW20-IT127MS	20F0075-11MS	Sediment	06/02/20
12	LDW20-IT127MSD	20F0075-11MSD	Sediment	06/02/20
13				
14	BIF0350-B1K2			

CPAH = 1,8,10 LDC #:_

VALIDATION FINDINGS CHECKLIST

	Page:_	<u>1_of_</u>	2
	Reviewer:	JVG	
2nd	Reviewer:		

SV7A Method: PAH (EPA SW 846 Method 8270D-SIM)

Validation Area	Yes	No	NA	Findings/Comments				
I. Technical holding times								
Were all technical holding times met?	/			Α				
Was cooler temperature criteria met?								
II. GC/MS Instrument performance check (Not required)								
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/			· ·.				
Were all samples analyzed within the 12 hour clock criteria?								
Illa. Initial calibration	T							
Did the laboratory perform a 5 point calibration prior to sample analysis?	$\left \right $			2 m.				
Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) \geq 0.05?				;				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?								
IIIb. Initial Calibration Verification								
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	\square		, <u> </u>					
Were all percent differences (%D) ≤30%?								
IV. Continuing calibration								
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?								
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?								
V. Laboratory Blanks		,						
Was a laboratory blank associated with every sample in this SDG?	/							
Was a laboratory blank analyzed for each matrix and concentration?								
Was there contamination in the laboratory blanks?								
VI. Field blanks								
Were field blanks identified in this SDG?		4						
Were target compounds detected in the field blanks?			$ \land $					
VII. Surrogate spikes								
Were all surrogate percent differences (%R) within QC limits?								
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				-				
If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?			1	-				
VIII. Matrix spike/Matrix spike duplicates								
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?								
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/					

Level IV checklist_8270D-SIM_rev02.wpd

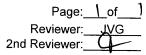
VALIDATION FINDINGS CHECKLIST

Page:_	2	_of	2	_
Reviewer:		JX	G	
2nd Reviewer:		U		-

•

Validation Area	Yes	No	NA	Findings/Comments		
IX. Laboratory control samples						
Was an LCS analyzed per extraction batch?	/					
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?						
X. Field duplicates	······	<u></u>		•		
Were field duplicate pairs identified in this SDG?	$\left \right $					
Were target compounds detected in the field duplicates?		ſ				
XI. Internal standards						
Were internal standard area counts within -50% or +100% of the associated calibration standard?			•			
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?						
XII. Compound quantitation						
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?						
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?						
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?						
XIII. Target compound identification						
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?						
Did compound spectra meet specified EPA "Functional Guidelines" criteria?						
Were chromatogram peaks verified and accounted for?						
XIV. System performance						
System performance was found to be acceptable.	7	-				
XV. Overall assessment of data						
Overall assessment of data was found to be acceptable.	\land					

VALIDATION FINDINGS WORKSHEET


METHOD: GC/MS SVOA

METHOD: GC/MS SVOA				
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. Ť,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	0000. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

LDC #: 48600 \$26

VALIDATION FINDINGS WORKSHEET

Initial Calibration Verification

CV0A	E
METHOD: GC/MS PAIH (EPA SW 846 Method	8270Ø-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

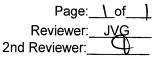
YNN/A Were all %D within the validation criteria of <u>~20/</u>30% %D ?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><20.9</u> %(30%)	Associated Samples	Qualifications
	02/28/20	SICO029-SCV1	RR	34.4	2-79 Mp1 (Det)	JUJA
	/ /	•				
 						
┣						
┣		· · · · · · · · · · · · · · · · · · ·				
┣───						
				······		
			anna an ann an ann an ann ann ann ann a			
			· · · · · · · · · · · · · · · · · · ·			
╟			······································			
	L		L			L

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	<u>\</u>	of	1
Reviewer:	A	(G	
2nd Reviewer:	\Box		

Qualifications


J/UJ/A

	2	SVOA	F	<u>Continuing</u> C	anoration				
THOD:	GC/MS P	육H (EPA SW 846 Method	82700-SIM)						
ise see N_N/A	e qualifica	tions below for all question	ns answered "N". Not a	pplicable questions are	identified as "N/A".				
		as a continuing calibrati	on standard analyze	d at least once every	12 hours for each inst	rument?			
	V	ere percent differences	$(\%D) \le 20\%$ and relation	(RRF) within the method criteria?					
				Finding %D	Finding RRF				
	Date	Standard ID	Compound	(Limit: ≤20.0%)	(Limit)	Associated Samples			
04	23/20	NT 10200627035	PPP	29.2		2-79 MB1 (D		
						, , , , , , , , , , , , , , , , , , , ,	Ť		
						······································	\neg		
1							-		
+									
+									
+							_		
						· ·	-		
						<u> </u>			
+							_		
					· · · · · · · · · · · · · · · · · · ·				
<u> </u>					**************************************				
T									
1							_		

LDC #:	4868	0 B26
--------	------	-------

VALIDATION FINDINGS WORKSHEET

Blanks

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see gualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

MN N/A Was a method blank analyzed for each matrix?

N N/A Was a method blank analyzed for each concentration preparation level?

Was a method blank associated with every sample? N N/A

Was the blank contaminated? If yes, please see qualification below. N N/A

extraction date: units: <u>مح /احر</u>			Associa	ated Samples:	2	-7 9			
Compound	Blank ID								
and a second	BIF0380-	BLK2	2	3	4	5	4	7	
E	0.7		3.0/4	3.6 /u	1.8/4	2.1/4		1.5/4	
F	0.8		1.3/				1.2/U		
							_		
									ļ
extraction date:	Plank	analysis date	<u></u>						
units:	Dialin	allalysis uald	Associ	ated Samples:					
Compound	Blank ID								
								·	
	· · · · · · · · · · · · · · · · · · ·								

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #: 48680 B26

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

<u>\of]</u>	
J¥G	
4	
	<u>\</u> of_] JVG 4

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

Y WA/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS MS/MSD ID Compound %R (Limits)		MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		11/12	PDD	126 (48-120)	()	()	10 (Pe+)	J dets / A
		······		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
		· · · · · · · · · · · · · · · · · · ·		()	()	()		
				()	()	()		
				()	()	()		<u></u>
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		<u></u>
			_	()	()	()	······································	<u> </u>
				()	()	()		
				()	()	()	······	
				()	()	()		
					<u> </u>	()		
				()	()	()		
				()	()	()	·	
				()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	<u> </u>
			_	()	()	()		<u> </u>
				()	()	()	·	
				()	()	()		
				()	()	()		
				()	()	()		L

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1_of 1 Reviewer: JVG 2nd Reviewer:

METHOD: GCMS SVOA (EPA SW 846 Method 8270E-SIM) <u>N NA</u> Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs? N NA

	Concentrat	500	
Compound	5	6	RPD
E	2.1	27.3	171
F	4.9U	1.2	NC
QQQ	13.2	17.5	28
PPP	38.5	54.3	34
QQ	3.1	2.9	7

V:\Josephine\FIELD DUPLICATES\48680B2a windward duwamish.wpd

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>1 of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer: _____

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E-SIM)

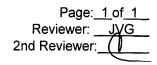
The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound C_x = Concentration of compound,

S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard


X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(IS)	(RRF 5 std)	(RRF 5 std)	(Initial)	(Initial)		
1	ICAL	02/28/20	1,4-DCB	(DCB)	1.31443	1.31443	1.41049	1.41049	10.3	10.3
	SIM		1,2,4-TCB	(NPT)	0.36297	0.36297	0.40284	0.40284	12.2	12.2
	NT10		Pentachlorophenol	(PHN)	0.19257	0.19257	0.16863	0.16863	11.6	11.6
·										

#	Standard ID	Calibration Date	Compoun	d (IS)	Reported RRF (RRF 2.5 std)	Recalculated RRF (RRF 2.5 std)	Reported Average RRF (Initial)	Recalculated Average RRF (Initial)	Reported %RSD	Recalculated %RSD
2	ICAL	05/11/20	Chrysene	(CRY)	1.22429	1.22429	1.17941	1.17941	5.1	5.1
	SIM		Benzo(a)pyrene	(PRY)	1.17321	1.17321	1.08195	1.08195	9.9	9.9
	NT8									
		<u></u>								

LDC # <u>48680B2a</u>

VALIDATION FINDINGS WORSHEET Continuing Calibration Calculation Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E-)S(M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard

Als = Area of associated internal standard

Cis = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
		Calibration			Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound	(IS)	(Initial)	(CCV)	(CCV)		
1	NT1020062303S	6/23/2020	1,4-DCB	(DCB)	1.41049	1.35447	1.35447	4.0	4.0
n I			1,2,4-TCB	(NPT)	0.40284	0.41332	0.41332	2.6	2.6
	NT10		Pentachlorophenol	(PHN)	0.16863	0.17243	0.17243	2.3	2.3
2	N820061502	6/15/2020	Chrysene	(CRY)	1.17941	1.11921	1.11921	5.1	5.1
	NT8		Benzo(a)pyrene	(PRY)	1.08195	1.02197	1.02197	5.6	5.5
				<u> </u>				<u></u>	

LDC #: 48680 B26

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	<u>1_of_1</u>
Reviewer:	JVG
2nd reviewer:	0

SVA METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

		Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	W-diù	3,00	1.997	66.6	66.6	0
2-Flyorobiphenyl	KKK-d14	1	2.767	92.7	92.2	
Terphenyl-d14	YY-dio		2.485	82-5	82-8	8

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:_____

	Surrogate Spiked	`Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	Surrogate - Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

LDC #:____48 6 80 B 26

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

	Page:_	1	of	1	
	Reviewer:	J	IV(3	
2nd	Reviewer:		\square		-
	-			_	-

.

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: _____ II /17/

Compound	Ad	ike ded	Sample Concentration	Spiked Sample Concentration (୳ୠ /kୁ)		Matrix Spike		Matrix Spike Duplicate		MS/MSD	
		/kg/	(ughe)		121	Percent F	Recovery	Percent Recovery		RPD	
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recaic.
Acenaphthene											
Pyrene											
Benzo (a) pyrine	300	300	31. \	380	686	116	116	192	192	45.8	45.8
					· ·						
						 					
							· · · · · · · · · · · · · · · · · · ·				

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 48680B26

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: JXG 2nd Reviewer:

Page: 1_of_1_

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: BIF 0750- BS2

	Sp	oike	Sp	ike	<u>1</u>	:s	1C	SD		LCSD
Compound	Ad (سع	ded /kg)	Concei	ntration	Percent Recovery F		Percent I	Percent Recovery		PD
					Reported	Recalc	Reported	Recalc	Reported	Recalculated
Acenaphthene										
Pyrene										·
PCP	1500	NA	823	VA	54.9	54.9				
							· · · · · · · · · · · · · · · · · · ·		.4	
			··							

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when</u> reported results do not agree within 10.0% of the recalculated results.

	48	680	Bat
--	----	-----	-----

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u>_1_of_1_</u>
Reviewer:	JVG
2nd reviewer:	\sim

SVTA E METHOD: GC/MS PAH (EPA SW 846 Method 82700-SIM)

N N/A N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_{*})(I_{*})(V_{*})(DF)(2.0)$ $(A_{*})(RRF)(V_{*})(V_{*})(\%S)$

- A_x = Area of the characteristic ion (EICP) for the compound to be measured
- A_{is} = Årea of the characteristic ion (EICP) for the specific internal standard
- I_s = Amount of internal standard added in nanograms (ng)
- V_e = Volume or weight of sample extract in milliliters (ml) or grams (g).
- V₁ = Volume of extract injected in microliters (ul)
- V_t = Volume of the concentrated extract in microliters (ul)
- Df = Dilution Factor.
- %S = Percent solids, applicable to soil and solid matrices only.
- 2.0 = Factor of 2 to account for GPC cleanup

Example: Chrysine 10 Sample I.D. $Conc. = \frac{(35460)(2.0)(0.5mL)(1600)(}{(72885)(1.17941)(15.57g)(0.6424)}$ 1 = 41.2 ng /kg

#	Sample ID	Compound	Reported Concentration	Calculated Concentration (火, 人)	Qualification
	0	Chrysene	41.2	41.2	-

LDC Report# 48680B3a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 7, 2020
Parameters:	Hexachlorobenzene
Validation Level:	Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0075

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC102	20F0075-02	Sediment	06/02/20
LDW20-SC101	20F0075-03	Sediment	06/02/20
LDW20-SC117	20F0075-04	Sediment	06/02/20
LDW20-SC123	20F0075-06	Sediment	06/02/20
LDW20-SC123FD	20F0075-07	Sediment	06/02/20
LDW20-SC125	20F0075-08	Sediment	06/02/20
LDW20-SC130	20F0075-10	Sediment	06/02/20
LDW20-SC102MS	20F0075-02MS	Sediment	06/02/20
LDW20-SC102MSD	20F0075-02MSD	Sediment	06/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 9.6°C, 12.8°C, and 11.6°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
All samples in SDG 20F0075	Hexachlorobenzene	ICV not performed.	ICV required prior to each analytical run.	J (all detects) UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0278-BLK1	06/10/20	Hexachlorobenzene	0.42 ug/Kg	All samples in SDG 20F0075

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples LDW20-SC123 and LDW20-SC123FD were identified as field duplicates. No results were detected in any of the samples.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to no ICV performed, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 20F0075

Sample	Compound	Flag	A or P	Reason
LDW20-SC102 LDW20-SC101 LDW20-SC117 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-SC130	Hexachlorobenzene	J (all detects) UJ (all non-detects)	A	Initial calibration verification (%D)

Duwamish AOC4

Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

Duwamish AOC4

Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 08/04/20 Page: lof / Reviewer: 5/7 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

LDC #: 48680B3a

SDG #: 20F0075

METHOD: GC Hexachlorobenzene (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	SW/A	Cooler temp = 9.6°C, 12,8°C 11.6°C (Insufficient time to conf
١١.	GC Instrument Performance Check	N	
Ш.	Initial calibration/ICV	A ISW	10VE 202
IV.	Continuing calibration	Å	CW & 20%
V.	Laboratory Blanks	S¥/	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	Á	Lrs
Х.	Field duplicates	ND	D = 4/s
XI.	Compound quantitation/RL/LOQ/LODs	N	
XII.	Target compound identification	N	
XIII.	System Performance	N	
XIV	Overall assessment of data	Å	

Note:

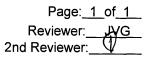
A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	LDW20-SC102			20F0075-02	Sediment	06/02/20
2-	LDW20-SC101			20F0075-03	Sediment	06/02/20
5	LDW20-SC117			20F0075-04	Sediment	06/02/20
4-	LDW20-SC123	2		20F0075-06	Sediment	06/02/20
5	LDW20-SC123FD	2		20F0075-07	Sediment	06/02/20
1 6	LDW20-SC125		<u>_</u>	20F0075-08	Sediment	06/02/20
ī	LDW20-SC130			20F0075-10	Sediment	06/02/20
8	LDW20-SC102MS			20F0075-02MS	Sediment	06/02/20
9	LDW20-SC102MSD			20F0075-02MSD	Sediment	06/02/20
10				<u> </u>		
Votes:						
	BIF0278-Biki					

VALIDATION FINDINGS WORKSHEET


METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ çis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	ww.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:

LDC #: 48680B3a

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". What type of initial calibration verification calculation was performed? ___%D or ___%R

Y N N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y N N/A Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
		No ICV performed		Hexachlorobenzene		All (ND)	J/UJ/A
_							
					·		
							L
							L
L						<u> </u>	_
							l
						<u> </u>	
						 	
						l	<u>+</u>
					·	<u> </u>	
						l	L

VALIDATION FINDINGS WORKSHEET Blanks

(either ND or 7 RL)

All

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

M N N/A Were all samples associated with a method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction was performed?

YN N/A If extract clean-up was performed, were extract clean-up blanks analyzed at the proper frequencies?

Y N N/A Was there contamination in the method blanks? If yes, please see the qualifications below. Blank extraction date: 06/10/20 Blank analysis date: 06/15/20 Conc. units: UG /2 Associated samples:

CRI.

Compound	Blank ID				Sar	nple Identificati	on			
	BIF0278-P	ekí								
FF_	0.42									
· ·	1									

Blank extraction date: Conc. units:	Blank analysis	date:	 Ass	ociated sample	s:			
Compound	Blank ID		 	San	nple Identificati	on		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 18, 2020
Parameters:	Polychlorinated Biphenyls
Validation Level:	Stage 2B
Laboratory:	Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0075

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT106	20F0075-01	Sediment	06/02/20
LDW20-SC102	20F0075-02	Sediment	06/02/20
LDW20-SC102DL	20F0075-02DL	Sediment	06/02/20
LDW20-SC101	20F0075-03	Sediment	06/02/20
LDW20-SC117	20F0075-04	Sediment	06/02/20
LDW20-SC121	20F0075-05	Sediment	06/02/20
LDW20-SC123	20F0075-06	Sediment	06/02/20
LDW20-SC123FD	20F0075-07	Sediment	06/02/20
LDW20-SC125	20F0075-08	Sediment	06/02/20
LDW20-IT105	20F0075-09	Sediment	06/02/20
LDW20-SC130	20F0075-10	Sediment	06/02/20
LDW20-SC130DL	20F0075-10DL	Sediment	06/02/20
LDW20-IT127	20F0075-11	Sediment	06/02/20
LDW20-IT106MS	20F0075-01MS	Sediment	06/02/20
LDW20-IT106MSD	20F0075-01MSD	Sediment	06/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 9.6°C, 12.8°C, and 11.6°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
06/10/20	SIF0176-SCV1	2C	Aroclor-1260	21.0	All samples in SDG 20F0075	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT106MS/MSD (LDW20-IT106)	Aroclor-1260	-	204 (58-120)	J (all detects)	А

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LDW20-IT106MS/MSD (LDW20-IT106)	Aroclor-1260	60.3 (≤30)	J (all detects)	А

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

Samples LDW20-SC123 and LDW20-SC123FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SC123	LDW20-SC123FD	RPD
Aroclor-1248	51.4	59.1	14
Aroclor-1254	70.9	88.2	22
Aroclor-1260	98.7	104	5

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SC102	Aroclor-1260	74	J (all detects)	A
LDW20-SC101	Aroclor-1254 Aroclor-1260	41.4 48.8	J (all detects) J (all detects)	A
LDW20-SC125	Aroclor-1248	40.2	J (all detects)	A
LDW20-IT105	Aroclor-1248	42.6	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-SC102 LDW20-SC130	Aroclor-1260	Results exceeded calibration range.	Not reportable	-
LDW20-SC102DL LDW20-SC130DL	All compounds except Aroclor-1260	Results from undiluted analyses were more usable.	Not reportable	-

Due to ICV %D, MS/MSD %R and RPD, and RPD between two columns, data were qualified as estimated in eleven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0075

				_
Sample LDW20-IT106 LDW20-SC101 LDW20-SC121 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-IT105 LDW20-IT127	Compound Aroclor-1248 Aroclor-1254 Aroclor-1260	Flag J (all detects) J (all detects) J (all detects)	A or P	Reason Initial calibration verification (%D)
LDW20-SC102 LDW20-SC130	Aroclor-1248 Aroclor-1254	J (all detects) J (all detects)	А	Initial calibration verification (%D)
LDW20-SC102DL LDW20-SC130DL	Aroclor-1260	J (all detects)	A	Initial calibration verification (%D)
LDW20-IT106	Aroclor-1260	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)(RPD)
LDW20-SC101	Aroclor-1254 Aroclor-1260	J (all detects) J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SC125 LDW20-IT105	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SC102 LDW20-SC130	Aroclor-1260	Not reportable	-	Overall assessment of data
LDW20-SC102DL LDW20-SC130DL	All compounds except Aroclor-1260	Not reportable	-	Overall assessment of data

Duwamish AOC4 Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 08/04 /20 Page: | of Reviewer: 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments		Ansalficia
١.	Sample receipt/Technical holding times	SNIA	Cooler temps = 9.6° Coole	, 12.8°C	11.6°C	(time to e
11.	Initial calibration/ICV	A ISW	1 GAL & 20%		Iare	202
111.	Continuing calibration	A	COV 5 202			
IV.	Laboratory Blanks	A				
<u>v.</u>	Field blanks	N				
VI.	Surrogate spikes	Å/A				
VII.	Matrix spike/Matrix spike duplicates	SW .		····		
VIII.	Laboratory control samples	A	LCS/D	SRM		
IX	Field duplicates	SW	b = 7/8			
X	Compound quantitation/RL/LOQ/LODs	SIM				
XI.	Target compound identification	N				
XII	Overall assessment of data	SW				
<u>xii</u> Note:	Overall assessment of data	ND = No compounds	detected D = Duplicate		SB=Source t	olank

A = Acceptable N = Not provided/applicable SW = See worksheet

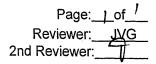
ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date 1 LDW20-IT106 20F0075-01 Sediment 06/02/20 2 LDW20-SC102 20F0075-02 Sediment 06/02/20 LDW20-SC102RE DL 3 20F0075-02RE D_ Sediment 06/02/20 4 LDW20-SC101 20F0075-03 Sediment 06/02/20 20F0075-04 5 LDW20-SC117 Sediment 06/02/20 6 20F0075-05 LDW20-SC121 Sediment 06/02/20 D 7 20F0075-06 LDW20-SC123 Sediment 06/02/20 Ь 8 LDW20-SC123FD 20F0075-07 Sediment 06/02/20 9 LDW20-SC125 20F0075-08 Sediment 06/02/20 10 LDW20-IT105 20F0075-09 Sediment 06/02/20 11 LDW20-SC130 20F0075-10 Sediment 06/02/20 LDW20-SC130RE D 20F0075-10BE DL 12 Sediment 06/02/20 13 LDW20-IT127 20F0075-11 Sediment 06/02/20 14 LDW20-IT106MS 20F0075-01MS Sediment 06/02/20 15 LDW20-IT106MSD 20F0075-01MSD Sediment 06/02/20 16 BIF0228-Bik1 17

LDC #: 48680B3b SDG #: 20F0075

VALIDATION FINDINGS WORKSHEET

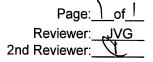

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ cis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	WW.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:_____

LDC #: 48680 \$ 36

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification



METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Pleas	se see qua	lifications below for a	all questions answere	ed "N". Not applicabl	e questions are iden	tified as "N/A".	
Wha	t type of ini	tial calibration verific	ation calculation was	s performed? <u></u> %D	or <u>%</u> R		
	<u>N/A</u>	Was an initial calibr	ation verification sta	ndard analyzed after	each ICAL for each	instrument?	
	<u>>N/A</u>	Did the initial calibra		idards meet the %D	The second s	ria of <u><</u> 20.0% / 80-120%?	
#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	06/0/20	SIF0176-SOV	4 2C	BB	21.0	All (Det)	JUJA
							(mal Z. AA BB)
					· · · · ·		
			· · ·	· .		·	
			\backslash				
			\				
						· · · · · · · · · · · · · · · · · · ·	
		· · ·					
				······			· · · · · · · · · · · · · · · · · · ·
							· · ·
					· · · · · · · · · · · · · · · · · · ·		

48680 B36 LDC #:

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates</u>

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". \cancel{N} N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

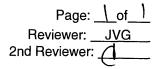
<u>Y N N/A</u> Y N) N/A Was a MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	14/15	BB	()	204 (58-120)	()	1 (Det)	J dets /A
	,		()	()	60.3 (30)		
	•	Ŷ	()	()	()		×
		:	()	()	()		
			()	()	()		
			()	()	()	-	
			()	()	()		
			()	()	()		
			()	()	()		
	······································		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	· ()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	· · · · · · · · · · · · · · · · · · ·	
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page: 1_of_1_ Reviewer: JVG 2nd Reviewer:


METHOD: GC PCB (EPA SW 846 Method 8082A) YNA Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs? YNNA

	Concentration (ug/Kg)		
Compound	7	8	RPD
Aroclor 1248	51.4	59.1	14
Aroclor 1254	70.9	88.2	22
Aroclor 1260	98.7	104	5

V:\Josephine\FIELD DUPLICATES\48680B3b windward duwamish.wpd

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

METHOD: <u>/</u> GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

N N/A

Y(N)N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors $\leq 40\%$?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD/%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	BB	2	74	J dets /A
	AA	4	41,4	
	BB	}	48.8	
	7	<u> </u>		
	Z	9	40.2	
	2	16	42.6	
		10		¥
	vente: See comple coloulation veri	fication worksheet for recalculations		

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:o	f_/
Reviewer: JV	G
2nd Reviewer:	١.
Q	P

١

METHOD: GC Pesticides/PCBs (EPA SW846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>WNN/A</u> Was the overall quality and usability of the data acceptable?

#	Compound Name	Finding	Associated sample	Qualifications
	BB	> cal range	2 11	NR/A
		,		
	All except above	dj)	3, 12	
	1	·	1	
			· · · · · · · · · · · · · · · · · · ·	

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

	LDC Report Date:	August 10, 2020
--	------------------	-----------------

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0075

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT106	20F0075-01	Sediment	06/02/20
LDW20-SC102	20F0075-02	Sediment	06/02/20
LDW20-SC101	20F0075-03	Sediment	06/02/20
LDW20-SC117	20F0075-04	Sediment	06/02/20
LDW20-SC123	20F0075-06	Sediment	06/02/20
LDW20-SC123FD	20F0075-07	Sediment	06/02/20
LDW20-SC125	20F0075-08	Sediment	06/02/20
LDW20-IT105	20F0075-09	Sediment	06/02/20
LDW20-SC130	20F0075-10	Sediment	06/02/20
LDW20-IT127	20F0075-11	Sediment	06/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Arsenic	0.025 ug/L	LDW20-SC130 LDW20-IT127

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC109MS/MSD (LDW20-SC102 LDW20-SC101 LDW20-SC117 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-SC130)	Silver	41.5 (75-125)	49.8 (75-125)	J (all detects)	A
LDW20-SC109MS/MSD (LDW20-SC102 LDW20-SC101 LDW20-SC117 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-SC130)	Copper	130 (75-125)	-	J (all detects)	A

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

Samples LDW20-SC123 and LDW20-SC123FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ation (mg/Kg)	
Analyte	LDW20-SC123	LDW20-SC123FD	RPD
Arsenic	6.35	6.70	5
Cadmium	0.19	0.21	10
Chromium	21.9	23.4	7
Copper	35.3	38.0	7

	Concentra	ition (mg/Kg)	
Analyte	LDW20-SC123	LDW20-SC123FD	RPD
Lead	16.3	19.8	19
Mercury	0.110	0.126	14
Silver	0.17	0.18	6
Zinc	79.6	83.8	5

XII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD %R, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0075

Sample	Analyte	Flag	A or P	Reason
LDW20-SC102 LDW20-SC101 LDW20-SC117 LDW20-SC123 LDW20-SC123FD LDW20-SC125 LDW20-SC130	Silver Copper	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: 48680B4a SDG #: 20F0075

Date: 7/30/20 Page: 1_of_1 Reviewer: AT 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	Α	
Ш.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Laboratory Blanks	sw	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	SW	From SDG # 20F0039 (LDW20-SC109MS/MSD)
VIII.	Duplicate sample analysis	A	From SDG # 20F0039 (LDW20-SC109DUP)
IX.	Serial Dilution	N	
Х.	Laboratory control samples	А	LCS/SRM
XI.	Field Duplicates	sw	(5,6)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	Α	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT106	20F0075-01	Sediment	06/02/20
2 I	LDW20-SC102	20F0075-02	Sediment	06/02/20
3 L	LDW20-SC101	20F0075-03	Sediment	06/02/20
4 L	LDW20-SC117	20F0075-04	Sediment	06/02/20
<u>5</u> [LDW20-SC123	20F0075-06	Sediment	06/02/20
6 L	LDW20-SC123FD	20F0075-07	Sediment	06/02/20
7 L	LDW20-SC125	20F0075-08	Sediment	06/02/20
8 L	LDW20-IT105	20F0075-09	Sediment	06/02/20
9 L	LDW20-SC130	20F0075-10	Sediment	06/02/20
10 L	LDW20-IT127	20F0075-11	Sediment	06/02/20
11				
12				
13				

CVAA

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
2 to 7, 9	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
1,8,10	As
······································	
	Analysis Method
ICP	
ICP-MS	

VALIDATION FINDINGS WORKSHEET Laboratory Blank Contamination (PB/ICB/CCB)

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000) Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: mg/kg

Associated Samples: 9,10

					Sample Identification							
Analyte	PB (units)	Maximum ICB/CCB (ug/L)	Action Level									
As		0.025										

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS/MSD analysis was performed by the laboratory.	All MS/MSD percent recoveries (%R) and relative percent differences (RPDs) were within the
acceptable limits with the following exceptions:	

MS/MSD ID	Matrix	Analyte	MS %R	MSD %R	%R Limit	RPD	RPD Limit	Associated Samples	Qualification	Det/ND
LDW20-SC109	S	Ag	41.5		75-125			2 to 7, 9	J/UJ/A	Det
		Cu	130		75-125		<u> </u>	2 to 7, 9	Jdet/A	Det
					75 125		<u> </u>	2 10 7, 5	Juel/A	
			<u> </u>				+			
<u></u>							<u> </u>		_	
	_									
	_									
·····	<u> </u>		1		· · · · · · · · · · · · · · · · · · ·					
				[<u> </u>			
			<u> </u>							
				<u> </u>			+			<u> </u>
	-		<u> </u>	<u> </u>			<u> </u>			
			<u> </u>							
			ļ				ļ			<u> </u>

Comments:

VALIDATION FINDINGS WORKSHEET Field Duplicates

Method: Metals

Analyte	Concentration (mg/kg)		RPD	
	5	6		Qualifiers (Parents Only)
Arsenic	6.35	6.70	5	
Cadmium	0.19	0.21	10	
Chromium	21.9	23.4	7	
Copper	35.3	38.0	7	
Lead	16.3	19.8	19	
Mercury	0.110	0.126	14	
Silver	0.17	0.18	6	
Zinc	79.6	83.8	5	

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: August 10, 2020

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0075

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT106	20F0075-01	Sediment	06/02/20
LDW20-SC102	20F0075-02	Sediment	06/02/20
LDW20-SC101	20F0075-03	Sediment	06/02/20
LDW20-SC117	20F0075-04	Sediment	06/02/20
LDW20-SC121	20F0075-05	Sediment	06/02/20
LDW20-SC123	20F0075-06	Sediment	06/02/20
LDW20-SC123FD	20F0075-07	Sediment	06/02/20
LDW20-SC125	20F0075-08	Sediment	06/02/20
LDW20-IT105	20F0075-09	Sediment	06/02/20
LDW20-SC130	20F0075-10	Sediment	06/02/20
LDW20-IT127	20F0075-11	Sediment	06/02/20
LDW20-IT106DUP	20F0075-01DUP	Sediment	06/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Total organic carbon	0.02%	All samples in SDG 20F0075

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

Samples LDW20-SC123 and LDW20-SC123FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concen		
Analyte	LDW20-SC123	LDW20-SC123FD	RPD
Total solids	58.50	58.13	1
Total organic carbon	1.63	1.67	2

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

ALIDATION COMPLETENESS WORKSHE

Stage 2B

METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A/A	
	Initial calibration	Α	
111.	Calibration verification	Α	
IV	Laboratory Blanks	sw	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	А	From SDG # 20F0039 (LDW20-SC109MS)
VII.	Duplicate sample analysis	Α	12, From SDG # 20F0039 (LDW20-SC109DUP)
VIII.	Laboratory control samples	A	LCS/SRM
IX.	Field duplicates	sw	(6,7)
Х.	Sample result verification	N	
XI.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicableSW = See worksheet ND = No compounds detected R = RinsateFB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT106	20F0075-01	Sediment	06/02/20
2	LDW20-SC102	20F0075-02	Sediment	06/02/20
3	LDW20-SC101	20F0075-03	Sediment	06/02/20
4	LDW20-SC117	20F0075-04	Sediment	06/02/20
5	LDW20-SC121	20F0075-05	Sediment	06/02/20
6	LDW20-SC123	20F0075-06	Sediment	06/02/20
7	LDW20-SC123FD	20F0075-07	Sediment	06/02/20
8	LDW20-SC125	20F0075-08	Sediment	06/02/20
9	LDW20-IT105	20F0075-09	Sediment	06/02/20
10	LDW20-SC130	20F0075-10	Sediment	06/02/20
11	LDW20-IT127	20F0075-11	Sediment	06/02/20
12	LDW20-IT106DUP	20F0075-01DUP	Sediment	06/02/20
13				
14				
15				
Vote	S:			

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1 to 11	TS, TOC	
QC 12		
12	TS	

METHOD: Inorganics

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: %

Associated Samples: all

					Sample Identification						
Analyte	PB (units)	Maximum ICB/CCB (%)	Action Level								
тос		0.02									
				1							

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is establised

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Inorganics

Analyte	Concent	ration (%)		
	6	7	= RPD	Qualifiers (Parents Only)
Total Solids	58.50	58.13	1	
Total Organic Carbon	1.63	1.67	2	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 10, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0075

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC130	20F0075-10	Sediment	06/02/20
LDW20-IT127	20F0075-11	Sediment	06/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperature for samples in this SDG were reported at 11.6°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Affected Compound	Flag	A or P
06/25/20	13C12-1,2,3,4,7,8,9-HpCDF	73.9 ng/mL (77-129)	All samples in SDG 20F0075	1,2,3,4,7,8,9-HpCDF	J (all detects)	Ρ

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0465-BLK1	06/22/20	1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF OCDF OCDD Total PeCDD Total HpCDF	0.175 ng/Kg 0.0946 ng/Kg 0.166 ng/Kg 0.521 ng/Kg 1.32 ng/Kg 0.175 ng/Kg 0.166 ng/Kg	All samples in SDG 20F0075

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-SC130	1,2,3,7,8-PeCDD	0.582 ng/Kg	0.582U ng/Kg
LDW20-IT127	1,2,3,7,8-PeCDD	0.871 ng/Kg	0.871U ng/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20F0075	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration and compounds reported as EMPC, data were qualified as estimated in two samples.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0075

Sample	Compound	Flag	A or P	Reason
LDW20-SC130 LDW20-IT127	1,2,3,4,7,8,9-HpCDF	J (all detects)	Р	Continuing calibration (concentration)
LDW20-SC130 LDW20-IT127	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0075

Sample	Compound	Modified Final Concentration	A or P
LDW20-SC130	1,2,3,7,8-PeCDD	0.582U ng/Kg	A
LDW20-IT127	1,2,3,7,8-PeCDD	0.871U ng/Kg	A

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 20F0075

No Sample Data Qualified in this SDG

Stage 2B

SDG #: 20F0075 Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 48680B21

Date: <u>08/07/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>4</u>

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		С	omments
١.	Sample receipt/Technical holding times	SW/A	Cooler temp = 11.6 deg C	(Insufficient time to cool)
П.	HRGC/HRMS Instrument performance check	A		
	Initial calibration/ICV	A/A	ICAL ≤ 20/35%	ICV ≤ QC Limits
IV.	Continuing calibration	sw	CCV ≤ QC Limits	
V.	Laboratory Blanks	sw		
VI.	Field blanks	N		
VII.	Matrix spike/Matrix spike duplicates	N		
VIII.	Laboratory control samples	А	OPR, SRM	
IX.	Field duplicates	N		
Х.	Labeled Compounds	A		
XI.	Compound quantitation RL/LOQ/LODs	N	EMPC = Jdets/A	
XII.	Target compound identification	N		
XIII.	System performance	N		
XIV.	Overall assessment of data	А		

Note:

N = Not provided/applicable SW = See worksheet

A = Acceptable

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	LDW20-SC130			20F0075-10	Sediment	06/02/20
2	LDW20-IT127			20F0075-11	Sediment	06/02/20
3		 				
4		 ·		·		
5			 			
6						
7						
8		 				
9						
10						
Notes		 	 			
	BIF0465-BLK1					

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

LDC #: 48680B21

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page:	<u>1_of_1_</u>
Reviewer:	JVG
2nd Reviewer	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N Y

Was a routine calibration performed at the beginning of each 12 hour period? Were all concentrations within method QC limits for unlabeled and labeled compounds?

Did all routine calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	Conc:ng	ı/mL (Limits)	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	06/25/20	SIF0380-ICV1	13C12-P	73.9	(77-129)		All (Det)	J/UJ/P (qual P)
		-						
				<u> </u>				
				<u> </u>				
				ļ				
			L					
				<u> </u>				
L			<u> </u>	L				
				<u> </u>				
				L				

VALIDATION FINDINGS WORKSHEET

Blanks

Page <u>1</u> of <u>1</u> Reviewer: JVG 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

- Was a method blank performed for each matrix and whenever a sample extraction was performed?
- Y Y Y Was the method blank contaminated?

Blank extraction date:	06/22/20	_ Blank analysis date:_	06/25/20	Associated samples:	All
Conc. units: ng/Kg					

Compound	Blank ID			Sample Identification						
	BIF0465-BLK1	(5x)	1	2						
В	0.175	0.88	0.582*/U	0.871/U						
М	0.0946*	0.47								
0	0.166	0.83								
Q	0.521*	2.61								
G	1.32	6.60								
s	0.175	0.88								
Y	0.166	0.83								

*EMPC

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0094

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SC140	20F0094-02	Sediment	06/03/20
LDW20-SC142	20F0094-03	Sediment	06/03/20
LDW20-SC150	20F0094-04	Sediment	06/03/20
LDW20-SC135	20F0094-07	Sediment	06/03/20
LDW20-SC202	20F0094-08	Sediment	06/03/20
LDW20-SC203	20F0094-09	Sediment	06/03/20
LDW20-SC211	20F0094-10	Sediment	06/03/20
LDW20-SC211FD	20F0094-11	Sediment	06/03/20
LDW20-SC140MS	20F0094-02MS	Sediment	06/03/20
LDW20-SC140MSD	20F0094-02MSD	Sediment	06/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 9.5°C, 10.0°C, and 12.0°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/ Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0403-SRM	Anthracene	56.3 (57-143)	All samples in SDG 20F0094	J (all detects)	Р

X. Field Duplicates

Samples LDW20-SC211 and LDW20-SC211FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SC211	LDW20-SC211FD	RPD
Naphthalene	8.7	7.7	12
2-Methylnaphthalene	9.4	8.8	7
Acenaphthylene	7.1	7.6	7
Dimethylphthalate	16.6	12.9	25
Acenaphthene	5.7	6.3	10
Dibenzofuran	6.5	6.9	6
Fluorene	19.9	20.0U	Not calculable

	Concentra	ation (ug/Kg)	
Compound	LDW20-SC211	LDW20-SC211FD	RPD
Phenanthrene	78.1	73.6	6
Anthracene	19.8	18.3	8
Fluoranthene	181	178	2
Pyrene	239	225	6
Butylbenzylphthalate	21.8	30.0	32
Benzo(a)anthracene	86.8	85.4	2
Chrysene	126	127	1
Bis(2-ethylhexyl)phthalate	185	180	3
Benzofluoranthenes, total	280	271	3
Benzo(a)pyrene	120	120	0
Indeno(1,2,3-cd)pyrene	78.8	71.7	9
Dibenzo(a,h)anthracene	24.8	27.5	10
Benzo(g,h,i)perylene	84.3	79.3	6

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to SRM %R, data were qualified as estimated in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0094

Sample	Compound	Flag	A or P	Reason
LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC135 LDW20-SC202 LDW20-SC203 LDW20-SC211 LDW20-SC211FD	Anthracene	J (all detects)	Р	Standard reference materials (%R)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u>(</u>	18/05/20
Page:	_of
Reviewer:	au
2nd Reviewer:_	Æ

Laboratory: Analytical Resources, Inc.

LDC #: 48680C2a

SDG #: 20F0094

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	SIGH / A	Cooler temps = 10,0°C 9,5°C 12,0°C (Insufficient
H.	GC/MS Instrument performance check	Γ Α Γ	
Ш.	Initial calibration/ICV	AIA	10ALE 2020 IQUE 3020 COVE 20?
IV.	Continuing calibration	A	$CON \leq 20^{2}$
V.	Laboratory Blanks	Ϋ́Α	
VI.	Field blanks	- KI	
VII.	Surrogate spikes	Â	
VIII.	Matrix spike/Matrix spike duplicates	Á	
IX.	Laboratory control samples	SW	$\frac{LG}{D = 7/8}$ SRM
Х.	Field duplicates	SIN	p = 7/8'
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC140	20F0094-02	Sediment	06/03/20
2	LDW20-SC142	20F0094-03	Sediment	06/03/20
3	LDW20-SC150	20F0094-04	Sediment	06/03/20
4	LDW20-SC135	20F0094-07	Sediment	06/03/20
5	LDW20-SC202	20F0094-08	Sediment_	06/03/20
6	LDW20-SC203	20F0094-09	Sediment	06/03/20
7	LDW20-SC211	20F0094-10	Sediment	06/03/20
8	LDW20-SC211FD	20F0094-11	Sediment	06/03/20
9	LDW20-SC140MS	20F0094-02MS	Sediment	06/03/20
10	LDW20-SC140MSD	20F0094-02MSD	Sediment	06/03/20
11				
12				
13	BIF0403-BUKL			
14_				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

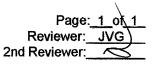
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o''-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyi-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Samples (LCS)</u> / S *RM*

Page:	<u> </u>	f	
Reviewer:	JY	G	
2nd Reviewer:	4	-	
		/	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


N N/A

A Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LC %R (Li	S mits)	LCSD %R (Limits)	RPD (Limits)		Associated Samples	Qualifications
	BIF0903-SRM	²√ √	56.3 (57-193	()	()	All (Det)	J/UJ/P
			()	()	()		/
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
		·····	()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
		······································	(()	(()		
			()	()	()		·
			()	()	()		
			()	()	. ()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

METHOD: GCMS SVOA (EPA SW 846 Method 8270E)Y N NAWere field duplicate pairs identified in this SDG?

Y N NA Were target analytes detected in the field duplicate pairs?

	Concentra	RPD	
Compound	7	8	
S	8.7	7.7	12
w	9.4	8.8	7
DD	7.1	7.6	7
сс	16.6	12.9	25
GG	5.7	6.3	10
JJ	6.5	6.9	6
NN	19.9	20.0U	NC
UU	78.1	73.6	6
w	19.8	18.3	8
YY	181	178	2
ZZ	239	225	6
AAA	21.8	30.0	32
ccc	86.8	85.4	2
DDD	126	127	1
EEE	185	180	3
A2	280	271	3
łli	120	120	0
JJJ	78.8	71.7	9
ККК	24.8	27.5	10
LLL	84.3	79.3	6

V:\Josephine\FIELD DUPLICATES\48680C2a windward duwamish.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0094

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-ITT133	20F0094-01	Sediment	06/03/20
LDW20-SC140	20F0094-02	Sediment	06/03/20
LDW20-SC142	20F0094-03	Sediment	06/03/20
LDW20-SC150	20F0094-04	Sediment	06/03/20
LDW20-SC135	20F0094-07	Sediment	06/03/20
LDW20-SC202	20F0094-08	Sediment	06/03/20
LDW20-SC203	20F0094-09	Sediment	06/03/20
LDW20-SC211	20F0094-10	Sediment	06/03/20
LDW20-SC211FD	20F0094-11	Sediment	06/03/20
LDW20-IT139	20F0094-13	Sediment	06/03/20
LDW20-IT151	20F0094-14	Sediment	06/03/20
LDW20-IT146	20F0094-15	Sediment	06/03/20
LDW20-ITT133MS	20F0094-01MS	Sediment	06/03/20
LDW20-ITT133MSD	20F0094-01MSD	Sediment	06/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 10.0°C, 9.5°C, and 12.0°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
02/28/20	N-Nitrosodiphenylamine	34.4	LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC135 LDW20-SC202 LDW20-SC203 LDW20-SC211 LDW20-SC211FD	J (all detects) UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/20/20	Benzoic acid Pentachlorophenol	37.8 58.9	LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC135 LDW20-SC202 LDW20-SC203 LDW20-SC211 LDW20-SC211FD	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

Samples LDW20-SC211 and LDW20-SC211FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SC211	LDW20-SC211FD	RPD
1,4-Dichlorobenzene	1.7	1.6	6
Benzyl alcohol	9.8	7.7	24
Benzoic acid	34.8	30.9	12

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and continuing calibration %D, data were qualified as estimated in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0094

Sample	Compound	Flag	A or P	Reason
LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC135 LDW20-SC202 LDW20-SC203 LDW20-SC211 LDW20-SC211FD	N-Nitrosodiphenylamine	J (all detects) UJ (all non-detects)	A	Initial calibration verification (%D)
LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC135 LDW20-SC202 LDW20-SC203 LDW20-SC211 LDW20-SC211FD	Benzoic acid Pentachlorophenol	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

SDG #:	20F0094	

LDC #: 48680C2b

Laboratory: Analytical Resources, Inc.

SVOA

Date: 08/06/20 Page: 1 of Reviewer: 2nd Reviewer:

METHOD: GC/MS Pelynuclear_Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	SW/A	Cooler temps = 10.0°C, 9.5°C, 12.0°C (Insufficien
١١.	GC/MS Instrument performance check	A	
	Initial calibration/ICV	AISW	1941 = 20% pr 100 = 308
IV.	Continuing calibration	SW	CCV = 20 ?
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	Á	ucs, SRM
Х.	Field duplicates	SW	p = 8/q
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	Α	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 1	LDW20-ITT133	20F0094-01	Sediment	06/03/20
2	LDW20-SC140	20F0094-02	Sediment	06/03/20
3	LDW20-SC142	20F0094-03	Sediment	06/03/20
4	LDW20-SC150	20F0094-04	Sediment	06/03/20
5	LDW20-SC135	20F0094-07	Sediment	06/03/20
6	LDW20-SC202	20F0094-08	Sediment	06/03/20
7	LDW20-SC203	20F0094-09	Sediment	06/03/20
8	LDW20-SC211	20F0094-10	Sediment	06/03/20
9	LDW20-SC211FD	20F0094-11	Sediment	06/03/20
10	LDW20-IT139	20F0094-13	Sediment	06/03/20
11	LDW20-IT151	20F0094-14	Sediment	06/03/20
12	LDW20-IT146	20F0094-15	Sediment	06/03/20
13 I	LDW20-ITT133MS	20F0094-01MS	Sediment	06/03/20
14 1	LDW20-ITT133MSD	20F0094-01MSD	Sediment	06/03/20
-	-1. BFI0371- RK1 -2. BI F0403. put	2	CPAH = 1,	to - 12

- 1. BFI0371- MKL L:\Windward\Duwamish\48680C2bW.wpd

DL 1 TO 3prez 1

VALIDATION FINDINGS CHECKLIST

	Page: <u>1</u>	_of_	2
	Reviewer:	JVC	}
2nd	Reviewer:	h	\leq

کریکے Method: PAFI (EPA SW 846 Method 8270D-SIM)

Validation Area	Yes	No	NA	Findings/Comments		
I. Technical holding times	· · · · · · · · · · · · · · · · · · ·					
Were all technical holding times met?				A		
Was cooler temperature criteria met?		[
II. GC/MS Instrument performance check (Not required)				·		
Were the DFTPP performance results reviewed and found to be within the specified criteria?				· •.		
Were all samples analyzed within the 12 hour clock criteria?						
Illa. Initial calibration	T/	í				
Did the laboratory perform a 5 point calibration prior to sample analysis?	1			ум. 		
Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) \geq 0.05?				<u>ن</u>		
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	/					
IIIb. Initial Calibration Verification	<u> </u>					
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/					
Were all percent differences (%D) ≤30%?						
IV. Continuing calibration						
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/	, ,				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?	/					
V. Laboratory Blanks	r					
Was a laboratory blank associated with every sample in this SDG?	\square					
Was a laboratory blank analyzed for each matrix and concentration?	\leq					
Was there contamination in the laboratory blanks?		[
VI. Field blanks		11				
Were field blanks identified in this SDG?	N			<u>/</u>		
Were target compounds detected in the field blanks?			/			
VII. Surrogate spikes		<u></u>				
Were all surrogate percent differences (%R) within QC limits?						
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				-		
If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?			1	·		
VIII. Matrix spike/Matrix spike duplicates						
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?						
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?						

Level IV checklist_8270D-SIM_rev02.wpd

LDC #: _ f8680 C2b

.

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: J/G 2nd Reviewer: (

.

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples	/	,		
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		(*
X. Field duplicates		/		
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?				
Were retention times within ± 30 seconds of the associated calibration standard?	/			
XII. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	\land			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	\square			
Were chromatogram peaks verified and accounted for?	\square			
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data	•			
Overall assessment of data was found to be acceptable.	\square			

.

LDC #:____48680C26

VALIDATION FINDINGS WORKSHEET

Initial Calibration Verification

Page: _____of____ Reviewer: _____JVG____ 2nd Reviewer: _____

SVA	E
METHOD: GC/MS PAH (EPA SW 846 Metho	d 8270Ø-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\frac{V N N/A}{V N N/A}$ Was an initial calibration verification standard analyzed after each ICAL for each instrument?

YN)N/A Were all %D within the validation criteria of ≤20/30% %D ?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><20.0%(30%</u>)	Associated Samples	Qualifications
		SIC0029-SOV1	QQ	34.4	2-9, MB2 (ND+Det) J/UJ/A
						· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·			·	
	·					
			· · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
 				<u>.</u>		
				I		I

LDC #: 48650 C 26

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page:	of
Reviewer:	JYG
2nd Reviewer:	4
	JYG T

SVTA	E
METHOD: GC/MS PAH (EPA SW 846 Metho	d 8270Ø-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N/A Was a continuing calibration standard analyzed at least once every 12 hours for each

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y(N)N/AWere percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	06/20/20	NT 1006 2003 5	PPP	37.8		2-9 MB2 (ND+	Pet) J/UJ/A
			T+	58.9			
				1		·····	×
<u> </u>							
<u> </u>							
 							
						·	
 						·	
 							
 							
┣							
 							
 	<u> </u>						
┣							
 	<u></u>						
 	ļ						
	<u> </u>						
		· ·					
 	1					1	· · · · · · · · · · · · · · · · · · ·
		<u> </u>					
 	<u> </u>	<u> </u>					
			1			<u> </u>	

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1_of_1_ Reviewer: JVG 2nd Reviewer: E

METHOD: GCMS SVOA (EPA SW 846 Method 8270E-SIM)

<u>N NA</u> Y

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs? <u>N NA</u>

	Concentrat	ion (ug/Kg)	
Compound	8	9	RPD
E	1.7	1.6	6
QQQ	9.8	7.7	24
PPP	34.8	30.9	12

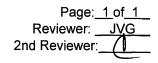
V:\Josephine\FIELD DUPLICATES\48680C2b windward duwamish.wpd

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E-SIM)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$


average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound C_x = Concentration of compound, S= Standard deviation of the RRFs, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

		······································			Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(IS)	(RRF 5 std)	(RRF 5 std)	(Initial)	(Initial)		
1	ICAL	02/28/20	1,4-DCB	(DCB)	1.31443	1.31443	1.41049	1.41049	10.3	10.3
	SIM		1,2,4-TCB	(NPT)	0.36297	0.36297	0.40284	0.40284	12.2	12.2
ļ	NT10		Pentachlorophenol	(PHN)	0.19257	0.19257	0.16863	0.16863	11.6	11.6

#	Standard ID	Calibration Date	Compoun	d_(IS)	Reported RRF (RRF 2.5 std)	Recalculated RRF (RRF 2.5 std)	Reported Average RRF (Initial)	Recalculated Average RRF (Initial)	Reported %RSD	Recalculated %RSD
2	ICAL	05/11/20	Chrysene	(CRY)	1.22429	1.22429	1.17941	1.17941	5.1	5.1
	SIM NT8		Benzo(a)pyrene	(PRY)	1.17321	1.17321	1.08195	1.08195	9.9	9.9

LDC # 48680C2a

VALIDATION FINDINGS WORSHEET Continuing Calibration Calculation Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E-SIM)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard

Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
	Calibration			Average RRF	RRF	RRF	% D	%D
Standard ID	Date	Compound	_(IS)	(Initial)	(CCV)	(CCV)		
NT10062003S	6/20/2020	1,4-DCB	(DCB)	1.41049	1.37278	1.37278	2.7	2.7
		1,2,4-TCB	(NPT)	0.40284	0.41085	0.41085	2.0	2.0
NT10		Pentachlorophenol	(PHN)	0.16863	0.06929	0.06929	58.9	58.9
N820061702	6/17/2020	Chrysene	(CRY)	1.17941	1,15108	1,15108	2.4	2.4
NT8	0,11,2020	Benzo(a)pyrene	(PRY)	1.08195	1.02197	1.01383	6.3	6.3
				<u> </u>				
	NT10062003S NT10 N820061702	Standard ID Date NT10062003S 6/20/2020 NT10	Standard ID Date Compound NT10062003S 6/20/2020 1,4-DCB NT10 1,2,4-TCB NT10 Pentachlorophenol N820061702 6/17/2020 Chrysene	Standard ID Date Compound (IS) NT10062003S 6/20/2020 1,4-DCB (DCB) 1,2,4-TCB (NPT) NT10 Pentachlorophenol (PHN) N820061702 6/17/2020 Chrysene (CRY)	Standard ID Date Compound (IS) (Initial) NT10062003S 6/20/2020 1,4-DCB (DCB) 1.41049 1,2,4-TCB (NPT) 0.40284 NT10 Pentachlorophenol (PHN) 0.16863 N820061702 6/17/2020 Chrysene (CRY) 1.17941	Calibration Average RRF RRF Standard ID Date Compound (IS) (Initial) (CCV) NT10062003S 6/20/2020 1,4-DCB (DCB) 1.41049 1.37278 NT10 6/20/2020 1,2,4-TCB (NPT) 0.40284 0.41085 NT10 Pentachlorophenol (PHN) 0.16863 0.06929 N820061702 6/17/2020 Chrysene (CRY) 1.17941 1.15108	Calibration Calibration Average RRF RRF RRF Standard ID Date Compound (IS) (Initial) (CCV) (CCV) NT10062003S 6/20/2020 1,4-DCB (DCB) 1.41049 1.37278 1.37278 NT10 1,2,4-TCB (NPT) 0.40284 0.41085 0.41085 NT10 Pentachlorophenol (PHN) 0.16863 0.06929 0.06929 N820061702 6/17/2020 Chrysene (CRY) 1.17941 1.15108 1.15108	Calibration Calibration Compound (IS) Average RRF (Initial) RRF (CCV) RRF (CCV) RRF (CCV) RRF (CCV) RRF (CCV) RRF (CCV) % D NT10062003S 6/20/2020 1,4-DCB (DCB) 1.41049 1.37278 1.37278 2.7 NT100 1,2,4-TCB (NPT) 0.40284 0.41085 0.41085 2.0 NT10 Pentachlorophenol (PHN) 0.16863 0.06929 0.06929 58.9 N820061702 6/17/2020 Chrysene (CRY) 1.17941 1.15108 1.15108 2.4

1	DC #:	48680	Cel

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1	of1
Reviewer:		JVG
2nd reviewer:		\approx

SV7A METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

.

Sample ID: 4

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-ds W-dlo	3.00	1-978	65.9	65.9	0
2-Flaorobiphenyi KKK - OK		2.749	91.6	91.3	
Terphonyl-d14 YY-d10		2.224	74.1	74.	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	`Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	Surrogate . Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

LDC #: 48630 C26

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page: <u>1_of_1</u> Reviewer: <u>JVG</u> 2nd Reviewer:

ċ

SvrA METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

13/14

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: ____

		ike ded	Sample Concentration	Spiked Sample Concentration		Matrix Spike		Matrix Spike Duplicate		MS/MSD	
Compound	(ug)		(ug her		/tz)	Percent Recovery		Percent Recovery		RPD	
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Acenaphthene											
Pyrene											
Benzo (a) pyrene	300	300	21.3	324	310	101	101	96.4	96.9	4.19	4.42
• • • • • • • • • • • • • • • • • • • •											
										~	
		· · ·									

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 48 680 C26

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: JXG 2nd Reviewer:

Page: 1_of_1_

دسم METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: BI F0403-B52

	SI	oike Ided	Spike Concentration		LCS					
Compound		<u>/(rg)</u>	(14	(kg)	Percent Recovery		Percent Recovery		RPD	
					Reported	Recalc	Reported	Recalc	Reported	Recalculated
Acenaphthene										
Pyrene										·
Pop	1500	NA	916	NA	61.0	61.0				
							I			
									i.	
							1			
										1
							 			†

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when</u> reported results do not agree within 10.0% of the recalculated results.

		Sample Calcu	JIALION	vernication	nev.	lewer: JVG
	SVA	A SW 846 Method 8270 SIM	•		2nd rev	iewer: <u>JVG</u> iewer: <u>S</u>
METHOD	: GC/MS PAH (EP	A SW 846 Method 82700-SIN	/1)			
X)N N/A	Were all rep	orted results recalculated and	l verified	for all level IV samp	les?	
VN N/A		alculated results for detected				orted results?
			1			
Concentral			Example	•	chan ca	· .
A _x =	compound to be me		Sample	I.D ,	nigsene	
A _{is} =	Area of the charact internal standard	eristic ion (EICP) for the specific		• • •		
! _s =	Amount of internal	standard added in nanograms (ng)	Conc. = ((27114)(2.0))(0.5mL)(100 13.7gy)(0.7367)(
V₀ =	Volume or weight o grams (g).	f sample extract in milliliters (ml) or	1			
V, =	Volume of extract ir	njected in microliters (ul)	=	35.73 kg/kg		
V _t =	Volume of the conc	entrated extract in microliters (ul)		· · /		· ·
Df =	Dilution Factor.					
%S =	Percent solids, appl only.	icable to soil and solid matrices				
2.0 =	Factor of 2 to accou	int for GPC cleanup				
#	Sample ID	Compound	· .	Reported Concentration (VG Ach	Calculated Concentration (45/Fe)	Qualification
		Compound Chrysene		35.7	35.7	
	<u> </u>	nrysene				
						1
I				· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·

VALIDATION FINDINGS WORKSHEET

Page:<u>1_</u>of_1__

.

LDC #: 48680 CZ6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 7, 2020

Parameters: Hexachlorobenzene

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0094

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SC140	20F0094-02	Sediment	06/03/20
LDW20-SC142	20F0094-03	Sediment	06/03/20
LDW20-SC150	20F0094-04	Sediment	06/03/20
LDW20-SC135	20F0094-07	Sediment	06/03/20
LDW20-SC202	20F0094-08	Sediment	06/03/20
LDW20-SC203	20F0094-09	Sediment	06/03/20
LDW20-SC211	20F0094-10	Sediment	06/03/20
LDW20-SC211FD	20F0094-11	Sediment	06/03/20
LDW20-SC142MS	20F0094-03MS	Sediment	06/03/20
LDW20-SC142MSD	20F0094-03MSD	Sediment	06/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 10.0°C, 9.5°C, and 12.0°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
All samples in SDG 20F0094	Hexachlorobenzene	ICV not performed.	ICV required prior to each analytical run.	UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples LDW20-SC211 and LDW20-SC211FD were identified as field duplicates. No results were detected in any of the samples.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to no ICV performed, data were qualified as estimated in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 20F0094

Sample	Compound	Flag	A or P	Reason
LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC135 LDW20-SC202 LDW20-SC203 LDW20-SC211 LDW20-SC211FD	Hexachlorobenzene	UJ (all non-detects)	A	Initial calibration verification (%D)

Duwamish AOC4

Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

ALIDATION COMPLETENESS WOR	KSHEET
----------------------------	--------

Stage 2B

Date: <u>08/04 /</u> 20
Page: <u></u> of <u>/</u>
Reviewer: 🕎 🍲
2nd Reviewer:

Laboratory: Analytical Resources, Inc.

LDC #: 48680C3a

SDG #: 20F0094

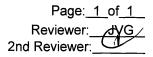
METHOD: GC Hexachlorobenzene (EPA SW846 Method 8081B)

٧

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comm	ents
١.	Sample receipt/Technical holding times	SW/A	Coster temps. = 10.0°C, 9	ents .5°C 2.6°C (Insaffic) Time to
11.	GC Instrument Performance Check	N		(Time to
111.	Initial calibration/ICV	AISW	1921 = 202 CON = 2020	WE 20%
IV.	Continuing calibration	A	Car= 202.	
<u>V</u> .	Laboratory Blanks	À		
VI.	Field blanks	'N		
VII.	Surrogate spikes	A/A		
VIII.	Matrix spike/Matrix spike duplicates	Ă.		
IX.	Laboratory control samples	A	LCS	
Х.	Field duplicates	ND	p = 7/8	
XI.	Compound quantitation/RL/LOQ/LODs	N		
XII.	Target compound identification	N		
XIII.	System Performance	N		
XIV	Overall assessment of data	A		

Note:


A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

<u> </u>				1					
	Client ID		Lab ID	Matrix	Date				
1	LDW20-SC140		20F0094-02	Sediment	06/03/20				
2	LDW20-SC142		20F0094-03	Sediment	06/03/20				
3	LDW20-SC150	<u></u>	20F0094-04	Sediment	06/03/20				
4	LDW20-SC135		20F0094-07	Sediment	06/03/20				
5	LDW20-SC202		20F0094-08	Sediment	06/03/20				
6	LDW20-SC203		20F0094-09	Sediment	06/03/20				
7	LDW20-SC211		20F0094-10	Sediment	06/03/20				
8	LDW20-SC211FD		20F0094-11	Sediment	06/03/20				
9	LDW20-SC142MS		20F0094-03MS	Sediment	06/03/20				
10	LDW20-SC142MSD		20F0094-03MSD	Sediment	06/03/20				
11									
Votes									
7	BIFU353-BALL								
			· <u>····································</u>						

LDC #: 48680C3a

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Pleas	se see qua	lifications below for a	all questions answer	ed "N". Not applicabl	e questions are ident	tified as "N/A".			
What	Vhat type of initial calibration verification calculation was performed?%D or%R								
<u>Y N</u>	NIA NIA	Was an initial calibration	ation verification sta	ndard analyzed after	each ICAL for each	instrument?			
<u>Y N</u>	<u>(N/A)</u>	Did the initial calibra		idards meet the %D		ia of <u><</u> 20.0% / 80-120%?			
#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications		
		No ICV performed		Hexachlorobenzene		All (ND)	J/UJ/A		
<u> </u>			h						
┣									
┣									
┣	· · · ·								
┣──									
┣──									
┣				<u> </u>					
┣			· · · · · · · · · · · · · · · · · · ·						
 				<u> </u>					
┣──									
┣──							<u> </u>		
┣──									
┣──									
 									

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 11, 2020
Parameters:	Polychlorinated Biphenyls
Validation Level:	Stage 4
Laboratory:	Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0094

Samula Identification	Laboratory Sample Identification	Matrix	Collection
Sample Identification			Date
LDW20-ITT133	20F0094-01	Sediment	06/03/20
LDW20-SC140	20F0094-02	Sediment	06/03/20
LDW20-SC142	20F0094-03	Sediment	06/03/20
LDW20-SC150	20F0094-04	Sediment	06/03/20
LDW20-SC156	20F0094-05	Sediment	06/03/20
LDW20-SC162	20F0094-06	Sediment	06/03/20
LDW20-SC135	20F0094-07	Sediment	06/03/20
LDW20-SC202	20F0094-08	Sediment	06/03/20
LDW20-SC203	20F0094-09	Sediment	06/03/20
LDW20-SC211	20F0094-10	Sediment	06/03/20
LDW20-SC211FD	20F0094-11	Sediment	06/03/20
LDW20-SC144	20F0094-12	Sediment	06/03/20
LDW20-IT139	20F0094-13	Sediment	06/03/20
LDW20-IT151	20F0094-14	Sediment	06/03/20
LDW20-IT146	20F0094-15	Sediment	06/03/20
LDW20-ITT133MS	20F0094-01MS	Sediment	06/03/20
LDW20-ITT133MSD	20F0094-01MSD	Sediment	06/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 10.0°C, 9.5°C, and 12.0°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
06/10/20	SIF0176-SCV1	2C	Aroclor-1260	21.0	All samples in SDG 20F0094	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-ITT133MS/MSD (LDW20-ITT133)	Aroclor-1260	-	126 (58-120)	J (all detects)	А

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

Samples LDW20-SC211 and LDW20-SC211FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SC211	LDW20-SC211FD	RPD
Aroclor-1248	47.9	55.5	15
Aroclor-1254	67.2	78.0	15
Aroclor-1260	82.2	54.3	41

X. Compound Quantitation

All compound quantitations met validation criteria.

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SC135	Aroclor-1248	44.9	J (all detects)	А
LDW20-SC211FD	Aroclor-1248 Aroclor-1260	48.9 44.9	J (all detects) J (all detects)	A
LDW20-IT139	Aroclor-1248	54.2	J (all detects)	А
LDW20-IT151	Aroclor-1248	48.5	J (all detects)	А
LDW20-IT146	Aroclor-1248	46.8	J (all detects)	A

XI. Target Compound Identification

All target compound identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, MS/MSD %R, and RPD between two columns, data were qualified as estimated in thirteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0094

Sample	Compound	Flag	A or P	Reason
LDW20-ITT133 LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC156 LDW20-SC162 LDW20-SC202 LDW20-SC203 LDW20-SC203 LDW20-SC211 LDW20-SC144 LDW20-IT139 LDW20-IT151 LDW20-IT146	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	Α	Initial calibration verification (%D)
LDW20-ITT133	Aroclor-1260	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
LDW20-SC135	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SC211FD	Aroclor-1248 Aroclor-1260	J (all detects) J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-IT139	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-IT151	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-IT146	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

Stage 4

Date: 08/04 40
Page: 1_of_1
Reviewer:
2nd Reviewer:

Laboratory: Analytical Resources, Inc.

LDC #: 48680C3b

SDG #: 20F0094

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	[Comments	(Insufficie	ht
١.	Sample receipt/Technical holding times	SW / A	Cooler temps = 10.0°C 9.5°C 1 CAL = 20 ? COV = 20 ?	12.0 0	time to	FOS
١١.	Initial calibration/ICV	AISW	1CAL = 203	INE	2070	
Ш.	Continuing calibration	A	CON 5 20 %			
IV.	Laboratory Blanks	A		·		
V.	Field blanks	N				
VI.	Surrogate spikes /15	A/A				
VII.	Matrix spike/Matrix spike duplicates	SW				
VIII.	Laboratory control samples	A	LCS 10 SRM			
IX.	Field duplicates	SW	b = 10/11			
Х.	Compound quantitation/RL/LOQ/LODs	SW				
XI.	Target compound identification	A				
XII	Overall assessment of data	<u> </u>				

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

Client ID Lab ID Matrix Date LDW20-ITT133 20F0094-01 Sediment 06/03/20 1 20F0094-02 2 LDW20-SC140 Sediment 06/03/20 3 LDW20-SC142 20F0094-03 Sediment 06/03/20 4 LDW20-SC150 20F0094-04 Sediment 06/03/20 LDW20-SC156 20F0094-05 Sediment 06/03/20 5 LDW20-SC162 6 20F0094-06 Sediment 06/03/20 LDW20-SC135 20F0094-07 Sediment 06/03/20 7 LDW20-SC202 20F0094-08 Sediment 8 06/03/20 LDW20-SC203 20F0094-09 9 Sediment 06/03/20 10 LDW20-SC211 b 20F0094-10 Sediment 06/03/20 D LDW20-SC211FD 20F0094-11 Sediment 06/03/20 11 12 LDW20-SC144 20F0094-12 Sediment 06/03/20 13 LDW20-IT139 20F0094-13 Sediment 06/03/20 LDW20-IT151 20F0094-14 Sediment 06/03/20 14 15 LDW20-IT146 20F0094-15 Sediment 06/03/20 16 LDW20-ITT133MS 20F0094-01MS Sediment 06/03/20

<u>LDW20-ITT133MSD</u> — BI F0320- BLK1

L:\Windward\Duwamish\48680C3bW.wpd

Note: Some surr NR due to chromatographic interference. (NRS)

Sediment

06/03/20

20F0094-01MSD

VALIDATION FINDINGS CHECKLIST

Page: 1 of 1 Reviewer: JVG 2nd Reviewer:

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

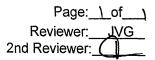
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		-		
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/ECD Instrument performance check				
Was the instrument performance found to be acceptable?	<u> </u>			
Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift?			/	
Were endrin and 4,4'-DDT breakdowns \leq 15% for individual breakdown in the Evaluation mix standards?			/	ć
Illa. Initial calibration	·>			
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) \leq 20%?	ľ/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			/	
Were the RT windows properly established?				3
IIIb. Initial calibration verification	•			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) <u><</u> 20%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) <u><</u> 20%?	/			
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks		<u> </u>		
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
VI. Field blanks				
Were field blanks identified in this SDG?		\land		
Were target compounds detected in the field blanks?			/	
VII. Surrogate spikes/Internal Standards				
Were all surrogate percent recovery (%R) within the QC limits?	$\left \right $			
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				

VALIDATION FINDINGS CHECKLIST

Page:_	<u>1_</u> of	2
Reviewer:	Jγ	<u>'G</u>
2nd Reviewer:_	_0	\leq

Validation Area	Yes	No	NA	Findings/Comments
If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R?			/	
Were internal standard area counts within <u>+</u> 50% of the average area calculated during calibration?				
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				·
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples	/	/		
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates		<u> </u>		
Were field duplicate pairs identified in this SDG?	\square			
Were target compounds detected in the field duplicates?				
XI. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?				
Were relative percent difference (RPD) of the results between two columns \leq 40%?				
XII. Target compound identification		•		
Were the retention times of reported detects within the RT windows?				
XIII. Overall assessment of data	-	/		
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

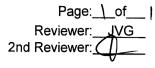

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ çis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Arocior 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Arocior 1268	тт.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	ww.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX

Notes:_____

LDC #:____48680C36

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification



METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

	<u>)N/A</u>	Did the initial calibrat		dards meet the %D		fied as "N/A". nstrument? a of <u><</u> 20.0% / 80-120%?	
#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	06/10/20	SI F0176-SOV 1	1 20	BB	21.0	All (bet)	J/us/A
		·					(qual Z AA BB)
						······································	
						······································	
	·		t		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
\neg				· · · · · · · · · · · · · · · · · · ·			
-							·····
-			. <u> </u>	<u> </u>			
							······································
-		· · · · · · · · · · · · · · · · · · ·		······································			······································
			· · · · · · · · · · · · · · · · · · ·				
							·
_							
			· · · · · · · · · · · · · · · · · · ·				————————————————————————————————————
_						·····	
-							
-							

LDC #: 48680 C36

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Was a MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

N)N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

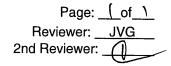
#	MS/MSD ID	Compound	MS %R (Limits)		MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	16 /17	BB	(()	126 (58-120)	()	l (bet)	J dets /A
	<i>y</i>		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	······································	
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	······································	
			(ý	()	()	· · · · · · · · · · · · · · · · · · ·	

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: <u>1 of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u></u>

METHOD: GC PCB (EPA SW 846 Method 8082A)

<u>YNNA</u> Were field duplicate pairs identified in this SDG?


 $\underline{Y}\underline{N}\underline{N}\underline{A}$ Were target analytes detected in the field duplicate pairs?

	Concentrat	tion (ug/Kg)	
Compound	10	11	RPD
Aroclor 1248	47.9	55.5	15
Aroclor 1254	67.2	78.0	15
Aroclor 1260	82.2	54.3	41

V:\Josephine\FIELD DUPLICATES\48680C3b windward duwamish.wpd

LDC #: 48 650 C35

VALIDATION FINDINGS WORKSHEET **Compound Quantitation and Reported CRQLs**

/ GC __ HPLC METHOD:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only X/N N/A

YN N/A $\sqrt{N} N/A$ Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors <40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD/%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	Z	7	44, q	J dets A
	Z	1	48.9	
	βB		44.9	
	Z	3	54.2	
╟───┤	Z	14		
	L	[7]	48,5	
	Z	15	46.8	
 				
╟──┤				
	ents: See sample calculation veri	fication worksheet for recalculations		

LDC #: 48680C3b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>1</u>	_ of	1
Reviewer:_	JV	<u> </u>
2nd Reviewer:	\bigcirc	_

METHOD: GC PCBs (EPA SW 846 Method 8082A)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound C_x = Concentration of compound, S= Standard deviation of the RRFs, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

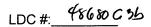
				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(250 std)	(250 std)	(Initial)	(Initial)		
1	ICAL	6/10/2020	1260-1 ZB5 (HBP)	0.03748	0.03748	0.03633	0.03633	1.944	1.946
	ECD7		1260-1 ZB35 (HBP)	0.04683	0.04683	0.04865	0.04865	13.540	13.537

LDC # <u>48680C3b</u>

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: <u>1</u>of<u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer:

METHOD: GC PCBs (EPA SW 846 Method 8082A)


The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
		Calibration		Conc	Conc	Conc	% D	%D
#	Standard ID	Date	Compound (IS)		(CCV)	(CCV)		
1	20061804ECD7	6/17/2020	1260-1 ZB5 (HBP)	250.0	254.5	254.5	1.8	1.8
			1260-1 ZB35 (HBP)	250.0	261.9	261.9	4.7	4.7
2	20061821ECD7	6/17/2020	1260-1 ZB5 (HBP)	250.0	266.7	266.7	6.7	6.7
			1260-1 ZB35 (HBP)	250.0	284.9	284.9	13.9	13.9
3	20061833ECD7.	6/18/2020	1260-1 ZB5 (HBP)	250.0	277.1	277.1	10.9	10.9
			1260-1 ZB35 (HBP)	250.0	293.4	293.4	17.4	17.4
4	20061903ECD7	6/19/2020	1260-1 ZB5 (HBP)	250.0	250.5	250.5	0.2	0.2
			1260-1 ZB35 (HBP)	250.0	258.3	258.3	3.3	3.3

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1_of_1</u> Reviewer: <u>JVG</u> 2nd reviewer: <u>____</u>

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 1

Surrogate Spiked Percent Percent Percent Surrogate Surrogate Column Found Recovery Recovery Difference Recalculated Reported 40.0 84.6 85 ٩ Col 6.8 (5 1 Tetrachloro-m-xylene Tetrachloro-m-xylene 8.0(5 100 Crl 100 Decachlorobiphenyl Decachlorobiphenyl

Sample ID:_

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
		r		Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:_____

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl					<u> </u>	

Sample ID:_____

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:____

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>1</u>

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration

RPD = I MS - MSD I * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery

MS/MSD samples: 16 /17

	S	pike	Sample		d Sample	Matrix	c Spike	Matrix Spil	ke Duplicate	MS/I	NSD
Compound		dded 5 (Kg.)	Concentration (১০৯ বি.)		entration	Percent Recovery		Percent	nt Recovery RPD		D
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
gamma-BHC											
4,4'-DDT											
Aroclor 1260	101	101	69.5	179	197	108	108	126	126	9-82	9-57

Comments: Refer of Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 48680 C36

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page: 1_of_1 Reviewer: JVG 2nd Reviewer: _____

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

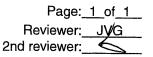
Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples:


BIFU 320- BSI

				L	CS	L	CSD	LCS	S/LCSD
(v	Vadea Y/Kaj			Percent	Recovery	Percent	Recovery		RPD
LCS		LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
101	101	86.2	95.6	85.5	87.6	64.8	94.7	18-4	10.3
		-							
		ļ						······	
			Added Conc (Wg/kg) (V LCS LCSD LCS	Added Concentration (W) /ka) (W) /ka,) LCS LCS LCSD	Added Concentration (Wg/kg) (Wg/kg) LCS LCS LCS LCS	Added Concentration (Wg/kg) Percent Recovery LCS LCSD LCSD Reported Recalc.	Added Concentration (Wg/kg) Percent Recovery Percent LCS LCS LCSD Reported Recalc. Reported	Added Concentration Percent Recovery Percent Recovery LCS LCS LCS Reported Recalc.	Added Concentration (Wg/kg) Percent Recovery Percent Recovery LCS LCSD LCSD Reported Recalc. Reported

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 48680C36

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

YN N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = (A) (Fv) (Df) $(RF) (Vs or Ws) (%S/100)$	
A = Area of compound Fv = Final Volume of extract Df = Dilution Factor RF = Average Response Factor of compound in ICa Vs = Initial Volume of sample Ws = Initial Weight of sample %S = Percent Solid	al

Example: Sample I.D. 1 1260 col. 1 1246-1Conc. = (6245)(80) (189079)(6.67693)= 72.7 $1260 \text{ Ave} = \frac{72.7 + 67.7 + 69.4 + 68.7 + 76.5}{5}$ = 69.81final conc. = (69.51) (2.5 mL) (5) (17.19g) (0.7317) = 69.47 2 69.5 ug lkg

#	Sample ID	Compound	Reported Concentration (Mg /Ng	Calculated Concentration (46 (R)	Qualification
	1	1260	69,5	69.50	
			,		
		· · · ·			

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 18, 2020

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0094

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-ITT133	20F0094-01	Sediment	06/03/20
LDW20-SC140	20F0094-02	Sediment	06/03/20
LDW20-SC142	20F0094-03	Sediment	06/03/20
LDW20-SC150	20F0094-04	Sediment	06/03/20
LDW20-SC135	20F0094-07	Sediment	06/03/20
LDW20-SC202	20F0094-08	Sediment	06/03/20
LDW20-SC203	20F0094-09	Sediment	06/03/20
LDW20-SC211	20F0094-10	Sediment	06/03/20
LDW20-SC211FD	20F0094-11	Sediment	06/03/20
LDW20-IT139	20F0094-13	Sediment	06/03/20
LDW20-IT151	20F0094-14	Sediment	06/03/20
LDW20-IT146	20F0094-15	Sediment	06/03/20

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Arsenic	0.025 ug/L	All samples in SDG 20F0094

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC109MS/MSD (LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC135 LDW20-SC202 LDW20-SC203 LDW20-SC211 LDW20-SC211FD)	Silver	41.5 (75-125)	49.8 (75-125)	J (all detects)	A
LDW20-SC109MS/MSD (LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC135 LDW20-SC202 LDW20-SC203 LDW20-SC203 LDW20-SC211 LDW20-SC211FD)	Copper	130 (75-125)	-	J (all detects)	A

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

Samples LDW20-SC211 and LDW20-SC211FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ation (mg/Kg)	
Analyte	LDW20-SC211	LDW20-SC211FD	RPD
Arsenic	9	8.06	11

	Concentra	tion (mg/Kg)	
Analyte	LDW20-SC211	LDW20-SC211FD	RPD
Cadmium	0.33	0.29	13
Chromium	25.9	23.8	8
Copper	46.2	40.7	13
Lead	25.9	25.6	1
Mercury	0.130	0.146	12
Silver	0.32	0.29	10
Zinc	104	93.0	11

XII. Internal Standards (ICP-MS)

Internal standard data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD %R, data were qualified as estimated in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0094

Sample	Analyte	Flag	A or P	Reason
LDW20-SC140 LDW20-SC142 LDW20-SC150 LDW20-SC135 LDW20-SC202 LDW20-SC203 LDW20-SC211 LDW20-SC211	Silver Copper	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

LDC #: <u>48680C4a</u> SDG #: <u>20F0094</u> Laboraton: Analytical Besource

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 7/30/20 Page: 1_of 1 Reviewer: ATL 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	Α	
	Instrument Calibration	Α	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Laboratory Blanks	sw	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	From SDG # 20F0039 (LDW20-SC109MS/MSD), SDG # 20F0109 (LDW20- SC214MS/MSD)
VIII.	Duplicate sample analysis	A	From SDG # 20F0039 (LDW20-SC109DUP), SDG # 20F0109 (LDW20- SC214DUP)
IX.	Serial Dilution	N	
Х.	Laboratory control samples	Α	LCS/SRM
XI.	Field Duplicates	sw	(8,9)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT133	20F0094-01	Sediment	06/03/20
2	LDW20-SC140	20F0094-02	Sediment	06/03/20
3	LDW20-SC142	20F0094-03	Sediment	06/03/20
4	LDW20-SC150	20F0094-04	Sediment	06/03/20
5	LDW20-SC135	20F0094-07	Sediment	06/03/20
3	LDW20-SC202	20F0094-08	Sediment	06/03/20
7	LDW20-SC203	20F0094-09	Sediment	06/03/20
3	LDW20-SC211	20F0094-10	Sediment	06/03/20
•	LDW20-SC211FD	20F0094-11	Sediment	06/03/20
10	LDW20-IT139	20F0094-13	Sediment	06/03/20
11	LDW20-IT151	20F0094-14	Sediment	06/03/20
12	LDW20-IT146	20F0094-15	Sediment	06/03/20
13				
14				

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
2 to 9	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
1,10,11,12	As
、 、	

Analysis Method

ICP	
ICP-MS	
CVAA	

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000) Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: mg/kg Associated Samples: all

				Sample Identification						
Analyte	PB (units)	Maximum ICB/CCB (ug/L)	Action Level							
As		0.025								

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS/MSD analysis was performed by the laboratory. All MS/MSD percent recoveries (%R) and relative percent differences (RPDs) were within the acceptable limits with the following exceptions:

MS/MSD ID	Matrix	Analyte		MSD %R	%R Limit	RPD	RPD Limit	Associated Samples	Qualification	Det/ND
DW20-SC109	S	Ag	41.5	49.8	75-125			2 to 9	J/UJ/A	Det
		Cu	130		75-125			2 to 9	Jdet/A	Det
					_					
					l					
						_				
										<u> </u>

Comments:

VALIDATION FINDINGS WORKSHEET Field Duplicates

Method: Metals

A	Concentrat	ion (mg/kg)	RPD	
Analyte	8	9		Qualifiers (Parents Only)
Arsenic	9	8.06	11	
Cadmium	0.33	0.29	13	
Chromium	25.9	23.8	8	
Copper	46.2	40.7	13	
Lead	25.9	25.6	1	
Mercury	0.130	0.146	12	
Silver	0.32	0.29	10	
Zinc	104	93.0	11	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4

LDC Report Date: August 10, 2020

Parameters: Wet Chemistry

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0094

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-ITT133	20F0094-01	Sediment	06/03/20
LDW20-SC140	20F0094-02	Sediment	06/03/20
LDW20-SC142	20F0094-03	Sediment	06/03/20
LDW20-SC150	20F0094-04	Sediment	06/03/20
LDW20-SC156	20F0094-05	Sediment	06/03/20
LDW20-SC162	20F0094-06	Sediment	06/03/20
LDW20-SC135	20F0094-07	Sediment	06/03/20
LDW20-SC202	20F0094-08	Sediment	06/03/20
LDW20-SC203	20F0094-09	Sediment	06/03/20
LDW20-SC211	20F0094-10	Sediment	06/03/20
LDW20-SC211FD	20F0094-11	Sediment	06/03/20
LDW20-SC144	20F0094-12	Sediment	06/03/20
LDW20-IT139	20F0094-13	Sediment	06/03/20
LDW20-IT151	20F0094-14	Sediment	06/03/20
LDW20-IT146	20F0094-15	Sediment	06/03/20
LDW20-ITT133DUP	20F0094-01DUP	Sediment	06/03/20
LDW20-SC202MS	20F0094-08MS	Sediment	06/03/20
LDW20-SC202DUP	20F0094-08DUP	Sediment	06/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A Total Solids by Standard Method 2540G

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

Samples LDW20-SC211 and LDW20-SC211FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concent		
Analyte	LDW20-SC211	LDW20-SC211FD	RPD
Total solids	53.66	54.83	2
Total organic carbon	1.79	1.84	3

X. Sample Result Verification

All sample result verifications were acceptable.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

ALIDATION COMPLETENESS V	NORKSHEET
--------------------------	------------------

Stage 4

LDC #: 48680C6 VALIC SDG #: 20F0094 Laboratory: Analytical Resources, Inc.

METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A/A	
	Initial calibration	A	
	Calibration verification	А	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	А	17, From SDG # 20F0039 (LDW20-SC109MS)
VII.	Duplicate sample analysis	A	16,18, From SDG # 20F0039 (LDW20-SC109DUP)
VIII.	Laboratory control samples	А	LCS/SRM
IX.	Field duplicates	sw	(10,11)
Х.	Sample result verification	А	
Xi.	Overall assessment of data	А	

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

			Ra-Anity	Data
	Client ID	Lab ID	Matrix	Date
1	LDW20-ITT133	20F0094-01	Sediment	06/03/20
2	LDW20-SC140	20F0094-02	Sediment	06/03/20
3	LDW20-SC142	20F0094-03	Sediment	06/03/20
4	LDW20-SC150	20F0094-04	Sediment	06/03/20
5	LDW20-SC156	20F0094-05	Sediment	06/03/20
6	LDW20-SC162	20F0094-06	Sediment	06/03/20
7	LDW20-SC135	20F0094-07	Sediment	06/03/20
8	LDW20-SC202	20F0094-08	Sediment	06/03/20
9	LDW20-SC203	20F0094-09	Sediment	06/03/20
10	LDW20-SC211	20F0094-10	Sediment	06/03/20
11	LDW20-SC211FD	20F0094-11	Sediment	06/03/20
12	LDW20-SC144	20F0094-12	Sediment	06/03/20
13	LDW20-IT139	20F0094-13	Sediment	06/03/20
14	LDW20-IT151	20F0094-14	Sediment	06/03/20
15	LDW20-IT146	20F0094-15	Sediment	06/03/20
16	LDW20-ITT133DUP	20F0094-01DUP	Sediment	06/03/20
17	LDW20-SC202MS	20F0094-08MS	Sediment	06/03/20
18	LDW20-SC202DUP	20F0094-08DUP	Sediment	06/03/20

METHOD: Inorganics				
Validation Area	Yes	No	NA	Comments
I. Technical holding times				
Were all technical holding times met?	X			
II. Calibration				·
Were all instruments calibrated at the				
required frequency?	x			
Were the proper number of standards				
used?	х			
Were all initial and continuing calibration				
verifications within the QC limits?	x			
Were all initial calibration correlation				
coefficients within limits as specifed by the				
method?	x			
Were balance checks performed as				
required?	x			
III. Blanks				
Was a method blank associated with every				
sample in this SDG?	х			
Was there contamination in the method				
blanks?		х		
Was there contamination in the initial and				
continuing calibration blanks?		х		
IV. Matrix Spike/Matrix Spike Duplicates/I	.aborat	tory Du	plicates	6
Were MS/MSD recoveries within the QC				
limits? (If the sample concentration				
exceeded the spike concentration by a				
factor of 4, no action was taken.)	x			
Were the MS/MSD or laboratory duplicate				
relative percent differences (RPDs) within				
the QC limits?	х			
V. Laboratory Control Samples				
Was a LCS analyzed for each batch in the				
SDG?	Х			
Were the LCS recoveries and RPDs (if				
applicable) within QC limits?	х			
X. Sample Result Verification				
Were all reporting limits adjusted to reflect				
sample dilutions?	Х			
Were all soil samples dry weight corrected?	Х			1
XI. Overall Assessment of Data			<u>r</u>	· · · · · · · · · · · · · · · · · · ·
Was the overall assessment of the data				
found to be acceptable?	Х			l

METHOD: Inorganics		 		
Validation Area	Yes	No	NA	Comments
XII. Field Duplicates		- -		·····
Were field duplicates identifed in this SDG?	x			
Were target analytes detected in the field duplicates?	x			
XIII. Field Blanks				
Were field blanks identified in this SDG?		X		
Were target analytes detected in the field blanks?			x	

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1 to 15	TS, TOC	
QC		
16	TS	
17,18	тос	
		tin the state of

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Inorganics

	Concent	ration (%)	RPD	Quelificar (Bernata Only)
Analyte =	10	11		Qualifiers (Parents Only)
Total Solids	53.66	54.83	2	
Total Organic Carbons	1.79	1.84	3	

LDC #: 48680C6

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page:	of
Reviewer:	A
2nd Reviewer: (+

METHOD: Inorganics,	Method	TOC	(EPA	9060A)
•				1	,

The correlation coefficient (r) for the calibration of <u>N/A</u> was recalculated. Calibration date: <u>N/A</u>

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found x 100 True Where, Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

			90	90	Recalculated	Reported	
Type of Analysis	Analyte	Standard ID	Found (units)	True (units)	r or %R	r or %R	Acceptable (Y/N)
Initial calibration		Blank					
		Standard 1			· · ·		
		Standard 2					
	NA	Standard 3			NIA	NFA	N/A.
		Standard 4	·····				
		Standard 5	· · · · · · · · · · · · · · · · · · ·				
		Standard 6					
		Standard 7					
Calibration verification	TUC		44.637	44.44G	100	100	У
Calibration verification CCV_1	TIC		45,265	44.44S	102	102	У
Calibration verification	TOC		46.913	44,446	10,6	10,6	У

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

1

VALIDATION FINDINGS CHECKLIST Quality Control Sample Recalculations

METHOD: Inorganics

Percent recoveries (%R) for the laboratory control sample (LCS) and matrix spike (MS) were recalcuated using the following formula:

%R = (Found/True) x 100

Found = concentration of each analyte measured in the analysis. For the MS calculation, Found = SSR (Spiked Sample Result) - SR (Sample Result)

True = concentration of each analyte in the source

The sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = (Absolute value(S-D)x 200) / (S+D)

S = Original sample concentration

D = Duplicate sample concentration

				2	Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found/S	True/D	%R/RPD	%R/RPD	Acceptable (Y/N)
LCS	LCS	тос	43.031	44.4	96.91666667	96.8	Y
17	MS	тос	1.8802	1.97	95.44162437	95.5	Y
16	Duplicate	TS	72.028	72.3644	0.465952502	0.466	Y

METHOD: Inorganics

Analytes were recalculated and verified using the following equation:

Concentration = (Result from raw data x Final volume x Dilution factor) / (Percent solids (if applicable) x Initial weight or volume)

				Initial Weight/	Final Volume	Percent	Reported	Recalculated	Acceptable
Sample ID	Analyte	Raw Data (%)	Dilution	Volume (g)	(g)	solids (%)	Result (%)	Result (%)	(Y/N)
1	TS		1	6.8636	4.9668		72.36	72.3643569	Y
2	тос	0.543	1	0.23	0.23	66.02	0.82	0.822478037	Y
3	TS		1	6.4035	4.6174		72.11	72.10744124	Y
4	тос	1.417	1	0.2248	0.2248	62.84	2.25	2.254933164	Y
5	TS		1	6.6351	4.4181		66.59	66.58678844	Y
6	тос	1.161	1	0.3222	0.3222	57.19	2.03	2.030075188	Y
7	TS		1	6.2706	3.8344		61.15	61.14885338	Y
8	тос	1.104	1	0.2183	0.2183	61.55	1.79	1.793663688	Y
9	TS		1	5.6582	3.3779		59.7	59.69919762	Y
10	тос	0.963	1	0.2737	0.2737	53.66	1.79	1.794632874	Y
- 11	TS		1	6.8484	3.7547		54.83	54.82594475	Y
12	тос	0.768	1	0.4534	0.4534	64.53	1.19	1.190144119	Y
13	TS		1	6.5502	4.7143		71.97	71.97184819	Y
14	тос	0.445	1	0.2858	0.2858	67.22	0.66	0.662005356	Y
15	TS		1	7.1653	5.2522		73.3	73.30048986	Y

LDC Report# 48680C21 Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 10, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0094

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT146	20F0094-15	Sediment	06/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperature for samples in this SDG were reported at 10°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Affected Compound	Flag	A or P
06/25/20	13C12-1,2,3,4,7,8,9-HpCDF	73.9 ng/mL (77-129)	All samples in SDG 20F0094	1,2,3,4,7,8,9-HpCDF	J (all detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0465-BLK1	06/22/20	1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF OCDF OCDD Total PeCDD Total HpCDF	0.175 ng/Kg 0.0946 ng/Kg 0.166 ng/Kg 0.521 ng/Kg 1.32 ng/Kg 0.175 ng/Kg 0.166 ng/Kg	All samples in SDG 20F0094

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20F0094	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration and compounds reported as EMPC, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0094

Sample	Compound	Flag	A or P	Reason
LDW20-IT146	1,2,3,4,7,8,9-HpCDF	J (all detects)	Р	Continuing calibration (concentration)
LDW20-IT146	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0094

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary -SDG 20F0094

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u>08/07/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer:

SDG #: <u>20F0094</u> Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 48680C21

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments				
<u>ı.</u>	Sample receipt/Technical holding times		Cooler temp = 10 deg C	(Insufficient time to cool)			
<u> </u>	HRGC/HRMS Instrument performance check	A					
111.	Initial calibration/ICV	A/A	ICAL ≤ 20/35%	ICV ≤ QC Limits			
IV.	Continuing calibration	sw	CCV ≤ QC Limits				
<u>v</u> .	Laboratory Blanks	sw					
VI.	Field blanks	N					
VII.	Matrix spike/Matrix spike duplicates	N					
VIII.	Laboratory control samples	A	OPR, SRM				
IX.	Field duplicates	N					
X .	Labeled Compounds	A					
XI.	Compound quantitation RL/LOQ/LODs	N	EMPC = Jdets/A				
XII.	Target compound identification	N					
XIII.	System performance	N					
XIV.	Overall assessment of data	А					

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	 		Lab ID	Matrix	Date
1	LDW20-IT146	 		20F0094-15	Sediment	 06/03/20
2						
3						
4		_				
5						
6						
7						
8						
9						
10						
Notes						

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

LDC #: 48680C21

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page: <u>1_</u> of <u>1_</u>
Reviewer: JVG
2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N Y

Was a routine calibration performed at the beginning of each 12 hour period? Were all concentrations within method QC limits for unlabeled and labeled compounds?

Did all routine calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	Conc:ng/mL (Limits)	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	06/25/20	SIF0380-ICV1	13C12-P	73.9 (77-129)		All (Det)	J/UJ/P (qual P)
					-		
					······································	······································	
			·····				
		·····	······································				

LDC #: 48680C21

VALIDATION FINDINGS WORKSHEET

<u>Blanks</u>

Page <u>1</u> of <u>1</u> Reviewer: JVG 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- Were all samples associated with a method blank?
- Was a method blank performed for each matrix and whenever a sample extraction was performed?
- $\frac{Y}{Y}$ Was the method blank contaminated?

Blank extraction date: <u>06/22/20</u> Conc. units: <u>ng/Kg</u>			Blank analysis date: <u>0</u>	<u>6/25/20</u> As	sociated sam	oles: <u> </u>	ll (>5X)	
Compound	Blank ID			S	ample Identi	fication		
	BIF0465-BLK1	(5x)						
В	0.175	0.88						
M	0.0046*	0.47						

М	0.0946*	0.47					
0	0.166	0.83					
Q	0.521*	2.61					
G	1.32	6.60					
s	0.175	0.88					
Y	0,166	0.83					

*EMPC

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4

LDC Report Date: August 7, 2020

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0105

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC159	20F0105-01	Sediment	06/04/20
LDW20-SC154	20F0105-02	Sediment	06/04/20
LDW20-SC158	20F0105-03	Sediment	06/04/20
LDW20-IT243	20F0105-04	Sediment	06/04/20
LDW20-SC159MS	20F0105-01MS	Sediment	06/04/20
LDW20-SC159MSD	20F0105-01MSD	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
06/10/20	SIF0176-SCV1	2C	Aroclor-1260	21.0	All samples in SDG 20F0105	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC159MS/MSD (LDW20-SC159)	Aroclor-1260	48.0 (58-120)	51.1 (58-120)	J (all detects)	A

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-IT243	Aroclor-1248	43.5	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, MS/MSD %R, and RPD between two columns, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0105

Sample	Compound	Flag	A or P	Reason
LDW20-SC159 LDW20-SC154 LDW20-SC158 LDW20-IT243	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A	Initial calibration verification (%D)
LDW20-SC159	Aroclor-1260	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-IT243	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0105

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0105

No Sample Data Qualified in this SDG

Stage 2B

LDC #:	48680D3b	VALI
SDG #:	20F0105	
Laborato	ory: Analytical Re	sources, Inc.

Date: 08/04/20 Page:_(_of Reviewer: 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comm	nents
١.	Sample receipt/Technical holding times	AIA		
11.	Initial calibration/ICV	A / SW	ICAL E 20%	1915 202
	Continuing calibration	A	10AL = 20? COV = 20?	
IV.	Laboratory Blanks	Ϋ́Α		
V.	Field blanks	Ň		
<u></u> VI.	Surrogate spikes //S	A A		
VII.	Matrix spike/Matrix spike duplicates	้รฟ		
VIII.	Laboratory control samples	A	US SRA	И
IX.	Field duplicates	N	· · · · · · · · · · · · · · · · · · ·	
<u>X.</u>	Compound quantitation/RL/LOQ/LODs	Sìn		
XI.	Target compound identification	N		
	Overall assessment of data			
Note:	A = Acceptable	ND = No compounds	detected D = Duplicate	SB=Source blank

A = Acceptable N = Not provided/applicable SW = See worksheet

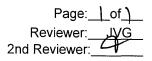
ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate				
TB =	Trip blank			
EB =	Equipment blank			

SB=Source blank

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC159	20F0105-01	Sediment	06/04/20
2	LDW20-SC154	20F0105-02	Sediment	06/04/20
3	LDW20-SC158	20F0105-03	Sediment	06/04/20
4	LDW20-IT243	20F0105-04	Sediment	06/04/20
5	LDW20-SC159MS	20F0105-01MS	Sediment	06/04/20
6	LDW20-SC159MSD	20F0105-01MSD	Sediment	06/04/20
7				
8				
9				
10				
11				
12				
Notes				
-	BI F0376-BLK1			

Note: # 4 = DCB not reported due to chromatographic interference. (MRS)

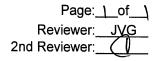

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ çis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	ww.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	xx.

Notes:_____

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification



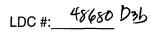
METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Plea	lease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". What type of initial calibration verification calculation was performed?%D or%R Was an initial calibration verification standard analyzed after each ICAL for each instrument? <u>NN/A</u> Did the initial calibration verification standards meet the %D / %R validation criteria of ≤20.0% / 80-120%?									
Wha	t type of ini	tial calibration verific	ation calculation was	s performed?%D	or <u>%</u> R					
<u>YN</u>	<u>N/A</u>	Was an initial calibr	ation verification star	ndard analyzed after	each ICAL for each	instrument?				
<u>Y(N</u>	<u>)N/A</u>	Did the initial calibra	ation verification stan	dards meet the %D	/ %R validation criter	ia of <u><</u> 20.0% / 80-120%?				
			Detector/		%D	_				
#	Date	Standard ID	Column	Compound	(Limit ≤ 20.0)	Associated Samples	Qualifications			
	06/10/20	SIF0176-SCI	11 20	BB	21.0	All (Det)	JUJA			
							(fural Z AA BB)			
			:							
				·						
			······································							
	1									
	1									
							· · · · · · · · · · · · · · · · · · ·			
 	1									

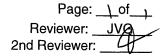
LDC #: 48680 D36

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)


Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>W</u>N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?


<u>N/A</u> Was a MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Y(N) N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)		MSD %R (Limits)	RPD (I	Limits)		Associated Samples	Qualifications
	5/4	BB	48.0 (58-12	20)	51.1 (58-120)		((let)	J/WJ/A
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	. ()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()		
			()	()		()	······································	
			()	()		()		
	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		()	()		()	······································	
			()	()		()		

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

METHOD: __ GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

 $\frac{2 N N/A}{2 N N/A}$

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors $\leq 40\%$?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD/%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	Z	4	43,5	J dets /A

Comments: See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 10, 2020

Parameters: Arsenic

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0105

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT243	20F0105-04	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Arsenic by Environmental Protection Agency (EPA) SW 846 Method 6020A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Arsenic - Data Qualification Summary - SDG 20F0105

No Sample Data Qualified in this SDG

Duwamish AOC4 Arsenic - Laboratory Blank Data Qualification Summary - SDG 20F0105

No Sample Data Qualified in this SDG

Duwamish AOC4 Arsenic - Field Blank Data Qualification Summary - SDG 20F0105

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 7/30/20 Page: 1 of 1 Reviewer: AT 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: Arsenic (EPA SW 846 Method 6020A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
Ш.	ICP/MS Tune	A	
111.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	Α	From SDG # 20F0109 (LDW20-SC214MS/MSD)
VIII.	Duplicate sample analysis	А	From SDG # 20F0109 (LDW20-SC214DUP)
IX.	Serial Dilution	N	
Х.	Laboratory control samples	А	LCS/SRM
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT243	20F0105-04	Sediment	06/04/20
2				
3				
4				
5				-
6				
7				
8				
9				
10				
11				
12				
13				
Votes	S:			

1

LDC #: 48680D4a SDG #: 20F0105

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
Flojecuone Mame.	Duwannish AUU4

LDC Report Date:	August 10, 2020
	,

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0105

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC159	20F0105-01	Sediment	06/04/20
LDW20-SC154	20F0105-02	Sediment	06/04/20
LDW20-SC158	20F0105-03	Sediment	06/04/20
LDW20-IT243	20F0105-04	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0105

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0105

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0105

No Sample Data Qualified in this SDG

Stage 2B

METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
	Initial calibration	A	
_111.	Calibration verification	А	
IV	Laboratory Blanks	Α	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	Α	From SDG # 20F0094 (LDW20-SC202MS)
VII.	Duplicate sample analysis	А	From SDG # 20F0094 (LDW20-ITT133DUP), (LDW20-SC202DUP)
VIII.	Laboratory control samples	А	LCS/SRM
IX.	Field duplicates	N	
Х.	Sample result verification	N	
XI.	Overall assessment of data	А	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date LDW20-SC159 20F0105-01 Sediment 06/04/20 1 2 Sediment 06/04/20 LDW20-SC154 20F0105-02 3 LDW20-SC158 20F0105-03 Sediment 06/04/20 Sediment 06/04/20 LDW20-IT243 20F0105-04 4 5 6 7 8 9 10 11 12 13 14 15 Notes:

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1 to 4	TS, TOC

LDC Report# 48680D21 Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 10, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0105

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT243	20F0105-04	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Affected Compound	Flag	A or P
06/25/20	13C12-1,2,3,4,7,8,9-HpCDF	73.9 ng/mL (77-129)	All samples in SDG 20F0105	1,2,3,4,7,8,9-HpCDF	J (all detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0465-BLK1	06/22/20	1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF OCDF OCDD Total PeCDD Total HpCDF	0.175 ng/Kg 0.0946 ng/Kg 0.166 ng/Kg 0.521 ng/Kg 1.32 ng/Kg 0.175 ng/Kg 0.166 ng/Kg	All samples in SDG 20F0105

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20F0105	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration and compounds reported as EMPC, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0105

Sample	Compound	Flag	A or P	Reason
LDW20-IT243	1,2,3,4,7,8,9-HpCDF	J (all detects)	Р	Continuing calibration (concentration)
LDW20-IT243	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0105

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary -SDG 20F0105

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>48680D21</u> V SDG #: <u>20F0105</u>

Laboratory: Analytical Resources, Inc.

Date: <u>08/07/20</u> Page: <u>1_of_1</u> Reviewer: <u>___JV@__</u> 2nd Reviewer: ___(____

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comm	ents
1.	Sample receipt/Technical holding times	_A/A		
<u>II.</u>	HRGC/HRMS Instrument performance check	A		
- 111.	Initial calibration/ICV	A/A	ICAL ≤ 20/35%	ICV ≤ QC Limits
IV.	Continuing calibration	sw	CCV ≤ QC Limits	
V.	Laboratory Blanks	SW		
VI.	Field blanks	N		
VII.	Matrix spike/Matrix spike duplicates	N		
VIII.	Laboratory control samples	А	OPR, SRM	
IX.	Field duplicates	N		
Х.	Labeled Compounds	А		
XI.	Compound quantitation RL/LOQ/LODs	N	EMPC = Jdets/A	
XII.	Target compound identification	N		
XIII.	System performance	N		
XIV.	Overall assessment of data	А		

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	LDW20-IT243			20F0105-04	Sediment	06/04/20
2						
3						
4						
1 2 3 4 5 6 7						
6						
7						
8						
8 9						
10						
Notes	:		 			
	BIF0465-BLK1					

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

LDC #: 48680D21

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page:_	<u>1_of_1_</u>	
Reviewer:	JXG	/
2nd Reviewer:	4	_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- Y N Y
- Was a routine calibration performed at the beginning of each 12 hour period? Were all concentrations within method QC limits for unlabeled and labeled compounds?
- Did all routine calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	Conc:ng/mL (Limits)	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	06/25/20	SIF0380-ICV1	13C12-P	73.9 (77-129)		All (Det)	J/UJ/P (qual P)
<u> </u>							
L		······································					
			<u> </u>	<u> </u>			
			+				
	-						
<u> </u>							
_							
		<u></u>	+				

VALIDATION FINDINGS WORKSHEET

<u>Blanks</u>

Page <u>1</u> of <u>1</u> Reviewer: JVG 2nd Reviewer:_____

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $\frac{Y}{Y}$ Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was the method blank contaminated?

Blank extraction date:	06/22/20	Blank analysis date: 06/25/20	Associated samples:	<u>All (>5X)</u>
Conc. units: ng/Kg				

Compound	Blank ID		Sample Identification					
	BIF0465-BLK1	(5x)						
В	0.175	0.88						
М	0.0946*	0.47						
0	0.166	0.83				 		
Q	0.521*	2.61						
G	1.32	6.60					 	
s	0.175	0.88						
Υ	0.166	0.83					 	

*EMPC

LDC Report# 48680E2a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0109

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC214	20F0109-05	Sediment	06/04/20
LDW20-SC251	20F0109-09	Sediment	06/04/20
LDW20-SC264	20F0109-10	Sediment	06/04/20
LDW20-SC251MS	20F0109-09MS	Sediment	06/04/20
LDW20-SC251MSD	20F0109-09MSD	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 13.8°C, 12.4°C, 10.1°C, and 11.2°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u>6</u> /05/20 Page: <u>1</u> of / Reviewer: <u>894</u> 2nd Reviewer: <u></u>

Laboratory: Analytical Resources, Inc.

LDC #: 48680E2a

SDG #: 20F0109

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments (Insufficient
١.	Sample receipt/Technical holding times	SIA+, A	Cooler temp. = 13,8°C, 12,4°C, 10,1°C, 11,2°C +1740 +1
١١.	GC/MS Instrument performance check	A'	
.	Initial calibration/ICV	AIA	$10AL \le 20\%$ r $(0Y = 307)$ $CW \le 20\%$
IV.	Continuing calibration	A	CW E 202
<u>v.</u>	Laboratory Blanks	Á	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	A	LCS SRM
Х.	Field duplicates	N	1
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	 Lab ID	Matrix	Date
1	LDW20-SC214	 20F0109-05	Sediment	06/04/20
2	LDW20-SC251	 20F0109-09	Sediment	06/04/20
3	LDW20-SC264	20F0109-10	Sediment	06/04/20
4	LDW20-SC251MS	 20F0109-09MS	Sediment	06/04/20
5	LDW20-SC251MSD	 20F0109-09MSD	Sediment	06/04/20
6		 		
7				
8		 		
9				
Notes:		 		
	BIFOGIO-BUKE			

LDC Report# 48680E2b

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date:	August 7, 2020
	/ ugust /, 2020

- Parameters: Semivolatiles
- Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0109

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC214	20F0109-05	Sediment	06/04/20
LDW20-SC251	20F0109-09	Sediment	06/04/20
LDW20-SC264	20F0109-10	Sediment	06/04/20
LDW20-SC251MS	20F0109-09MS	Sediment	06/04/20
LDW20-SC251MSD	20F0109-09MSD	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 13.8°C, 12.4°C, 10.1°C, and 11.2°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/26/20	N-Nitrosodiphenylamine	65.7	All samples in SDG 20F0109	J (all detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/26/20	Benzoic acid	22.9	All samples in SDG 20F0109	J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0410-BLK2	06/17/20	1,4-Dichlorobenzene Benzoic acid	0.7 ug/Kg 17.1 ug/Kg	All samples in SDG 20F0109

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-SC214	1,4-Dichlorobenzene	2.5 ug/Kg	2.5U ug/Kg
LDW20-SC251	1,4-Dichlorobenzene Benzoic acid	2.1 ug/Kg 89.0 ug/Kg	2.1U ug/Kg 89.0U ug/Kg
LDW20-SC264	1,4-Dichlorobenzene	2.9 ug/Kg	2.9U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG. **VII. Surrogates**

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and continuing calibration %D, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0109

Sample	Compound	Flag	A or P	Reason
LDW20-SC214 LDW20-SC251 LDW20-SC264	N-Nitrosodiphenylamine	J (all detects)	A	Initial calibration verification (%D)
LDW20-SC214 LDW20-SC251 LDW20-SC264	Benzoic acid	J (all detects)	A	Continuing calibration (%D)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0109

Sample	Compound	Modified Final Concentration	A or P
LDW20-SC214	1,4-Dichlorobenzene	2.5U ug/Kg	A
LDW20-SC251	1,4-Dichlorobenzene Benzoic acid	2.1U ug/Kg 89.0U ug/Kg	A
LDW20-SC264	1,4-Dichlorobenzene	2.9U ug/Kg	A

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

LDC #: <u>48680E2b</u> SDG #: 20F0109

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 08/06/2	C
Page: of	
Reviewer:	
2nd Reviewer:	

Laboratory: <u>Analytical Resources, Inc.</u>

METHOD: GC/MS Polynuelear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Co	mments	(Insufficient time to co
<u> </u>	Sample receipt/Technical holding times	SAI,A	Coster temps = 13.8°C, 1	2,4°C,10).1°C, 11.2°C
11.	GC/MS Instrument performance check	A			
111.	Initial calibration/ICV	A ISW	ICAL = 20%	5	lave 30%
IV.	Continuing calibration	SIN	CAV = 20 %		
V.	Laboratory Blanks	SĂY			
VI.	Field blanks	Ň			
VII.	Surrogate spikes	A			
VIII.	Matrix spike/Matrix spike duplicates	Å			
IX.	Laboratory control samples	A	LCS SRM		
Х.	Field duplicates	N			
XI.	Internal standards	A			
XII.	Compound quantitation RL/LOQ/LODs	N			
XIII.	Target compound identification	N			
XIV.	System performance	N			
XV.	Overall assessment of data	A			

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC214	20F0109-05	Sediment	06/04/20
2	LDW20-SC251	20F0109-09	Sediment	06/04/20
3	LDW20-SC264	20F0109-10	Sediment	06/04/20
4	LDW20-SC251MS	20F0109-09MS	Sediment	06/04/20
5	LDW20-SC251MSD	20F0109-09MSD	Sediment	06/04/20
6				
7				
8				
9				
Notes:				
-	BIF0410-B1K2			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

.

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene.	JJJJ. Acetophenone	
K. Hexachloroethane	KK. 2.4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	J1. Ethyl methanesulfonate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	K1. o,o',o"-Triethylphosphorothioate
				L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	0000. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW., 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

3

LDC #: 48650 E 26

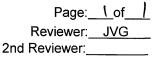
VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

V N N/A Were all %D within the validation criteria of $\leq 20/30\%$ %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><20.0%</u> (30%) 65.7	Associated Samples	Qualifications
		SI F0395-SCV1	QQ	65.7	All (Det)	J/UJ/A
			· · · · · ·			
			· · · _ · · · · · · · · · · · · · · · ·			
			n 	· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·			
			·······			
					······	
				· · · · · · · · · · · · · · · · · · ·		
						1
					· .	


VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	↓_of_	1
Reviewer:	J₩G	
2nd Reviewer:_	4	

метн	IOD: GC/MS F	CUTA- PAH (EPA SW 846 Method	E 182709-SIM)				2nd Reviewer
Pleas	e see qualifica	tions below for all question	ns answered "N". Not a	oplicable questions are	e identified as "N/A"		
YN	<u>N/A</u> W	las a continuing calibrat	ion standard analyze	d at least once everv	12 hours for each inst	rument?	
Y (N	N/A V	lere percent differences	(%D) ≤20 % and rel	ative response factor	s (RRF) within the me	thod criteria?	
						1	
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualification
	06/26/20		PPP				
	00/20/20	NT14200626155	IPP	22,9	·····	All (Det)	J/UJ/A
L						<u> </u>	'
			••••••••••••••••••••••••••••••••••••••			+	
					······	· ·	
						·	
<u> </u>							+
					······		
					· · · · · · · · · · · · · · · · · · ·		
						*	
L					·		<u> </u>
	1						
	1					1	· · · · · · · · · · · · · · · · · · ·
							1
L	Į						
1							
(+			T	<u> </u>		

VALIDATION FINDINGS WORKSHEET

Blanks

محمرك METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see gualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y\N N/A Was a method blank analyzed for each matrix?

Y N N/A Was a method blank analyzed for each concentration preparation level?

Y/N N/A Was a method blank associated with every sample?

Y/N N/A Was the blank contaminated? If yes, please see qualification below.

Blank extraction date: 06 /17 /20 Blank analysis date: 06 /26 /20

Conc. units: 1/15 AI **Ássociated Samples:** 0 Compound Blank ID 1. BIFOFIO-BLKZ 2 1 3 2.5/U 2.9/4 2.1/4 E *4*21 0.7 PPP 89.0/U 17.1 Blank analysis date: Blank extraction date: Associated Samples: Conc. units: Compound Blank ID

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 7, 2020

Parameters: Hexachlorobenzene

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0109

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC214	20F0109-05	Sediment	06/04/20
LDW20-SC251	20F0109-09	Sediment	06/04/20
LDW20-SC264	20F0109-10	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 13.8°C and 11.2°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
All samples in SDG 20F0109	Hexachlorobenzene	ICV not performed.	ICV required prior to each analytical run.	UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to no ICV performed, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 20F0109

Sample	Compound	Flag	A or P	Reason
LDW20-SC214 LDW20-SC251 LDW20-SC264	Hexachlorobenzene	UJ (all non-detects)	A	Initial calibration verification (%D)

Duwamish AOC4 Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

VAI IDAT	ION COMP	I FTENESS	WORKSHEET
VALIVAI			

Stage 2B

Date:	18/09/20
Page:	of)
Reviewer:	jug_
2nd Reviewer:_	<u> </u>

Laboratory: Analytical Resources, Inc.

LDC #: 48680E3a

SDG #: 20F0109

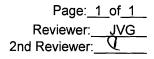
METHOD: GC Hexachlorobenzene (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	s	
<u> </u>	Sample receipt/Technical holding times	SW/A	Cooler temps = 13,8°C	11.2°C (Insuffici time to	ent
١١.	GC Instrument Performance Check	N		1 (tyme to	600
.	Initial calibration/ICV	A ISW	1621 = 20? ON = 206	1015 20 Z	
IV.	Continuing calibration	Ă.	ON = 20 %		
V.	Laboratory Blanks				
VI.	Field blanks	<u> </u>			
VII.	Surrogate spikes /15	A /A			
VIII.	Matrix spike/Matrix spike duplicates	N N			
IX.	Laboratory control samples	À	Les]
Х.	Field duplicates				
<u>xı.</u>	Compound quantitation/RL/LOQ/LODs	N			
XII.	Target compound identification	N			
XIII.	System Performance	N			
	Overall assessment of data	LA			

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank


D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1-	LDW20-SC214		20F0109-05	Sediment	06/04/20
2-	LDW20-SC251		20F0109-09	Sediment	06/04/20
	LDW20-SC264		20F0109-10	Sediment	06/04/20
4			··		
5		 			
3 4 5 7 8 9 10					
7					
8					
9					
10		 			
Notes					
F	BI F0353-Bike				

LDC #: <u>48680E3a</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". What type of initial calibration verification calculation was performed? ___%D or __%R

<u>Y N N/A</u> Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y N_N/A Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
		No ICV performed		Hexachlorobenzene		All (ND)	J/UJ/A
_							
							·
		·					
—					·		
\vdash							
					·	<u> </u>	
						<u> </u>	
						<u> </u>	
├							<u> </u>
						L	L

LDC Report# 48680E3b

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 11, 2020
Parameters:	Polychlorinated Biphenyls
Validation Level:	Stage 2B
Laboratory:	Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0109

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC168	20F0109-01	Sediment	06/04/20
LDW20-SC161	20F0109-02	Sediment	06/04/20
LDW20-IT236	20F0109-03	Sediment	06/04/20
LDW20-SC167	20F0109-04	Sediment	06/04/20
LDW20-SC167DL	20F0109-04DL	Sediment	06/04/20
LDW20-SC214	20F0109-05	Sediment	06/04/20
LDW20-IT232	20F0109-07	Sediment	06/04/20
LDW20-SC318	20F0109-08	Sediment	06/04/20
LDW20-SC251	20F0109-09	Sediment	06/04/20
LDW20-SC264	20F0109-10	Sediment	06/04/20
LDW20-SC168MS	20F0109-01MS	Sediment	06/04/20
LDW20-SC168MSD	20F0109-01MSD	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 13.8°C, 12.4°C, 10.1°C, and 11.2°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
06/10/20	SIF0176-SCV1	2C	Aroclor-1260	21.0	All samples in SDG 20F0109	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
Sample	Compound		Flag	AUF
LDW20-SC168	Aroclor-1260	44.5	J (all detects)	A
LDW20-SC161	Aroclor-1248	44.8	J (all detects)	А
LDW20-SC167	Aroclor-1248	42.1	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-SC167	Aroclor-1260	Results exceeded calibration range.	Not reportable	-
LDW20-SC167DL	All compounds except Aroclor-1260	Results from undiluted analyses were more usable.	Not reportable	-

Due to ICV %D and RPD between two columns, data were qualified as estimated in nine samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0109

Sample	Compound	Flag	A or P	Reason
LDW20-SC168 LDW20-SC161 LDW20-IT236 LDW20-SC214 LDW20-IT232 LDW20-SC318 LDW20-SC251 LDW20-SC251 LDW20-SC264	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A	Initial calibration verification (%D)
LDW20-SC167	Aroclor-1248 Aroclor-1254	J (all detects) J (all detects)	A	Initial calibration verification (%D)
LDW20-SC167DL	Aroclor-1260	J (all detects)	A	Initial calibration verification (%D)
LDW20-SC168	Aroclor-1260	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SC161 LDW20-SC167	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SC167	Aroclor-1260	Not reportable	-	Overall assessment of data
LDW20-SC167DL	All compounds except Aroclor-1260	Not reportable	-	Overall assessment of data

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

ALIDATION	COMPL	ETENESS	WORKSHEET
-----------	-------	----------------	-----------

Stage 2B

Date:	08/04/20
Page:_	<u></u>
Reviewer:	ALL
2nd Reviewer:	4

Laboratory: Analytical Resources, Inc.

LDC #: 48680E3b

SDG #: 20F0109

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

ν

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Com	ments (Insuff	icient
I.	Sample receipt/Technical holding times	SW/A	Cooter temps = 13.8 °C 1	2.42 10.10 11.20	eto co
П	Initial calibration/ICV	A ISW	ICAL 620% COV 620%	IN 5 207	2
111.	Continuing calibration	Â	CW 6 20%		
IV.	Laboratory Blanks	Á			
V	Field blanks	Ň			
VI.	Surrogate spikes / (S	A/A			
VII.	Matrix spike/Matrix spike duplicates	A			
VIII.	Laboratory control samples	Â	LCS 10 SRM	·······	
IX.	Field duplicates	N	,		
Х.	Compound quantitation/RL/LOQ/LODs	SM			
XI.	Target compound identification	N,			
	Overall assessment of data	SW			

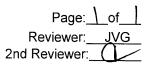
A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC168	20F0109-01	Sediment	06/04/20
2	LDW20-SC161	20F0109-02	Sediment	06/04/20
3	LDW20-IT236	20F0109-03	Sediment	06/04/20
4	LDW20-SC167	20F0109-04	Sediment	06/04/20
5	LDW20-SC167RE DL	20F0109-04RE DL	Sediment	06/04/20
6	LDW20-SC214	20F0109-05	Sediment	06/04/20
7	LDW20-IT232	20F0109-07	Sediment	06/04/20
8	LDW20-SC318	20F0109-08	Sediment	06/04/20
9	LDW20-SC251	20F0109-09	Sediment	06/04/20
10	LDW20-SC264	20F0109-10	Sediment	06/04/20
11	LDW20-SC168MS	20F0109-01MS	Sediment	06/04/20
12	LDW20-SC168MSD	20F0109-01MSD	Sediment	06/04/20
13		06		
Notes				

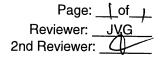
BIF0345-BUX1


VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ çis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Arocior 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	ww.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	xx.

Notes:_____


VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

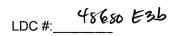
Pleas	se see qua	lifications below for a	all questions answere	ed "N". Not applicable	e questions are ident	tified as "N/A".	
Wha Mha	t type of ini <u>N/A</u>	tial calibration verifica Was an initial calibra	ation calculation was	s performed? <u>~</u> %D	or <u>%</u> R	instrument?	
YN	<u>)N/A</u>					ia of <20.0% / 80-120%?	
	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	06/10/20	SI F0176-SC		BB	21.0	An (Det)	J/UJ/A
							(mal Z. AA BB
			· · · · · · · · · · · · · · · · · · ·				
	ļ						
			· · · · · · · · · · · · · · · · · · ·				
	 						

VALIDATION FINDINGS WORKSHEET **Compound Quantitation and Reported CRQLs**

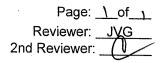
- GC _ HPLC METHOD:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only XXN N/A

N/A N)N/A


Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?


Did the percent difference of detected compounds between two columns./detectors <40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD/%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	BB		44,5	J dets (A
	Z	2	94,8	
	Z	4	42,1	
	b n			
	BB	13	41.7	}
		· · · · · · · · · · · · · · · · · · ·		
		······································		
Comm	ents: See sample calculation veri	fication worksheet for recalculations	andun and S	

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

METHOD: GC Pesticides/PCBs (EPA SW846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>N N/A</u> Was the overall quality and usability of the data acceptable?

#	Compound Name	Finding	Associated sample	Qualifications
	BB	> cal range	4	NR/A
	All except BB	di)	5	<u> </u>

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 10, 2020

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0109

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT236	20F0109-03	Sediment	06/04/20
LDW20-SC214	20F0109-05	Sediment	06/04/20
LDW20-IT232	20F0109-07	Sediment	06/04/20
LDW20-SC251	20F0109-09	Sediment	06/04/20
LDW20-SC264	20F0109-10	Sediment	06/04/20
LDW20-SC214MS	20F0109-05MS	Sediment	06/04/20
LDW20-SC214MSD	20F0109-05MSD	Sediment	06/04/20
LDW20-SC214DUP	20F0109-05DUP	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples		
ICB/CCB	Arsenic	0.025 ug/L	LDW20-SC214		

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC214MS/MSD (LDW20-SC214 LDW20-SC251 LDW20-SC264)	Silver	29.7 (75-125)	44 (75-125)	J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LDW20-SC214MS/MSD (LDW20-SC214 LDW20-SC251 LDW20-SC264)	Silver	37.8 (≤20)	J (all detects)	A

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Difference (Limits)	Flag	A or P
LDW20-SC214DUP (LDW20-SC214 LDW20-SC251 LDW20-SC264)	Mercury	-	0.189 mg/Kg (≤0.0974)	J (all detects)	A

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD %R and RPD and DUP difference, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0109

Sample	Analyte	Flag	A or P	Reason
LDW20-SC214 LDW20-SC251 LDW20-SC264	Silver	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)(RPD)
LDW20-SC214 LDW20-SC251 LDW20-SC264	Mercury	J (all detects)	A	Duplicate sample analysis (difference)

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>48680E4a</u> SDG #: <u>20F0109</u>

Laboratory: Analytical Resources, Inc.

Date: <u>7/30/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>AT</u> 2nd Reviewer: <u>4</u>

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	Α	
Ш.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	А	
V.	Laboratory Blanks	SW	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	(6,7)
VIII.	Duplicate sample analysis	sw	8
IX.	Serial Dilution	N	
Х.	Laboratory control samples	Α	LCS/SRM
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
xıv.	Overall Assessment of Data	А	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT236	20F0109-03	Sediment	06/04/20
2	LDW20-SC214	20F0109-05	Sediment	06/04/20
3	LDW20-IT232	20F0109-07	Sediment	06/04/20
4	LDW20-SC251	20F0109-09	Sediment	06/04/20
5	LDW20-SC264	20F0109-10	Sediment	06/04/20
6	LDW20-SC214MS	20F0109-05MS	Sediment	06/04/20
7	LDW20-SC214MSD	20F0109-05MSD	Sediment	06/04/20
8	LDW20-SC214DUP	20F0109-05DUP	Sediment	06/04/20
9				
10				
11				
12				
13				
lote	es:			

CVAA

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
2,4,5	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
1,3	As
QC	
6,7,8	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
	Analysis Method
ICP	
ICP-MS	

VALIDATION FINDINGS WORKSHEET Laboratory Blank Contamination (PB/ICB/CCB)

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000) Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: mg/kg

Associated Samples: 2

					Samp	ole Identific	ation		
Analyte	PB (units)	Maximum ICB/CCB (ug/L)	Action Level						
As		0.025							

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

VALIDATION FINDINGS WORKSHEETS Matrix Spike/Matrix Spike Duplicates

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS/MSD analysis was performed by the laboratory.	All MS/MSD percent recoveries (%R) and relative percent differences (RPDs) were within the
acceptable limits with the following exceptions:	

MS/MSD ID	Matrix	Analyte	MS %R	MSD %R	%R Limit	RPD	RPD Limit	Associated Samples	Qualification	Det/ND
6&7	S	Ag	29.7	44	75-125			2,4,5	J/UJ/A	Det PS=96.6%
		Ag				37.8	20	2,4,5	A/UJ/A	Det
					ļ					
					<u></u>					
			ļ		 	_				
					L					
			<u> </u>							
<u></u>				ļ						
<u></u>										
			ļ							<u> </u>
		_	ļ	ļ						
			ļ							+
				<u> </u>	<u> </u>					
								1		

Comments:

VALIDATION FINDINGS WORKSHEETS Laboratory Duplicates

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Laboratory duplicate analysis was performed by the laboratory. All laboratory duplicates were with the relative percent difference (RPD) for samples >5X the reporting limits with the exceptions listed below. If samples were <5X the reporting limits, the difference was within 1X the reporting limit for water samples and within 2X the reporting limit for soil samples for all samples with the exceptions listed below.

Durlingto ID		a market a		1	Difference				
			RPD	RPD Limit			Associated Samples	Qualification	Det/ND
8	S	Hg			0.189	0.0974	2,4,5	J/UJ/A	Det
			ļ						
				· · · · · · · · · · · · · · · · · · ·					
		<u></u>	<u> </u>						
			<u> </u>						<u> </u>
		<u> </u>							
					[<u> </u>	<u> </u>
		<u> </u>							
					[<u> </u>	
			ļ						
							· · · · · · · · · · · · · · · · · · ·		
			<u> </u>						
	-								
				<u> </u>					
Ĺ	L	L	L	L	L	L		L	<u> </u>

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Duwamish AOC4
August 10, 2020
Wet Chemistry
Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0109

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC168	20F0109-01	Sediment	06/04/20
LDW20-SC161	20F0109-02	Sediment	06/04/20
LDW20-IT236	20F0109-03	Sediment	06/04/20
LDW20-SC167	20F0109-04	Sediment	06/04/20
LDW20-SC214	20F0109-05	Sediment	06/04/20
LDW20-SC169	20F0109-06	Sediment	06/04/20
LDW20-IT232	20F0109-07	Sediment	06/04/20
LDW20-SC318	20F0109-08	Sediment	06/04/20
LDW20-SC251	20F0109-09	Sediment	06/04/20
LDW20-SC264	20F0109-10	Sediment	06/04/20
LDW20-SC168DUP	20F0109-01DUP	Sediment	06/04/20
LDW20-SC251MS	20F0109-09MS	Sediment	06/04/20
LDW20-SC251DUP	20F0109-09DUP	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>48680E6</u> V SDG #: <u>20F0109</u>

Laboratory: Analytical Resources, Inc.

Date: <u>7/30/20</u> Page: <u>1_of 1</u> Reviewer: <u>ATL</u> 2nd Reviewer:

METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
П	Initial calibration	А	
	Calibration verification	A	
IV	Laboratory Blanks	Α	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	Α	11, From SDG # 20F0094 (LDW20-SC202MS)
VII.	Duplicate sample analysis	Α	10,12, From SDG # 20F0094 (LDW20-SC202DUP)
VIII.	Laboratory control samples	A	LCS/SRM
IX.	Field duplicates	N	
Х.	Sample result verification	N	
XI.	Overall assessment of data	A	

Note: A = Acceptable

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = RinsateFB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC168	20F0109-01	Sediment	06/04/20
2	LDW20-SC161	20F0109-02	Sediment	06/04/20
3	LDW20-IT236	20F0109-03	Sediment	06/04/20
4	LDW20-SC167	20F0109-04	Sediment	06/04/20
5	LDW20-SC214	20F0109-05	Sediment	06/04/20
6	LDW20-IT232	20F0109-07	Sediment	06/04/20
7	LDW20-SC318	20F0109-08	Sediment	06/04/20
8	LDW20-SC251	20F0109-09	Sediment	06/04/20
9	LDW20-SC264	20F0109-10	Sediment	06/04/20
10	LDW20-SC168DUP	20F0109-01DUP	Sediment	06/04/20
11	LDW20-SC251MS	20F0109-09MS	Sediment	06/04/20
12	LDW20-SC251DUP	20F0109-09DUP	Sediment	06/04/20
Note	S:			

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1 to 9	TS, TOC	
		_
QC		
10	TS	
11,12	тос	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0157

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC148C	20F0157-01	Sediment	06/08/20
LDW20-SC148CDL	20F0157-01DL	Sediment	06/08/20
LDW20-SC155B	20F0157-02	Sediment	06/08/20
LDW20-SC166C	20F0157-03	Sediment	06/08/20
LDW20-SC208B	20F0157-04	Sediment	06/08/20
LDW20-SC148CMS	20F0157-01MS	Sediment	06/08/20
LDW20-SC148CMSD	20F0157-01MSD	Sediment	06/08/20
LDW20-SC148CDUP	20F0157-01DUP	Sediment	06/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC148CMS/MSD (LDW20-SC148C)	Phenanthrene	415 (49-120)	-80.1 (49-120)	J (all detects)	A
LDW20-SC148CMS/MSD (LDW20-SC148C)	Benzo(a)anthracene Chrysene	- -	-0.974 (49-120) -159 (47-120)	J (all detects) J (all detects)	A
LDW20-SC148CMS/MSD (LDW20-SC148C)	Benzofluoranthenes, total	-	23.5 (30-160)	J (all detects)	A

For LDW20-SC148CMS/MSD, no data were qualified for fluoranthene and pyrene percent recoveries (%R) and relative percent differences (RPD) outside the QC limits since the parent sample results were greater than 4X the spike concentration.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LDW20-SC148CMS/MSD (LDW20-SC148C)	Phenanthrene Benzo(a)anthracene Chrysene	133 (≤30) 48.8 (≤30) 71.1 (≤30)	J (all detects) J (all detects) J (all detects)	A

IX. Laboratory Control Samples/ Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0512-SRM1	Anthracene	53.0 (57-143)	All samples in SDG 20F0157	J (all detects)	Ρ

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-SC148C	Fluoranthene Pyrene	Results exceeded calibration range.	Not reportable	A
LDW20-SC148CDL	All compounds except Fluoranthene Pyrene	Results from undiluted analyses were more usable.	Not reportable	A

Due to MS/MSD %R and RPD and SRM %R, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0157

Sample	Compound	Flag	A or P	Reason
LDW20-SC148C	Phenanthrene	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-SC148C	Benzo(a)anthracene Chrysene	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-SC148C	Benzofluoranthenes, total	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-SC148C	Phenanthrene Benzo(a)anthracene Chrysene	J (all detects) J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD)
LDW20-SC148C LDW20-SC155B LDW20-SC166C LDW20-SC208B	Anthracene	J (all detects)	Ρ	Standard reference materials (%R)
LDW20-SC148C	Fluoranthene Pyrene	Not reportable	А	Overall assessment of data
LDW20-SC148CDL	All compounds except Fluoranthene Pyrene	Not reportable	A	Overall assessment of data

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC	#:_	48680F	⁼2a
LDC	#:_	<u>48680</u> F	<u>-2a</u>

SDG #: 20F0157

Laboratory: Analytical Resources, Inc.

Date: 08/0 Page: of Reviewer: 1 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	AIA	
11.	GC/MS Instrument performance check	A	
	Initial calibration/ICV	AIA	ICAL = 203 1015 303
IV.	Continuing calibration	A	$\frac{1CAL \leq 203}{CAL \leq 20\%} \qquad 1CN \leq 3.3$
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	SW	
IX.	Laboratory control samples	SW	KS SRM
Х.	Field duplicates	N	
XI.	Internal standards	Ă	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	

Note:

A = Acceptable

LDW20-SC148C

1 014/00 004 4905

Client ID

ND = No compounds detected D = Duplicate R = ip blank

N = Not provided/applicable SW = See worksheet

R = Rinsate	TB = Trip blank
FB = Field blank	EB = Equipment blank

SB=Source blank OTHER:

Date

06/08/20

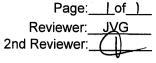
0000000

, .	
Lab ID	Matrix
20F0157-01	Sedimer
20F0157-01-REDL	Sedimer

2	LDW20-SC146CHE DE	20F0157-01-	Sediment	00/00/20
3	LDW20-SC155B	20F0157-02	Sediment	06/08/20
4	LDW20-SC166C	20F0157-03	Sediment	06/08/20
5	LDW20-SC208B	20F0157-04	Sediment	06/08/20
6	LDW20-SC148CMS	20F0157-01MS	Sediment	06/08/20
7	LDW20-SC148CMSD	20F0157-01MSD	Sediment	06/08/20
8	LDW20-SC148CDUP	20F0157-01DUP	Sediment	06/08/20
9			L	
Votes				
-	BIF0512-Bake			

-	BIF0512-Bull			

VALIDATION FINDINGS WORKSHEET


METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chiorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o''-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL, Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methyiphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

A2. Benzof moranthenes, Totze

LDC #:_ 48680 F2a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: GC/MS BNA (EPA SW 846 Method 8270¢)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

<u>MNA</u> Was a MS/MSD analyzed every 20 samples of each matrix?

Y(N)N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		6/7	UU	415 (49-126)	-80.1 (49-120)		(Det)	J dets /A
		,	YY	367 (53-120)	-854 (53-120)	()	1	NQ ¥
			22	172 (48-121)	-546 (48-121)	()		
			Cec	• ()	-0,974 (49-120)	()	(Pet)	J/R/A
			000	()	-159 (47-120)	()		
			Ar	()	23.5 (30-160)	()		J/UJ/A
			ии	()	()	[33 (30)		J dets /A
		···· <u>······</u> ··························	77	()	()	139 ()		NQ F
		· · · · · · · · · · · · · · · · · · ·	ZZ	()	()	45,4 ()		
			CCC .	()	()	48.8 ()	(Pet)	J dets/A
			DDD	()	()	71.1 ()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()	a second and a second	
				()	()	()		
				()	()	()		
				()	()	()		
				(<u>)</u>		()		
				()				
				()				
		· · · · · · · · · · · · · · · · · · ·		()			,	
		··· - ··· ··· ··· ··· ··· ··· ··· ··· ·						
				()			· · · · · · · · · · · · · · · · · · ·	
┣──┥				()	()			
	I						Para Lana	<u> </u>

* Parent cone 74x spike

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) / SKM

Page:	<u> (of)</u>
Reviewer:	JVG
2nd Reviewer:	<u>A</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $\begin{pmatrix} Y \\ Y \\ N \\ N \\ N \\ N \\ A \end{pmatrix}$

N/A Was a LCS required?

N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIFUSI2-SRM	~	53.0 (57-143	()	()	All (Det)	JUJP
			()	()	()		
			()	()	()		
		·	()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
	·		()	()	()		
			()	()	· ()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	-	
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
				()			
			()	()	()		
			()	()	()		
			()]	()	())		1

98680 F2a LDC #:

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	of
Reviewer:	₫ŴĠ
2nd Reviewer:	Y

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>Y) N N/A</u>

Was the overall quality and usability of the data acceptable?

	D-1-				
#	Date	Sample ID	Compound	Finding	Qualifications
			YY ZZ	7 cal vange	NR/A
			1		
		2	All except above	/ dil	
					· · · ·
					· · · · · · · · · · · · · · · · · · ·
				-	

,

Comments:

LDC Report# 48680F2b

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0157

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC148C	20F0157-01	Sediment	06/08/20
LDW20-SC155B	20F0157-02	Sediment	06/08/20
LDW20-SC166C	20F0157-03	Sediment	06/08/20
LDW20-SC208B	20F0157-04	Sediment	06/08/20
LDW20-SC148CMS	20F0157-01MS	Sediment	06/08/20
LDW20-SC148CMSD	20F0157-01MSD	Sediment	06/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
02/28/20	N-Nitrosodiphenylamine	34.4	All samples in SDG 20F0157	J (all detects) UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/22/20	Benzoic acid	25.1	All samples in SDG 20F0157	J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0512-SRM2	1,4-Dichlorobenzene 1,2-Dichlorobenzene	33.9 (34-166) 33.6 (36-164)	All samples in SDG 20F0039	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and SRM %R, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0157

Sample	Compound	Flag	A or P	Reason
LDW20-SC148C LDW20-SC155B LDW20-SC166C LDW20-SC208B	N-Nitrosodiphenylamine	J (all detects) UJ (all non-detects)	A	Initial calibration verification (%D)
LDW20-SC148C LDW20-SC155B LDW20-SC166C LDW20-SC208B	Benzoic acid	J (all detects)	A	Continuing calibration (%D)
LDW20-SC148C LDW20-SC155B LDW20-SC166C LDW20-SC208B	1,4-Dichlorobenzene 1,2-Dichlorobenzene	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Standard reference materials (%R)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

LDC	#:	48680F2b

SDG #: 20F0157

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 08/05/2	c
Page:of	
Reviewer: <u> </u>	
2nd Reviewer:	

Laboratory: Analytical Resources, Inc.

SVOA METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A/A	
<u>II.</u>	GC/MS Instrument performance check	A	
	Initial calibration/ICV	AISW	19AL = 20% 12 101 = 30%
IV.	Continuing calibration	Si	$\frac{ CAL = 20?}{CW = 20?}$
V.	Laboratory Blanks	A	
<u></u> VI.	Field blanks	L N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	SW	LCS SRM
Х.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

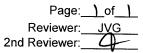
Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC148C	20F0157-01	Sediment	06/08/20
2	LDW20-SC155B	20F0157-02	Sediment	06/08/20
3	LDW20-SC166C	20F0157-03	Sediment	06/08/20
4	LDW20-SC208B	20F0157-04	Sediment	06/08/20
5	LDW20-SC148CMS	 20F0157-01MS	Sediment	06/08/20
6	LDW20-SC148CMSD	20F0157-01MSD	Sediment	06/08/20
7				
8				
9				
Notes	S:	 		
[-]	BIF0512-BUk2			


VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene.	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butyiphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

3

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

SV77 METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

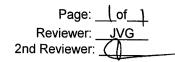
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YALN/A Was an initial calibration verification standard analyzed after each ICAL for each instrument

Y N N/A

Was an initial calibration verification standard analyzed after each ICAL for each instrument? Were all %D within the validation criteria of $\leq 20/30\%$ %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><20:0%(30%)</u>	Associated Samples	Qualifications
	02/28/20	SIC0029-SCVI	é QQ	34.4	All (ND +Det)	J/UJ/A
				48 f		
·						
				· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·			
 		······				
 						
∥						
				L		

LDC #: 48 680 = 26


VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	_of_	1
Reviewer:	٦VG	
2nd Reviewer:	U_	-

Qualifications J/uJ/A

				Continuing C	<u>Calibration</u>	
метн	OD: GC/MS	SV07 PAH (EPA SW 846 Metho	E d 8270Ø-SIM)			
Please	e see qualifica	tions below for all question	ns answered "N". Not a	pplicable questions are	e identified as "N/A".	
YN	<u>N/A</u> V	as a continuing calibra	tion standard analyze	d at least once every	12 hours for each inst	rument?
YN	<u>/N/A</u> V	Vere percent differences	s (%D) ≤20 % and rel	ative response factor	rs (RRF) within the me	thod criteria?
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples
	06 /22 /20	NT10200622035	PPP	25.1		All (Det)
├ ──┤						
			······································			· · · · · · · · · · · · · · · · · · ·
						·
						<u></u>
						1 T
ļ						
┣						
 				<u> </u>		
				1	1	· / · · · · · · · · · · · · · · · · · ·

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) /SRM

P SWA METHOD: GC/MS PART (EPA SW 846 Method 8270Ø-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Was a LCS required?

YN NA Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIF0512-SRM2	E F	33.9 (34-166	()	()	All (ND+Det)	J/UJ/P
		F	33.6 (36-164	()	()		
			()	()	· ()		······································
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
				()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
						······	
			()	()			
			<u> (</u>	()			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 18, 2020

- Parameters: Hexachlorobenzene
- Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0157

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC148C	20F0157-01	Sediment	06/08/20
LDW20-SC155B	20F0157-02	Sediment	06/08/20
LDW20-SC166C	20F0157-03	Sediment	06/08/20
LDW20-SC208B	20F0157-04	Sediment	06/08/20
LDW20-SC148CMS	20F0157-01MS	Sediment	06/08/20
LDW20-SC148CMSD	20F0157-01MSD	Sediment	06/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0496-BLK1	06/19/20	Hexachlorobenzene	0.18 ug/Kg	All samples in SDG 20F0157

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>48680F3a</u> SDG #: <u>20F0157</u>

Laboratory: Analytical Resources, Inc.

Date: <u>08/04</u>/20 Page: <u>1</u> of <u>1</u> Reviewer: <u>04</u> 2nd Reviewer: <u>4</u>

METHOD: GC Hexachlorobenzene (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
١.	Sample receipt/Technical holding times	AIA		
11.	GC Instrument Performance Check	Ň		
111.	Initial calibration/ICV	AIA	1GAL = 203	101=203
IV.	Continuing calibration	A A	$\frac{ CAL = 20b}{Cav = 30b}$	
V.	Laboratory Blanks	SW		
VI.	Field blanks			
<u>VII.</u>	Surrogate spikes /15	ALA		
VIII.	Matrix spike/Matrix spike duplicates	Ă		
IX.	Laboratory control samples	Ă.	LCS	
Х.	Field duplicates	Ň		
XI.	Compound quantitation/RL/LOQ/LODs	N		
XII.	Target compound identification	N		
XIII.	System Performance	N		
xiv	Overall assessment of data	A		

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Çlient ID	Lab ID	Matrix	Date
1	LDW20-SC148C	20F0157-01	Sediment	06/08/20
2	LDW20-SC155B	20F0157-02	Sediment	06/08/20
3	LDW20-SC166C	20F0157-03	Sediment	06/08/20
4	LDW20-SC208B	20F0157-04	Sediment	06/08/20
5	LDW20-SC148CMS	20F0157-01MS	Sediment	06/08/20
6	LDW20-SC148CMSD	20F0157-01MSD	Sediment	06/08/20
7				
8				
9				
10				
Notes:				
-	BIF0496-BLAI			

LDC #:	48680	Fza
	•	

VALIDATION FINDINGS WORKSHEET Blanks

Page: ___of___ Reviewer: ___<u>JVG</u> 2nd Reviewer: ____

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were all samples associated with a method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction was performed?

Y N N/A If extract clean-up was performed, were extract clean-up blanks analyzed at the proper frequencies?

N N/A Was there contamination in the method blanks? If yes, please see the qualifications below. nk extraction date: 06/19/20 Blank analysis date: 06/23/20 Associated samples: _____ AII (ND)

Q lank	extrac	tion a	ate:	6/14	100
Conc.	units:	UQ	Ar.		•

Compound	Blank ID		Sample Identification						
	BI = 0496	-B2K1			· · · · · · · · · · · · · · · · · · ·				
Hexachloro benze	ne 0.18								
					· .		· .	· .	

Blank extraction date: Conc. units:	Blank analysis	s date:		Ass	ociated sample	s:				
Compound	Blank ID		Sample Identification							

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

All contaminants within five times the method blank concentration were qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 7, 2020
Parameters:	Polychlorinated Biphenyls
Validation Level:	Stage 2B
Laboratory:	Analytical Resources, Inc.

Laboratory:

Sample Delivery Group (SDG): 20F0157

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC148C	20F0157-01	Sediment	06/08/20
LDW20-SC155B	20F0157-02	Sediment	06/08/20
LDW20-SC166C	20F0157-03	Sediment	06/08/20
LDW20-SC208B	20F0157-04	Sediment	06/08/20
LDW20-SC148CMS	20F0157-01MS	Sediment	06/08/20
LDW20-SC148CMSD	20F0157-01MSD	Sediment	06/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
06/10/20	SIF0176-SCV1	2C	Aroclor-1260	21.0	All samples in SDG 20F0157	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SC148C	Aroclor-1260	40.1	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and RPD between two columns, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0157

Sample	Compound	Flag	A or P	Reason
LDW20-SC148C LDW20-SC155B LDW20-SC166C LDW20-SC208B	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A	Initial calibration verification (%D)
LDW20-SC148C	Aroclor-1260	J (all detects)	A	Compound quantitation (RPD between two columns)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Stage 2B

Date: ⁶6/04 /20 Page: <u>1 of /</u> Reviewer: <u>74</u> 2nd Reviewer: <u>74</u>

SDG #: <u>20F0157</u> Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 48680F3b

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Commen	ts
1.	Sample receipt/Technical holding times	AIA		
П.	Initial calibration/ICV	AISW	1041 = 20% CW = 20%	1W5 207,
<u> </u>	Continuing calibration	A	CW 5 2013	
IV.	Laboratory Blanks	A		
<u>v.</u>	Field blanks	N		
VI.	Surrogate spikes /15	A/A		
VII.	Matrix spike/Matrix spike duplicates	A		
VIII.	Laboratory control samples	A	LCS	
IX.	Field duplicates	N N		
Х.	Compound quantitation/RL/LOQ/LODs	SK		
XI.	Target compound identification	N		
	Overall assessment of data			

A = Acceptable N = Not provided/applicable SW = See worksheet

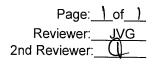
Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC148C	20F0157-01	Sediment	06/08/20
2	LDW20-SC155B	20F0157-02	Sediment	06/08/20
3	LDW20-SC166C	20F0157-03	Sediment	06/08/20
4	LDW20-SC208B	20F0157-04	Sediment	06/08/20
5	LDW20-SC148CMS	20F0157-01MS	Sediment	06/08/20
6	LDW20-SC148CMSD	20F0157-01MSD	Sediment	06/08/20
7				
8				,
9				
10				
11				
12				
Votes:				

-	BIF0491-B1K1			

no SRM)

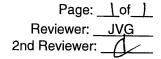

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

			موجوع میں ایک میں میں ایک میں میں ایک میں ایک میں ایک میں ایک میں ایک میں ایک میں میں میں میں ایک میں ایک میں م	
A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ çis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chiordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	WW.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification



METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Plea	se see qua	lifications below for a	Il questions answere	ed "N". Not applicabl	e questions are ider	ntified as "N/A".	
Wha	t type of ini	tial calibration verifica Was an initial calibra	ation calculation was	s performed? <u>/</u> %D	or <u>%</u> R		
Y N	N/A N/A	Vvas an initial calibra	ation verification star	ndard analyzed after	each ICAL for each	nstrument? eria of <u><</u> 20.0% / 80-120%?	
Æ					%D		
#	Date	Standard ID	Detector/ Column	Compound	(Limit ≤ 20.0)	Associated Samples	Qualifications
	06/10/20	SIFU176-SC		BB	21.0	All (pet)	JUJA
							(qual Z. AA BB)
	[

LDC #: 48680 F36

VALIDATION FINDINGS WORKSHEET **Compound Quantitation and Reported CRQLs**

METHOD: <u>C</u>GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only X/N N/A

VN N/A N\N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors <40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%APD/%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	BB		efo, 1	J dets A
ļ				
ļ				
		fication worksheet for recalculations		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 10, 2020

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0157

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC148C	20F0157-01	Sediment	06/08/20
LDW20-SC155B	20F0157-02	Sediment	06/08/20
LDW20-SC166C	20F0157-03	Sediment	06/08/20
LDW20-SC208B	20F0157-04	Sediment	06/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

Although the low level check standard exceeded QC limits for arsenic, no data was qualified since all associated results were greater than 2X the reporting limit.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Zinc	2.3 mg/Kg	All samples in SDG 20F0157
ICB/CCB	Arsenic	0.028 ug/L	LDW20-SC166C

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>48680F4a</u>

SDG #: 20F0157

Laboratory: Analytical Resources, Inc.

Date: <u>7/30/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>ATL</u> 2nd Reviewer: <u>6</u>

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
i.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	Α	
Ш.	Instrument Calibration	SW	
IV.	ICP Interference Check Sample (ICS) Analysis	А	
V.	Laboratory Blanks	SW	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	N	non-client sample used
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
Х.	Laboratory control samples	А	LCS/SRM
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	A	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC148C	20F0157-01	Sediment	06/08/20
2	LDW20-SC155B	20F0157-02	Sediment	06/08/20
3	LDW20-SC166C	20F0157-03	Sediment	06/08/20
4	LDW20-SC208B	20F0157-04	Sediment	06/08/20
5				
6				
7				
8				
9				
10				
11				
12				
13				
Note	S:			

CVAA

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1,2,3,4	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
	Analysis Method
ICP	
ICP-MS	

VALIDATION FINDINGS WORKSHEETS

Low Level Calibration Check

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

All low level calibration check standards were performed at the required frequency and were within the acceptance limits with the following exceptions:

					%R			
Date	Time	Calibration ID	Analyte	%R	Limits	Associated Samples	Qualification*	Det/ND
6/22/2020	14:01	SIF0327-CRL1	As	142	70-130	1,2,4	no qual	det > 2x RL
				ļ	<u> </u>			
· · · · · · · · · · · · · · · · · · ·								

Comments: *Only results that are non-detect or <2X the reporting limit require qualification.

VALIDATION FINDINGS WORKSHEETS

Calibration

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

All initial calibration verifications (ICVs) and continuing calibration verifications (CCVs) were performed at the required frequency and were within the acceptance limits with the following exceptions:

					%R	Associated		
Date	Time	Calibration ID	Analyte	%R	Limits	Samples	Qualification	Det/ND
6/22/2020	14:29	SIF0327-HCV2	Zn	87.7	90-110	1,2,4	no qual (samples were analyzed below ICAL range)	Det
			<u> </u>					
			<u> </u>					
						 		_
		· · · · · · · · · · · · · · · · · · ·	<u> </u>					
<u> </u>								
		e						

Comments:

VALIDATION FINDINGS WORKSHEET Laboratory Blank Contamination (PB/ICB/CCB)

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000) Soil preparation factor applied (if applicable):

Sample Co	Sample Concentration, unless otherwise noted: mg/kg					Associated	Samples:	all			
						Samp	ole Identific	ation	 		
Analyte	PB (mg/kg)	Maximum ICB/CCB (ug/L)	Action Level								
Zn	2.3										

Sample Co	ample Concentration, unless otherwise noted: mg/kg					Associated	Samples:	3			
						Samp	ole Identific	ation			
Analyte	PB (mg/kg)	Maximum ICB/CCB (ug/L)	Action Level								
As		0.028									

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

LDC Report# 48680F6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date:	August 10, 2020
------------------	-----------------

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0157

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC148C	20F0157-01	Sediment	06/08/20
LDW20-SC155B	20F0157-02	Sediment	06/08/20
LDW20-SC166C	20F0157-03	Sediment	06/08/20
LDW20-SC208B	20F0157-04	Sediment	06/08/20
LDW20-SC148CDUP	20F0157-01DUP	Sediment	06/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 7/30/20 Page: 1_of_1_ Reviewer: ATL 2nd Reviewer:

METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
	Sample receipt/Technical holding times	A/A	
	Initial calibration	A	
	Calibration verification	A	
_iv	Laboratory Blanks	A	
v	Field blanks	N	
_ <u>vi.</u>	Matrix Spike/Matrix Spike Duplicates	N	CS
VII.	Duplicate sample analysis	A	5
VIII.	Laboratory control samples	A	LCS/SRM
IX.	Field duplicates	N	
_x.	Sample result verification	N	
XI.	Overall assessment of data	А	

Note:

LDC #: 48680F6

SDG #: 20F0157

Laboratory: Analytical Resources, Inc.

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC148C	20F0157-01	Sediment	06/08/20
2	LDW20-SC155B	20F0157-02	Sediment	06/08/20
1 2 3 4	LDW20-SC166C	20F0157-03	Sediment	06/08/20
4	LDW20-SC208B	20F0157-04	Sediment	06/08/20
5	LDW20-SC148CDUP	20F0157-01DUP	Sediment	06/08/20
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
Note	S:			

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1 to 4	TS, TOC

LDC Report# 48680F21 Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: August 10, 2020

Parameters:Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0157

	Laboratory Sample		
Sample Identification	Identification	Matrix	Date
LDW20-SC208B	20F0157-04	Sediment	06/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Affected Compound	Flag	A or P
06/25/20	13C12-1,2,3,4,7,8,9-HpCDF	73.9 ng/mL (77-129)	All samples in SDG 20F0157	1,2,3,4,7,8,9-HpCDF	J (all detects)	Ρ

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0465-BLK1	06/22/20	1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF OCDF OCDD Total PeCDD Total HpCDF	0.175 ng/Kg 0.0946 ng/Kg 0.166 ng/Kg 0.521 ng/Kg 1.32 ng/Kg 0.175 ng/Kg 0.166 ng/Kg	All samples in SDG 20F0157

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20F0157	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration and compounds reported as EMPC, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0157

Sample	Compound	Flag	A or P	Reason
LDW20-SC208B	1,2,3,4,7,8,9-HpCDF	J (all detects)	Ρ	Continuing calibration (concentration)
LDW20-SC208B	LDW20-SC208B All compounds reported as estimated maximum possible concentration (EMPC).		A	Compound quantitation (EMPC)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0157

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary -SDG 20F0157

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u>08/07/20</u> Page: <u>1_of 1</u> Reviewer: <u>JVa</u> 2nd Reviewer: <u></u>

SDG #: <u>20F0157</u> Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 48680F21

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comm	nents
<u> </u>	Sample receipt/Technical holding times	A/A		
11.	HRGC/HRMS Instrument performance check	A		
- 111.	Initial calibration/ICV	A/A	ICAL ≤ 20/35%	ICV ≤ QC Limits
IV.	Continuing calibration	sw	CCV ≤ QC Limits	
<u>v</u> .	Laboratory Blanks	sw		
VI.	Field blanks	N		
VII.	Matrix spike/Matrix spike duplicates	N		
VIII.	Laboratory control samples	A	OPR, SRM	
IX.	Field duplicates	N		
Х.	Labeled Compounds	А		
XI.	Compound quantitation RL/LOQ/LODs	N	EMPC = Jdets/A	
XII.	Target compound identification	N		
XIII.	System performance	N		
XIV.	Overall assessment of data	A		

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID				Lab ID	Matrix	<	Date
1	LDW20-SC208B				20F0157-04	Sedim	ient	06/08/20
2		 						
3								
4								
5								
6								
7								
8								
9		 						
10								
Notes	:							
	BIF0465-BLK1		_				_	

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

LDC #: 48680F21_

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page:	<u>1_of_1_</u>
Reviewer:	JVG
2nd Reviewer	:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- Y N Y
- Was a routine calibration performed at the beginning of each 12 hour period? Were all concentrations within method QC limits for unlabeled and labeled compounds?
- Did all routine calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	Conc:ng/mL (Limits)	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	06/25/20	SIF0380-ICV1	13C12-P	73.9 (77-129)		All (Det)	J/UJ/P (qual P)

LDC #: 48680F21

VALIDATION FINDINGS WORKSHEET

Blanks

Page <u>1 of 1</u> Reviewer: JXG) 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- Were all samples associated with a method blank?
- Was a method blank performed for each matrix and whenever a sample extraction was performed?
- $\frac{Y}{Y}$ Was the method blank contaminated?

Blank extraction date:	06/22/20	Blank analysis date:	06/25/20	Associated samples:	All	(>5X)
Conc. units: ng/Kg						
T						

Compound	Blank ID		Sample Identification							
	BIF0465-BLK1	(5x)								
В	0.175	0.88								
м	0.0946*	0.47								
0	0.166	0.83								
Q	0.521*	2.61								
G	1.32	6.60								
S	0.175	0.88								
Y	0.166	0.83							1	

*EMPC

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0186

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT379	20F0186-05	Sediment	06/09/20
LDW20-IT379DL	20F0186-05DL	Sediment	06/09/20
LDW20-IT379FD	20F0186-06	Sediment	06/09/20
LDW20-IT379FDDL	20F0186-06DL	Sediment	06/09/20
LDW20-IT379MS	20F0186-05MS	Sediment	06/09/20
LDW20-IT379MSD	20F0186-05MSD	Sediment	06/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 7.0°C and 12.4°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0656-BLK1	06/23/20	Phenol	8.5 ug/Kg	All samples in SDG 20F0186

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-IT379	Phenol	16.0 ug/Kg	16.0U ug/Kg
LDW20-IT379FD	Phenol	14.0 ug/Kg	14.0U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT379MS/MSD (LDW20-IT379 LDW20-IT379DL)	Acenaphthene Dibenzofuran Fluorene Anthracene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	139 (45-120) 132 (45-120) 224 (45-120) 341 (49-120) 361 (47-120) 244 (30-160) 317 (42-120) 179 (42-123) - 198 (38-126)	- 162 (43-120) - 1430 (45-120) 2450 (49-120) 2260 (47-120) 1500 (30-160) 2160 (42-120) 740 (42-123) 471 (30-133) 756 (38-126)	J (all detects) J (all detects)	A

For LDW20-IT379MS/MSD, no data were qualified for fluoranthene, phenanthrene, and pyrene percent recoveries (%R) and relative percent differences (RPD) outside the QC limits since the parent sample results were greater than 4X the spike concentration.

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LDW20-IT379MS/MSD (LDW20-IT379 LDW20-IT379DL)	Acenaphthene Dibenzofuran Fluorene Anthracene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	$\begin{array}{c} 38.4 (\leq 30) \\ 37.5 (\leq 30) \\ 41.6 (\leq 30) \\ 126 (\leq 30) \\ 122 (\leq 30) \\ 112 (\leq 30) \\ 116 (\leq 30) \\ 120 (\leq 30) \\ 93.6 (\leq 30) \\ 100 (\leq 30) \\ 87.3 (\leq 30) \end{array}$	J (all detects) J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

IX. Laboratory Control Samples/ Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0656-SRM1	Anthracene	55.9 (57-143)	All samples in SDG 20F0186	J (all detects)	Ρ

X. Field Duplicates

Samples LDW20-IT379 and LDW20-IT379FD and samples LDW20-IT379DL and LDW20-IT379FDDL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-IT379 LDW20-IT379FD		RPD
Phenol	16.0	14.0	13
Naphthalene	29.7	53.0	56
2-Methylnaphthalene	25.6	37.0	36

	Concentra	ation (ug/Kg)	
Compound	LDW20-IT379	LDW20-IT379FD	RPD
Acenaphthylene	13.4	24.1	57
Acenaphthene	252	246	2
Dibenzofuran	74.2	123	49
Fluorene	184	223	19
Phenanthrene	2230	3030	30
Anthracene	665	878	28
Fluoranthene	3800	4170	9
Pyrene	3720	4010	8
Benzo(a)anthracene	1670	1820	9
Chrysene	1900	2050	8
Benzofluoranthenes, total	2130	2410	12
Benzo(a)pyrene	1520	1690	. 11
Indeno(1,2,3-cd)pyrene	702	759	8
Dibenzo(a,h)anthracene	237	263	10
Benzo(g,h,i)perylene	813	800	2

	Concentra		
Compound	LDW20-IT379DL	LDW20-IT379FDDL	RPD
Acenaphthene	258	257	0
Dibenzofuran	68.1	121	56
Fluorene	211	247	16
Phenanthrene	2230	3010	30
Anthracene	664	864	26

	Concentra		
Compound	LDW20-IT379DL	LDW20-IT379FDDL	RPD
Fluoranthene	3930	4400	11
Pyrene	3850	4210	9
Benzo(a)anthracene	1670	1840	10
Chrysene	1870	2070	10
Benzofluoranthenes, total	2140	2380	11
Benzo(a)pyrene	1510	1640	8
Indeno(1,2,3-cd)pyrene	706	769	9
Dibenzo(a,h)anthracene	235	325	32
Benzo(g,h,i)perylene	733	831	13

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-IT379	Phenanthrene Fluoranthene Pyrene	Results exceeded calibration range.	Not reportable	A
LDW20-IT379DL	All compounds except Phenanthrene Fluoranthene Pyrene	Results from undiluted analyses were more usable.	Not reportable	A
LDW20-IT379FD	Phenanthrene Fluoranthene Pyrene Chrysene	Results exceeded calibration range.	Not reportable	A
LDW20-IT379FDDL	All compounds except Phenanthrene Fluoranthene Pyrene Chrysene	Results from undiluted analyses were more usable.	Not reportable	A

Due to MS/MSD %R and RPD and SRM %R, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0186

Sample	Compound	Flag	A or P	Reason
LDW20-IT379	Acenaphthene Dibenzofuran Fluorene Anthracene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-IT379	Acenaphthene Dibenzofuran Fluorene Anthracene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD)
LDW20-IT379 LDW20-IT379FD	Anthracene	J (all detects)	Р	Standard reference materials (%R)
LDW20-IT379	Phenanthrene Fluoranthene Pyrene	Not reportable	A	Overall assessment of data
LDW20-IT379DL	All compounds except Phenanthrene Fluoranthene Pyrene	Not reportable	А	Overall assessment of data
LDW20-IT379FD	Phenanthrene Fluoranthene Pyrene Chrysene	Not reportable	A	Overall assessment of data
LDW20-IT379FDDL	All compounds except Phenanthrene Fluoranthene Pyrene Chrysene	Not reportable	A	Overall assessment of data

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0186

Sample	Compound	Modified Final Concentration	A or P
LDW20-IT379	Phenol	16.0U ug/Kg	A
LDW20-IT379FD	Phenol	14.0U ug/Kg	A

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC	#:_	48680G2a

SDG #: 20F0186

Laboratory: Analytical Resources, Inc.

Date: <u>68/05/2</u>6 Page: <u>of 1</u> Reviewer: <u>0</u> 2nd Reviewer: <u>0</u>

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments	Ansufficient
<u> </u>	Sample receipt/Technical holding times	SWI A	Cooler temps. =	12.4°C 7.	or (time to cool
11.	GC/MS Instrument performance check	A	•	,	
111.	Initial calibration/ICV	AA	1 CAL = 20?, COV = 20%	1×	$ \mathcal{A} \leq 36$?
IV.	Continuing calibration	Â	CON 5 20%		
V.	Laboratory Blanks	SN			
VI.	Field blanks	L D			
VII.	Surrogate spikes	Δ			
VIII.	Matrix spike/Matrix spike duplicates	SW			
IX.	Laboratory control samples	SW	UCS SR	M	
x	Field duplicates	SW	D = 1/3 2	/6	
XI.	Internal standards	A	1		
XII.	Compound quantitation RL/LOQ/LODs	N			
XIII.	Target compound identification	N			
XIV.	System performance	N			
XV.	Overall assessment of data	SW			

Note:

A = Acceptable

ND = No compounds detectedD = DuplicateSIR = RinsateTB = Trip blankFB = Field blankEB = Equipment blank

SB=Source blank OTHER:

N = Not provided/applicable	
SW = See worksheet	

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT379	20F0186-05	Sediment	06/09/20
2	LDW20-IT379RE DL	20F0186-05REDL	Sediment	06/09/20
3	LDW20-IT379FD	20F0186-06	Sediment	06/09/20
4	LDW20-IT379MS	20F0186-05MS	6-05MS Sediment	
5	LDW20-IT379MSD	20F0186-05MSD	Sediment	06/09/20
6	30L	1 -06 DL		
7				
8				
9				
Notes:				

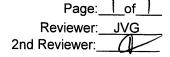
		_		
BIFOGSG-BUKA				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

.

WETTOD. GONIS SVOA				
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o''-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chioroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine


A2. Benzofluoranthenes, total

48686 C12a LDC #:

VALIDATION FINDINGS WORKSHEET

Blanks

AII

METHOD: GC/MS BNA (EPA SW 846 Method 8270¢)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

A N N/A Was a method blank analyzed for each matrix?

Y N N/A Was a method blank analyzed for each concentration preparation level?

Y N N/A Was a method blank associated with every sample?

 \underline{M} N/A Was the blank contaminated? If yes, please see qualification below. Blank extraction date: $\underline{06}/\underline{23}/\underline{20}$ Blank analysis date: $\underline{06}/\underline{27}/\underline{20}$

Associated Samples:

Conc. units: 49 / Ka

Compound Blank ID 3 BIF0656-Blk1 Á 16.0/U 14.0 /U u 8.5

Blank analysis date: Blank extraction date:

Conc. units:

Associated Samples:

Compound	Blank ID		 	 	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #: 486 80 G20

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	<u> </u>	of	
Reviewer:	Ĵγ	Ģ	
2nd Reviewer:	71		
	2		

METHOD: GC/MS BNA (EPA SW 846 Method 8270¢)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

<u>K N/A</u> Was a MS/MSD analyzed every 20 samples of each matrix?

N)N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)		MSD %R (Limits)		RPD (Limits)		Associated Samples	Qualifications
		4/5	See	attached)	()	()	1,2	see attached
				()	()	()	(AII bet)	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
 				()	($\frac{1}{2}$	(- <u>,</u>		
 				()	($\frac{1}{2}$)		
)	($\frac{1}{2}$	()		
			1	()	()	. ()	······································	
		· · · · · · · · · · · · · · · · · · ·		()	()	()		
				()	()	()		
				()	()	()		
			·	()	()	()		
	_			()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
		· ·		()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()	()		
				()	()	()		
	_			()	()	()		

MS / MS DUPLICATE RECOVERY EPA 8270E

Laboratory:	Analytical Resources, Inc.	SDG:	<u>20F0186</u>
Client:	Anchor QEA, LLC	Project:	Lower Duwamish AOC4
Matrix:	Solid	Analyzed:	06/27/20 14:34
Batch:	BIF0656	Laboratory ID:	BIF0656-MS1
Preparation:	EPA 3546 (Microwave)	Sequence Name:	Matrix Spike
Initial/Final:	<u>13.21 g / 1 mL</u>	Source Sample:	LDW20-IT379

COMPOUND		SPIKE ADDED (ug/kg dry)	SAMPLE CONCENTRATION (ug/kg dry)	Q	MS CONCENTRATION (ug/kg dry)	Q	MS % REC. #		QC LIMITS REC.	
Phenol		500	16.0	J	367		70.2		34 - 120	
4-Methylphenol		500	ND	U	397		79.4		29 - 120	
Naphthalene		500	29.7		422		78.4		43 - 120	
2-Methylnaphthalene		500	25.6		439		82.7		43 - 120	
Acenaphthylene		500	13.4	J	407		78.6		42 - 120	
Dimethylphthalate		500	ND	U	408		81.6		43 - 120	
Acenaphthene	GG	500	252		947	*	139	*	45 - 120	Idets /A
Dibenzofuran		500	74.2		606		106		43 - 120	
Fluorene	ИИ	500	184		843	*	132	*	45 - 120	Jdets/A
Phenanthrene	ИИ	500	2230	E	5300	*, E	614	*	49 - 120	NO X
Anthracene	٧V	500	665		1780	*	224	*	45 - 120	Jolets /A
Fluoranthene	YY	500	3800	Е	6780	*, E	597	*	53 - 120	NRXF
Pyrene	22	500	3720	E	6680	*, E	591	*	48 - 121	
Butylbenzylphthalate		500	ND	U	403		80.5		45 - 132	
Benzo(a)anthracene	ac	500	1670		3380	*, E	341	*	49 - 120	Idets
Chrysene	DDD	500	1900		3700	*, E	361	*	47 - 120	
bis(2-Ethylhexyl)phthalate		500	ND	U	390		77.9		34 - 130	•
Benzofluoranthenes, Total	A2	1000	2130		4570	*, E	244	*	30 - 160	Jdets/A
Benzo(a)pyrene	III	500	1520		3100	*, E	317	*	42 - 120	
Indeno(1,2,3-cd)pyrene	JJJ	500	702		1600	*	179	*	42 - 123	
Dibenzo(a,h)anthracene		500	237		864		125		30 - 133	
Benzo(g,h,i)perylene	111	500	813		1800	*	198	*	38 - 126	Jdets /

* Values outside of QC limits

* parent conc > 4x spike

MS / MS DUPLICATE RECOVERY EPA 8270E

Laboratory:	Analytical Resources, Inc.	SDG:	<u>20F0186</u>
Client:	Anchor QEA, LLC	Project:	Lower Duwamish AOC4
Matrix:	Solid	Analyzed:	06/27/20 15:10
Batch:	<u>BIF0656</u>	Laboratory ID:	<u>BIF0656-MSD1</u>
Preparation:	EPA 3546 (Microwave)	Sequence Name:	Matrix Spike Dup
Initial/Final:	<u>13.21 g / 1 mL</u>	Source Sample:	LDW20-IT379

		SPIKE	MSD		MSD			QC	C LIMITS	
COMPOUND		ADDED (ug/kg dry)	CONCENTRATION (ug/kg dry)	Q	% REC. #		% RPD #	RPD	REC. 2	r Zri
Phenol		500	386		74.0		4.96	30	34 - 120	
4-Methylphenol		500	413		82.6		4.04	30	29 - 120	
Naphthalene		500	443		82.6		4.88	30	43 - 120	
2-Methylnaphthalene		500	457		86.2		3.93	30	43 - 120	
Acenaphthylene		500	433		83.9		6.26	30	42 - 120	
Dimethylphthalate		500	417		83.3		2.09	30	43 - 120	
Acenaphthene	GG	500	642	*	78.0		38.4 *	30	45 - 120	Jdek
Dibenzofuran	JJ	500	887	*	162	*	37.5 *	30	43 - 120 Jd	Jdets ets/A→
Fluorene	KN	500	553	*	73.7		41.6 *	30	45 - 120	Jack
Phenanthrene	UU	500	24200	*, E	4400	*	128 *	30	49 - 120	NGA
Anthracene	٧V	500	7840	*, E	1430	*	126 *	30		lets/A-→
Fluoranthene	YY	500	23300	*, E	3890	*	110 *	30	53 - 120	NQ.*
Pyrene	Z2	500	21100	*, E	3480	*	104 *	30	48 - 121	I
Butylbenzylphthalate		500	414		82.8		2.83	30	45 - 132	
Benzo(a)anthracene	ca	500	13900	*, E	2450	*	122 *	30	49 - 120 Je	ets/A-
Chrysene	DUG	500	13200	*, E	2260	*	112 *	30	47 - 120	J
bis(2-Ethylhexyl)phthalate		500	450		90.0		14.4	30	34 - 130	Í
Benzofluoranthenes, Total	Ă2	1000	17100	*, E	1500	*	116 *	30	30 - 160 Ja	lets/A -
Benzo(a)pyrene	III	500	12300	*, E	2160	*	120 *	30	42 - 120	
Indeno(1,2,3-cd)pyrene	JJJ	500	4400	*, E	740	*	93.6 *	30	42 - 123	
Dibenzo(a,h)anthracene	KKK	500	2590	*, E	471	*	100 *	30	30 - 133	
Benzo(g,h,i)perylene	LU	500	4590	*, E	756	*	87.3 *	30	38 - 126	V

* Values outside of QC limits

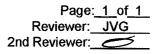
48680 429 LDC #:

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	of
Reviewer:	JYG
2nd Reviewer:	4

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


YN N/A YN N/A

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIF0656-SRM1	$\sqrt{}$	55.9 (57-14	3 ()	()	All (Det)	JUJP
			() ()	()		, , , , , , , , , , , , , , , , , , , ,
			() ()	()		
		······	() ()	()		
			() ()	()		
			() ()	()		
			() ()	()		
			() ()	()		
			())	()		· · · · · · · · · · · · · · · · · · ·
			() ()	()		
			() ()	()		
			() ()	()		
			() ()	()		
			() ()	()		
			() · ()	()		
			() ()	()		
			() ()	()		
			())	()		
			() ()	()		
			() ()	()		
			() ()	· ()		
			() ()	()		
			() ()	()		
			() ()	()		
			()()			

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GCMS SVOA (EPA SW 846 Method 8270E)

YNNA Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs?

	Concentra		
Compound	1	3	RPD
A	16.0	14.0	13
S	29.7	53.0	56
w	25.6	37.0	36
DD	13.4	24.1	57
GG	252	246	2
JJ	74.2	123	49
NN	184	223	19
UU	2230	3030	30
w	665	878	28
YY	3800	4170	9
ZZ	3720	4010	8
ссс	1670	1820	9
DDD	1900	2050	8
A2	2130	2410	12
III	1520	1690	11
ſĹĹ	702	759	8
ккк	237	263	10
LLL	813	800	22

	Concentra		
Compound	2	6	RPD
GG	258	257	0
JJ	68.1	121	56
NN	211	247	16
υu	2230	3010	30
w	664	864	26
YY	3930	4400	11
ZZ	3850	4210	9
ссс	1670	1840	10
DDD	1870	2070	10
A2	2140	2380	11
11	1510	1640	8
JJJ	706	769	9
ккк	235	325	32
LLL	733	831	13

V:\Josephine\FIELD DUPLICATES\48680G2a windward duwamish.wpd

LDC #: 48680G2a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:		_of_/	
Reviewer:	J	VG	
2nd Reviewer:		V	2

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A

Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
			UU YY ZZ	7 cxl range	NR/A
		2	All except above	dil	
		3	MM, YY, ZZ, DDD	7 cal range	
		4	All except above	dil	· · · · · · · · · · · · · · · · · · ·
	+ · · · · · · · · · · · · · · · · ·				
		······································			

Comments: _____

LDC Report# 48680G2b

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0109

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT379	20F0186-05	Sediment	06/09/20
LDW20-IT379FD	20F0186-06	Sediment	06/09/20
LDW20-IT379MS	20F0186-05MS	Sediment	06/09/20
LDW20-IT379MSD	20F0186-05MSD	Sediment	06/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 12.4°C and 7.0°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/26/20	N-Nitrosodiphenylamine	65.7	All samples in SDG 20F0109	UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/27/20	Benzoic acid	22.9	All samples in SDG 20F0109	J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0656-BLK2	06/23/20	1,4-Dichlorobenzene 1,2-Dichlorobenzene	1.1 ug/Kg 1.0 ug/Kg	All samples in SDG 20F0109

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration		
LDW20-IT379	1,4-Dichlorobenzene	2.5 ug/Kg	2.5U ug/Kg		
	1,2-Dichlorobenzene	1.6 ug/Kg	1.6U ug/Kg		
LDW20-IT379FD	1,4-Dichlorobenzene	1.9 ug/Kg	1.9U ug/Kg		
	1,2-Dichlorobenzene	0.9 ug/Kg	0.9U ug/Kg		

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

Samples LDW20-IT379 and LDW20-IT379FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-IT379	LDW20-IT379 LDW20-IT379FD	
1,4-Dichlorobenzene	2.5	1.9	27
1,2-Dichlorobenzene	1.6	0.9	56
Benzyl alcohol	6.2	6.7	8
Benzoic acid	65.9	73.8	11
2,4-Dimethylphenol	2.8	2.4	15
1,2,4-Trichlorobenzene	4.1	5.0U	Not calculable
Pentachlorophenol	8.4	3.1	92

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and continuing calibration %D, data were qualified as estimated in two samples.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0109

Sample	Compound	Flag	A or P	Reason
LDW20-IT379 LDW20-IT379FD	N-Nitrosodiphenylamine	UJ (all non-detects)	A	Initial calibration verification (%D)
LDW20-IT379 LDW20-IT379FD	Benzoic acid	J (all detects)	A	Continuing calibration (%D)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0109

Sample	Compound	Modified Final Concentration	A or P
LDW20-IT379	1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.5U ug/Kg 1.6U ug/Kg	А
LDW20-IT379FD	1,4-Dichlorobenzene 1,2-Dichlorobenzene	1.9U ug/Kg 0.9U ug/Kg	A

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0109

No Sample Data Qualified in this SDG

LDC #:	48680G2b
SDG #:	20F0186

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 08/06/2	b
Page: <u>1</u> of_]	
Reviewer:	
2nd Reviewer:	

Laboratory: Analytical Resources, Inc.

Svo A METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	SAY A	Coster temps = 12.4°C, 7.0°C (Insufficient time to cool)
11.	GC/MS Instrument performance check	A	(+1'me +0 C00])
ш.	Initial calibration/ICV	AISW	•
IV.	Continuing calibration	SIN	1 CAL = 20% ~ 10/ = 30% COV = 20%
<u>v.</u>	Laboratory Blanks	SW	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Α Ι	
IX.	Laboratory control samples	Á	LCS, SRM
Х.	Field duplicates	SW	p = 1/2
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

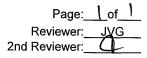
A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID						Lab ID	Matrix	Date
1	LDW20-IT379						20F0186-05	Sediment	06/09/20
2	LDW20-IT379FD		···	<u> </u>			20F0186-06	Sediment	06/09/20
3	LDW20-IT379MS						20F0186-05MS	Sediment	06/09/20
4	LDW20-IT379MSD				20F0186-05MSD	Sediment	06/09/20		
5 6									
6									
7									
7 8 9									
			···						
Notes	Notes:								
Ŧ	BIF 0656-BLK2	•							
							<u></u>		

VALIDATION FINDINGS WORKSHEET


METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF, Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

LDC #:___ 48680 G26

VALIDATION FINDINGS WORKSHEET

Initial Calibration Verification

METHOD: GC/MS PAH (EPA SW 846 Method 8270Ø-SIM)

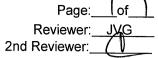
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument

N N/A

Was an initial calibration verification standard analyzed after each ICAL for each instrument? Were all %D within the validation criteria of <u>20</u>/30% %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><20-</u> 0%/30%)	Associated Samples	Qualifications
	06/24/20	SI F0395-SCV1	QQ	65.7	AII (ND)	J/UJ/A
	, , , ,					
			······			
			· ·	·		
						· · · · · · · · · · · · · · · · · · ·
╞──					I	
 					·	
┣		·				
					· · · · · · · · · · · · · · · · · · ·	
						
Ļ	<u> </u>					l
	1					
						<u> </u>
ــــــار	<u> </u>	L		L	L	L

LDC #: 48680 G24


VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page:	<u>of_</u>	
Reviewer:	1¥6	
2nd Reviewer:	J	

Please	e see qualifica N/A W	SVTA- PAH (EPA SW 846 Method ations below for all question Vas a continuing calibrati Vere percent differences	ns answered "N". Not ap tion standard analyzed	pplicable questions are	e identified as "N/A". 12 hours for each instr 's (RRF) within the meti	ument? hod criteria?	2nd Reviewer:
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	06/27/20	NT14 200627035	ррр	22.9		Äll (Jet)	J/UJ/A
		F					
		<u> </u>					1
	!						
	 	<u> </u>					
		l					
		<u> </u>		لـــــــــــــــــــــــــــــــــــــ	[]	l	+
				JJ	``````````````````````````````````````		
	<u> </u>			ļļ			

VALIDATION FINDINGS WORKSHEET

Blanks

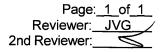
METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see gualifications below for all guestions answered "N". Not applicable guestions are identified as "N/A".

YN NA Was a method blank analyzed for each matrix?

Y N N/A Was a method blank analyzed for each concentration preparation level?

Was a method blank associated with every sample? Y/N N/A


 $\frac{V N N/A}{Blank extraction date: <math>\frac{6}{23}$ (20) Blank analysis date: $\frac{6}{27}$ (20)

	Conc. units: ug /kg			Associ	ated Samples:	<u> </u>			
	Compound	Blank ID							
		BI F 06 56-	BUCZ	1	2				
RL	E	1.]		2.5/U	1.9/4				
^	F	1.0		1.6/1	0.9/1				
								-	
							 	<u></u>	·
	Blank extraction date:	Blank	analysis date) !					
	Blank extraction date: Conc. units:	Blank	analysis date	:Associ	iated Samples:				
		Blank	analysis date	Associ	iated Samples:				
	Conc. units:		analysis date	Associ	iated Samples:				
	Conc. units: Compound		analysis date	Associ	iated Samples:				
	Conc. units: Compound		analysis date	Associ	ated Samples:				
	Conc. units:	Blank ID	analysis date	.:Associ	iated Samples:				
	Conc. units:	Blank ID	analysis date	.:Associ	iated Samples:				
	Conc. units:	Blank ID	analysis date	.:Associ	iated Samples:				
	Conc. units:	Blank ID	analysis date	.:Associ	iated Samples:				
	Conc. units:	Blank ID	analysis date	.:Associ	iated Samples:				
	Conc. units:	Blank ID		:Associ					

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also gualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GCMS SVOA (EPA SW 846 Method 8270E-SIM) <u>MNA</u> Were field duplicate pairs identified in this SDG? <u>MNA</u> Were target analytes detected in the field duplicate pairs?

	Concentra		
Compound	1	2	RPD
E	2.5	1.9	27
F	1.6	0.9	56
QQQ	6.2	6.7	8
PPP	65.9	73.8	11
0	2.8	2.4	15
R	4.1	5.0U	NC
тт	8.4	3.1	92

V:\Josephine\FIELD DUPLICATES\48680G2b windward duwamish.wpd

LDC Report# 48680G3a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	Duwamish AOC4

LDC Report Date: August 7, 2020

Parameters: Hexachlorobenzene

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0186

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT379	20F0186-05	Sediment	06/09/20
LDW20-IT379FD	20F0186-06	Sediment	06/09/20
LDW20-IT379MS	20F0186-05MS	Sediment	06/09/20
LDW20-IT379MSD	20F0186-05MSD	Sediment	06/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperature for samples in this SDG was reported at 12.4°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples LDW20-IT379 and LDW20-IT379FD were identified as field duplicates. No results were detected in any of the samples.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date:	08/0	4/2	D
Page:_	<u>l</u> of	1	
Reviewer:	G	h	
2nd Reviewer:	Q	\vdash	

Laboratory: Analytical Resources, Inc.

LDC #: 48680G3a

SDG #: 20F0186

METHOD: GC Hexachlorobenzene (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
I.	Sample receipt/Technical holding times	SWIA	Cooler temp = 12.4°C	(Insufficient time
<u>II.</u>	GC Instrument Performance Check	N	•	\ +0 cool
.	Initial calibration/ICV	A/A	1CAL = 201	AVE ZOL
IV.	Continuing calibration	A	CW & 20 %	
V.	Laboratory Blanks	Ä		
VI.	Field blanks	Ň		
VII.	Surrogate spikes / (5	A/X		
VIII.	Matrix spike/Matrix spike duplicates	A		
IX.	Laboratory control samples	Â		
Х.	Field duplicates	ŇD.	D = 1/2	
XI.	Compound quantitation/RL/LOQ/LODs	N		
XII.	Target compound identification	N		
XIII.	System Performance	N		
	Overall assessment of data	A		

A = Acceptable

Note:

N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	LDW20-IT379	 -	20F0186-05	Sediment	06/09/20
2	LDW20-IT379FD		20F0186-06	Sediment	06/09/20
3	LDW20-IT379MS	 _	20F0186-05MS	Sediment	06/09/20
4	LDW20-IT379MSD		20F0186-05MSD	Sediment	06/09/20
5					
6		 			
7		 			
8					
9		 			
10		 			
Notes:		1			
-+	BIF 0589- MK1	 			
		 <u> </u>			

LDC Report# 48680G3b

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 7, 2020
Parameters:	Polychlorinated Biphenyls
Validation Level:	Stage 2B
Laboratory:	Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0186

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT356	20F0186-01	Sediment	06/09/20
LDW20-IT369	20F0186-02	Sediment	06/09/20
LDW20-IT372	20F0186-03	Sediment	06/09/20
LDW20-IT377	20F0186-04	Sediment	06/09/20
LDW20-IT379	20F0186-05	Sediment	06/09/20
LDW20-IT379FD	20F0186-06	Sediment	06/09/20
LDW20-IT356MS	20F0186-01MS	Sediment	06/09/20
LDW20-IT356MSD	20F0186-01MSD	Sediment	06/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 12.4°C and 7.0°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
06/10/20	SIF0176-SCV1	2C	Aroclor-1260	21.0	All samples in SDG 20F0186	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples LDW20-IT379 and LDW20-IT379FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-IT379	LDW20-IT379FD	RPD
Aroclor-1248	8.1	8.4	4
Aroclor-1254	9.2	9.2	0
Aroclor-1260	21.1	25.5	19

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-IT377	Aroclor-1248	40.8	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and RPD between two columns, data were qualified as estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0186

Sample	Compound	Flag	A or P	Reason
LDW20-IT356 LDW20-IT369 LDW20-IT372 LDW20-IT377 LDW20-IT379 LDW20-IT379FD	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A	Initial calibration verification (%D)
LDW20-IT377	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

ALIDATION COMPLETENESS WORKS	HEET
------------------------------	------

Stage 2B

Date: 04/20
Page:of
Reviewer: 5Mg
2nd Reviewer:

Laboratory: Analytical Resources, Inc.

LDC #: 48680G3b

SDG #: 20F0186

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

ν

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	SW/A	Cooler temp = 12,4°C, 7.0°C (Insatticient time to cool
١١.	Initial calibration/ICV	AISW	10AL 620% INE 20%
Ш.	Continuing calibration		CAY 5 20 %
IV.	Laboratory Blanks		
V.	Field blanks	N	
VI.	Surrogate spikes //S	A/A	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples	A	LISTO, SRM
IX.	Field duplicates	SW	D = 5/6
Х	Compound quantitation/RL/LOQ/LODs	SIN	,
XI.	Target compound identification	N	
XIL	Overall assessment of data		

A = Acceptable N = Not provided/applicable SW = See worksheet

h

b

Client ID

1

2

3

4

5

6

7

8 9 LDW20-IT356

LDW20-IT369

LDW20-IT372

LDW20-IT377

LDW20-IT379 LDW20-IT379FD

LDW20-IT356MS

LDW20-IT356MSD

ND = No compounds detected R = Ripert FB

D = Duplicate TB = Trip blank SB=Source blank OTHER:

-	1	าเมือลเ	e
3	=	Field	blank

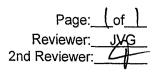
EB = Equipment blank

Lab ID Matrix Date 20F0186-01 Sediment 06/09/20 20F0186-02 Sediment 06/09/20 20F0186-03 Sediment 06/09/20 20F0186-04 Sediment 06/09/20 20F0186-05 06/09/20 Sediment 20F0186-06 06/09/20 Sediment 20F0186-01MS Sediment 06/09/20 20F0186-01MSD Sediment 06/09/20

10	
11	
112	
Notes:	

23				_	
-	BIF0587-Bak1				

VALIDATION FINDINGS WORKSHEET


METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ cis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	тт.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	ww.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:_____

4868063b LDC #:

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

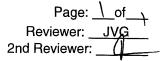
Pleas	e see qua	ifications below for a	all questions answer	ed "N". Not applicabl	e questions are iden	tified as "N/A".	
What	type of ini	tial calibration verific	ation calculation was	s performed?%D	or <u>%</u> R		
YA	<u>N/A</u>	Was an initial calibr	ation verification sta	ndard analyzed after	each ICAL for each	instrument?	
	<u>N/A</u>	Did the initial calibra		idards meet the %D		ria of <u><</u> 20.0% / 80-120%?	
#	Date	Standard ID	Detector/	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	06/10/20	SIF0176-SC	NI 2C	BB	21.0	All (bet)	J/UJ/A
		·					Anal Z, AA BB 7
		· · · · · · · · · · · · · · · · · · ·					
		· · ·	<u> </u>				
		· · · · · · · · · · · · · · · · · · ·	**************************************		· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·				

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page: 1_of_1_ Reviewer: JVG

METHOD: GC PCB (EPA SW 846 Method 8082A)

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs? YNNA


	Concentrati	on (ug/Kg)	
Compound	5	6	RPD
Aroclor 1248	8.1	8.4	4
Aroclor 1254	9.2	9.2	0
Aroclor 1260	21.1	25.5	19

V:\Josephine\FIELD DUPLICATES\48680G3b windward duwamish.wpd

YN NA

 $\sqrt{N} N/A$

VALIDATION FINDINGS WORKSHEET **Compound Quantitation and Reported CRQLs**

LDC #: 48680G 35 METHOD: GC_HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only (VN N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? ON N/A

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors <40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD)%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	Z	4	40.8	J dets /A

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 10, 2020

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0186

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT356	20F0186-01	Sediment	06/09/20
LDW20-IT369	20F0186-02	Sediment	06/09/20
LDW20-IT372	20F0186-03	Sediment	06/09/20
LDW20-IT377	20F0186-04	Sediment	06/09/20
LDW20-IT379	20F0186-05	Sediment	06/09/20
LDW20-IT379FD	20F0186-06	Sediment	06/09/20
LDW20-IT379MS	20F0186-05MS	Sediment	06/09/20
LDW20-IT379MSD	20F0186-05MSD	Sediment	06/09/20
LDW20-IT379DUP	20F0186-05DUP	Sediment	06/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Zinc	2.3 mg/Kg	LDW20-IT379
ICB/CCB	Silver	0.027 ug/L	LDW20-IT379 LDW20-IT379FD

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
LDW20-IT379	Silver	0.16 mg/Kg	0.16U mg/Kg
LDW20-IT379FD	Silver	0.14 mg/Kg	0.14U mg/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT379MS/MSD (LDW20-IT379FD)	Silver	34.1 (75-125)	43.2 (75-125)	J (all detects)	A
LDW20-IT334MS/MSD (LDW20-IT379FD)	Mercury	-	127 (75-125)	J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LDW20-IT379MS/MSD (LDW20-IT379FD)	Silver	23 (≤20)	J (all detects)	A

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

Samples LDW20-IT379 and LDW20-IT379FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ition (mg/Kg)	
Analyte	LDW20-IT379	LDW20-IT379FD	RPD
Arsenic	4.65	5.12	10
Cadmium	0.16	0.15	6
Chromium	24.8	15	49
Copper	24.4	23.9	2
Lead	11.4	13.2	15
Mercury	0.0853	0.0467	58
Silver	0.16	0.14	13
Zinc	51.3	53.1	3

XII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD %R and RPD, data were qualified as estimated in one sample.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0186

Sample	Analyte	Flag	A or P	Reason
LDW20-IT379FD	Silver Mercury	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-IT379FD	Silver	J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD)

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 20F0186

Sample	Analyte	Modified Final Concentration	A or P
LDW20-IT379	Silver	0.16U mg/Kg	A
LDW20-IT379FD	Silver	0.14U mg/Kg	A

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>48680G4a</u> SDG #: <u>20F0186</u>

Laboratory: Analytical Resources, Inc.

Date: <u>7/30/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>ATL</u> 2nd Reviewer: <u></u>

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
Ш.	ICP/MS Tune	Α	
111.	Instrument Calibration	Α	
IV.	ICP Interference Check Sample (ICS) Analysis	Α	
V.	Laboratory Blanks	sw	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	(7,8), From SDG # 20F0191 (LDW20-IT334MS/MSD)
VIII.	Duplicate sample analysis	Α	9, From SDG # 20F0191 (LDW20-IT334DUP)
IX.	Serial Dilution	N	
Х.	Laboratory control samples	А	LCS/SRM
XI.	Field Duplicates	SW	(5,6)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	A	

Note:

 ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT356	20F0186-01	Sediment	06/09/20
2	LDW20-IT369	20F0186-02	Sediment	06/09/20
3	LDW20-IT372	20F0186-03	Sediment	06/09/20
4	LDW20-IT377	20F0186-04	Sediment	06/09/20
5	LDW20-IT379	20F0186-05	Sediment	06/09/20
<u> </u>	LDW20-IT379FD	20F0186-06	Sediment	06/09/20
7	LDW20-IT379FDMS	20F0186-06MS	Sediment	06/09/20
3	LDW20-IT379FDMSD	20F0186-06MSD	Sediment	06/09/20
9	LDW20-IT379FDDUP	20F0186-06DUP	Sediment	06/09/20
10				
11				
12				
13_				

CVAA

1

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
5,6	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
1 to 4	As
00	
QC	
7,8,9	Cr,Pb,Ag,As,Cd,Cu,Zn
	Analysis Method
ICP	
ICP-MS	

VALIDATION FINDINGS WORKSHEET Laboratory Blank Contamination (PB/ICB/CCB)

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000) Soil preparation factor applied (if applicable):

Sample Co	nple Concentration, unless otherwise noted: mg/kg				Associated S	amples: 5	5	_			
				Sample Identification							
Analyte	PB (mg/kg)	Maximum ICB/CCB (ug/L)	Action Level								
Zn	2.3										

Sample Concentration, unless otherwise noted: m			ed: mg/kg		Associated	Samples:	5,6					
					Sample Identification							
Analyte	PB (mg/kg)	Maximum ICB/CCB (ug/L)	Action Level	5	6							
Ag		0.027		0.16	0.14							

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS/MSD analysis was performed by the laboratory. All MS/MSD percent recoveries (%R) and relative percent differences (RPDs) were within the acceptable limits with the following exceptions:

MS/MSD ID	Matrix	Analyte	MS %R	MSD %R	%R Limit	RPD	RPD Limit	Associated Samples	Qualification	Det/ND
7 & 8	S	Ag	34.1	43.2	75-125				J/UJ/A	Det
		Ag				23	20	6	J/UJ/A	Det
LDW20-IT334		Hg		127	75-125			6	Jdet/A	Det
										-
					[
			<u> </u>					<u> </u>		
<u></u>					· · · · ·					
. <u>.</u>	_						<u>├</u> ────			
<u></u>			<u> </u>							
								· · · · · · · · · · · · · · · · · · ·		
				<u> </u>						
			<u> </u>					ļ		
	_		<u> </u>							
			<u> </u>						 	
				<u> </u>						+

si.

Comments:

VALIDATION FINDINGS WORKSHEET Field Duplicates

Method: Metals

A	Concentrat	ion (mg/kg)	RPD		
Analyte	5	6		Qualifiers (Parents Only)	
Arsenic	4.65	5.12	10		
Cadmium	0.16	0.15	6		
Chromium	24.8	15	49		
Copper	24.4	23.9	2		
Lead	11.4	13.2	15		
Mercury	0.0853	0.0467	58		
Silver	0.16	0.14	13		
Zinc	51.3	53.1	3		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Do	uwamish AOC4
-----------------------	--------------

LDC Report Date:	August 10, 2020
	/ (agaot 10, 2020

- Parameters: Wet Chemistry
- Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0186

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT356	20F0186-01	Sediment	06/09/20
LDW20-IT369	20F0186-02	Sediment	06/09/20
LDW20-IT372	20F0186-03	Sediment	06/09/20
LDW20-IT377	20F0186-04	Sediment	06/09/20
LDW20-IT379	20F0186-05	Sediment	06/09/20
LDW20-IT379FD	20F0186-06	Sediment	06/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

Samples LDW20-IT379 and LDW20-IT379FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (%)		
Analyte	LDW20-IT379	LDW20-IT379FD	RPD
Total solids	75.63	74.61	1
Total organic carbon	0.56	0.83	39

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

Stage 2B

Date: 7/30/20 Page: 1_of 1 Reviewer: ATL 2nd Reviewer: 4

METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G)

V

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A	
11	Initial calibration	А	
111.	Calibration verification	A	
١V	Laboratory Blanks	А	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	cs
VII.	Duplicate sample analysis	A	From SDG # 20F0157 (LDW20-SC148C DUP)
VIII.	Laboratory control samples	А	LCS/SRM
IX.	Field duplicates	sw	(5,6)
Х.	Sample result verification	N	
XI.	Overall assessment of data	A	

Note:

T

A = Acceptable N = Not provided/applicableSW = See worksheet ND = No compounds detected R = RinsateFB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

T

SB=Source blank OTHER:

٦

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT356	20F0186-01	Sediment	06/09/20
2	LDW20-IT369	20F0186-02	Sediment	06/09/20
3	LDW20-IT372	20F0186-03	Sediment	06/09/20
4	LDW20-IT377	20F0186-04	Sediment	06/09/20
5	LDW20-IT379	20F0186-05	Sediment	06/09/20
6	LDW20-IT379FD	20F0186-06	Sediment	06/09/20
7				
8				
9				
10				
11				
12				
13				
14				
15				
Vinte	<u>.</u>			

LDC #: 48680G6

SDG #: 20F0186

Laboratory: Analytical Resources, Inc.

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1 to 6	TS, TOC	

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Inorganics

	Concentration (%)			
Analyte	5	6	6 RPD Q	Qualifiers (Parents Only)
Total Solids	75.63	74.61	1	
Total Organic Carbon	0.56	0.83	39	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwar

LDC Report Date: August 10, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0186

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT356	20F0186-01	Sediment	06/09/20
LDW20-IT369	20F0186-02	Sediment	06/09/20
LDW20-IT379	20F0186-05	Sediment	06/09/20
LDW20-IT379FD	20F0186-06	Sediment	06/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 7.0°C and 12.4°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Affected Compound	Flag	A or P
06/25/20	13C12-1,2,3,4,7,8,9-HpCDF	73.9 ng/mL (77-129)	All samples in SDG 20F0186	1,2,3,4,7,8,9-HpCDF	J (all detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0465-BLK1	06/22/20	1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF OCDF OCDD Total PeCDD Total HpCDF	0.175 ng/Kg 0.0946 ng/Kg 0.166 ng/Kg 0.521 ng/Kg 1.32 ng/Kg 0.175 ng/Kg 0.166 ng/Kg	All samples in SDG 20F0186

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-IT356	1,2,3,7,8-PeCDD	0.449 ng/Kg	0.449U ng/Kg
	2,3,4,6,7,8-HxCDF	0.355 ng/Kg	0.355U ng/Kg
LDW20-IT369	1,2,3,7,8-PeCDD	0.507 ng/Kg	0.507U ng/Kg
	2,3,4,6,7,8-HxCDF	0.353 ng/Kg	0.353U ng/Kg
LDW20-IT379	1,2,3,7,8-PeCDD	0.756 ng/Kg	0.756U ng/Kg
	2,3,4,6,7,8-HxCDF	0.448 ng/Kg	0.448U ng/Kg
LDW20-IT379FD	1,2,3,7,8-PeCDD	0.439 ng/Kg	0.439U ng/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

Samples LDW20-IT379 and LDW20-IT379FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr	Concentration (ng/Kg)	
Compound	LDW20-IT379	LDW20-IT379FD	RPD
2,3,7,8-TCDD	0.284	0.986U	Not calculable
1,2,3,7,8-PeCDF	0.328	0.363	10
2,3,4,7,8-PeCDF	0.624	0.737	17
1,2,3,7,8-PeCDD	0.756	0.439	53
1,2,3,4,7,8-HxCDF	0.861	0.817	5
1,2,3,6,7,8-HxCDF	0.6055	0.533	13
2,3,4,6,7,8-HxCDF	0.448	0.479	7
1,2,3,7,8,9-HxCDF	0.164	0.202	21
1,2,3,4,7,8-HxCDD	0.788	0.749	5
1,2,3,6,7,8-HxCDD	2.97	3.40	14
1,2,3,7,8,9-HxCDD	1.14	1.06	7
1,2,3,4,6,7,8-HpCDF	6.90	7.61	10
1,2,3,4,7,8,9-HpCDF	0.539	0.530	2
1,2,3,4,6,7,8-HpCDD	75.1	158	71
OCDF	12.1	22.4	60
OCDD	379	793	71
Total TCDF	1.39	4.80	110
Total TCDD	0.834	1.08	26

	Concentra		
Compound	LDW20-IT379	LDW20-IT379FD	RPD
Total PeCDF	6.23	8.98	36
Total PeCDD	1.72	3.04	55
Total HxCDF	11.5	14.4	22
Total HxCDD	26.3	25.3	4
Total HpCDF	20.3	25.6	23
Total HpCDD	144	262	58

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	%R (Limits)	Affected Compound	Flag	A or P
LDW20-IT379	13C12-1,2,3,4,7,8-HxCDF 13C12-1,2,3,6,7,8-HxCDF 13C12-2,3,4,6,7,8-HxCDF 13C12-2,3,4,6,7,8-HxCDF 13C12-1,2,3,4,7,8-HxCDD 13C12-1,2,3,6,7,8-HxCDD	160 (26-152) 130 (26-123) 162 (28-136) 155 (32-141) 148 (28-130)	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Ρ

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20F0186	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration, labeled compound %R, and compounds reported as EMPC, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0186

Sample	Compound	Flag	A or P	Reason
LDW20-IT356 LDW20-IT369 LDW20-IT379 LDW20-IT379FD	1,2,3,4,7,8,9-HpCDF	J (all detects)	Р	Continuing calibration (concentration)
LDW20-IT379	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Ρ	Labeled compounds (%R)
LDW20-IT356 LDW20-IT369 LDW20-IT379 LDW20-IT379FD	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0186

Sample	Compound	Modified Final Concentration	A or P
LDW20-IT356	1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF	0.449U ng/Kg 0.355U ng/Kg	A
LDW20-IT369	1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF	0.507U ng/Kg 0.353U ng/Kg	A
LDW20-IT379	1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF	0.756U ng/Kg 0.448U ng/Kg	A
LDW20-IT379FD	1,2,3,7,8-PeCDD	0.439U ng/Kg	A

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 20F0186

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u>08/07/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>_</u>

SDG #: <u>20F0186</u> Laboratory: <u>Analytical Resources</u>, Inc.

LDC #: 48680G21

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comment	ts
<u> </u>	Sample receipt/Technical holding times	SW/A	Cooler temp = 12.4 deg C, 7.0 deg C	(Insufficient time to cool)
<u>II.</u>	HRGC/HRMS Instrument performance check	А		
111.	Initial calibration/ICV	A/A	ICAL ≤ 20/35%	ICV ≤ QC Limits
IV.	Continuing calibration	sw	CCV ≤ QC Limits	
V.	Laboratory Blanks	sw		
VI.	Field blanks	N		
VII.	Matrix spike/Matrix spike duplicates	N		
VIII.	Laboratory control samples	A	OPR, SRM	
IX.	Field duplicates	sw	D = <u>3</u> /4	
X .	Labeled Compounds	A		
XI.	Compound quantitation RL/LOQ/LODs	N	EMPC = J dets	
XII.	Target compound identification	N		
XIII.	System performance	<u>N</u>		
XIV.	Overall assessment of data	A		

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected	
R = Rinsate	
FB = Field blank	

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	LDW20-IT356			20F0186-01	Sediment	06/09/20
2	LDW20-IT369	 		 20F0186-02	Sediment	06/09/20
3	LDW20-IT379			 20F0186-05	Sediment	06/09/20
4	LDW20-IT379FD			 20F0186-06	Sediment	06/09/20
5	1 	 				
6		 				
7		_				
8						
9						
10			_			
Notes	· · · · · · · · · · · · · · · · · · ·					
	BIF0465-BLK1					

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

		······································		
A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:______

LDC #: 48680G21

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page:	<u> 1 of 1 </u>
Reviewer:	JVG
2nd Reviewer	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Y</u> Was a routine calibration performed at the beginning of each 12 hour period?

N Y Were all concentrations within method QC limits for unlabeled and labeled compounds?

Did all routine calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	Conc:ng/mL (Limits)	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	06/25/20	SIF0380-ICV1	13C12-P	73.9 (77-129)		All (Det)	J/UJ/P (qual P)
			······································				

VALIDATION FINDINGS WORKSHEET

Blanks

Page <u>1</u> of <u>1</u> Reviewer: JXG 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Y Y Y Was the method blank contaminated?

Blank analysis date: 06/25/20 Blank extraction date: 06/22/20 Associated samples: All Conc. units: ng/Kg

Compound	Blank ID			Sample Identification					
	BIF0465-BLK1	(5x)	1	2	3	4			
В	0.175	0.88	0.449/U	0.507/U	0.756/U	0.439/U			
м	0.0946*	0.47	0.355/U	0.353/U	0.448/U				
0	0.166	0.83							
Q	0.521*	2.61							
G	1.32	6.60							
S	0.175	0.88							
Y	0.166	0.83							

*EMPC

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1_of 1_ Reviewer: JVG 2nd Reviewer: 2

METHOD:HRGC/HRMS PCDD/PCDF (EPA Method 1613B)Y N NAWere field duplicate pairs identified in this SDG?Y N NAWere target analytes detected in the field duplicate pairs?

	Concentra	ation (ng/Kg)		
Compound	3 4		RPD	
A	0.284	0.986U	NC	
1	0.328	0.363	10	
J	0.624	0.737	17	
В	0.756	0.439	53	
К	0.861	0.817	5	
L	0.6055	0.533	13	
М	0.448	0.479	7	
N	0.164	0.202	21	
С	0.788	0.749	5	
D	2.97	3.40	14	
E	1.14	1.06	7	
0	6.90	7.61	10	
Р	0.539	0.530	2	
F	75.1	158	71	
Q	12.1	22.4	60	
G	379	793	71	
V	1.39	4.80	110	
R	0.834	1.08	26	
W	6.23	8.98	36	
S	1.72	3.04	55	
x	11.5	14.4	22	
Т	26.3	25.3	4	
Y	20.3	25.6	23	
U	144	262	58	

C:\Users\jgo\Desktop\48680 dioxins\48680G21\4 48680G21 fd.wpd

VALIDATION FINDINGS WORKSHEET Labeled Compounds

Page:<u>1</u>of<u>1</u> Reviewer:__JVG 2nd Reviewer:_____

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Are all labeled compound recoveries within limits?

<u>Y N N/A</u> Was the S/N ratio all internal standard peaks \geq 10?

#	Date	Lab ID/Reference	Labeled Compound	Associated Compound	% Recovery (Limits)	Qualifications
		3 (All dets)	13C12-K	К	160 (26-152)	J/UJ/P
			13C12-L	L	130 (26-123)	J/UJ/P
			13C12-M	М	162 (28-136)	J/UJ/P
			13C12-C	С	155 (32-141)	J/UJ/P
			13C12-D	D	148 (28-130)	J/UJ/P
					ļ	
	, <u>, , , , , , , , , , , , , , , , , , </u>					
			L		L	

LDC Report# 48680H2a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwarr	nish AOC4
---------------------------	-----------

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0191

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT334	20F0191-03	Sediment	06/10/20
LDW20-SC238B	20F0191-06	Sediment	06/10/20
LDW20-SC235B	20F0191-08	Sediment	06/10/20
LDW20-SC250B	20F0191-09	Sediment	06/10/20
LDW20-IT334MS	20F0191-03MS	Sediment	06/10/20
LDW20-IT334MSD	20F0191-03MSD	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 15.8°C, 11.1°C, and 18.8°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: _____ Page: ___ of ___ Reviewer: _____ 2nd Reviewer: _____

SDG #: <u>20F0191</u> Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 48680H2a

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments (Insufficient
<u> </u>	Sample receipt/Technical holding times	SVX/A	Cooler temps = 15.8°C 11.1°C, 18.8°C time to coo.
	GC/MS Instrument performance check	A	. ,
Ш.	Initial calibration/ICV	AIA	$\frac{1}{2012} = \frac{2012}{2012} r^2 101 = \frac{3012}{2012}$
IV.	Continuing calibration	A	CA & 20%
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Ι Ά	
IX.	Laboratory control samples	Å	LES SRM
Х.	Field duplicates	Ń	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	LDW20-IT334			20F0191-03	Sediment	06/10/20
2	LDW20-SC238B			20F0191-06	Sediment	06/10/20
3	LDW20-SC235B	·····		20F0191-08	Sediment	06/10/20
4	LDW20-SC250B			20F0191-09	Sediment	06/10/20
5	LDW20-IT334MS			20F0191-03MS	Sediment	06/10/20
6	LDW20-IT334MSD			20F0191-03MSD	Sediment	06/10/20
7						
8						
9						
Notes:						
~	BIF0612-Bak1					

Laboratory Data Consultants, Inc. Data Validation Report

Duwamish AOC4
August 7, 2020
Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0191

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT334	20F0191-03	Sediment	06/10/20
LDW20-IT359	20F0191-04	Sediment	06/10/20
LDW20-IT374	20F0191-05	Sediment	06/10/20
LDW20-SC238B	20F0191-06	Sediment	06/10/20
LDW20-SC235B	20F0191-08	Sediment	06/10/20
LDW20-SC250B	20F0191-09	Sediment	06/10/20
LDW20-IT334MS	20F0191-03MS	Sediment	06/10/20
LDW20-IT334MSD	20F0191-03MSD	Sediment	06/10/20
LDW20-IT359MS	20F0191-04MS	Sediment	06/10/20
LDW20-IT359MSD	20F0191-04MSD	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 12.4°C and 7.0°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/26/20	N-Nitrosodiphenylamine	65.7	LDW20-IT334 LDW20-SC238B LDW20-SC235B LDW20-SC250B	J (all detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/30/20	Benzoic acid	24.2	LDW20-IT334 LDW20-SC238B	J (all detects) UJ (all non-detects)	А
	Pentachlorophenol	24.8	LDW20-SC235B LDW20-SC250B) (all detects) UJ (all non-detects)	

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT359MS/MSD (LDW20-IT359)	N-Nitrosodiphenylamine	-	122 (27-120)	NA	-

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0605-SRM1	Benzo(a)anthracene Chrysene Benzo(a)pyrene	46.3 (50-150) 51.3 (53-147) 36.0 (45-155)	LDW20-IT359 LDW20-IT374	J (all detects) J (all detects) J (all detects)	P

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and SRM %R, data were qualified as estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0191

Sample	Compound	Flag	A or P	Reason
LDW20-IT334 LDW20-SC238B LDW20-SC235B LDW20-SC250B	N-Nitrosodiphenylamine	J (all detects)	A	Initial calibration verification (%D)
LDW20-IT334 LDW20-SC238B LDW20-SC235B LDW20-SC250B	Benzoic acid Pentachlorophenol	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)
LDW20-IT359 LDW20-IT374	Benzo(a)anthracene Chrysene Benzo(a)pyrene	J (all detects) J (all detects) J (all detects)	Р	Standard reference materials (%R)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

LDC #: <u>48680H2b</u> SDG #: <u>20F0191</u>

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date:_	08/06/20
Page:	_of/
Reviewer:	Ble
2nd Reviewer:_	\mathcal{U}

Laboratory: Analytical Resources, Inc.

SvorA METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	SHAV / A	Cooler temps = 15.8°C, 11.1°C, 18.8°C (Insufficient time to good
<u>II.</u>	GC/MS Instrument performance check	A'	
<u>III.</u>	Initial calibration/ICV	Aisw	IGAL = 20? ~ INE 30!
IV.	Continuing calibration	SW	CON 5 20%
<u>V.</u>	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	SŴ	
IX.	Laboratory control samples	SW	LCS SRM
Х.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab	D	Matrix	Date
12	LDW20-IT334	20F0	191-03	Sediment	06/10/20
2	LDW20-IT359	20F0	191-04	Sediment	06/10/20
3 1	LDW20-IT374	20F0	191-05	Sediment	06/10/20
4 2	LDW20-SC238B	20F0	191-06	Sediment	06/10/20
5 2	LDW20-SC235B	20F0	191-08	Sediment	06/10/20
6 2	LDW20-SC250B	20F0	191-09	Sediment	06/10/20
7	LDW20-IT359MS	20F0	191-04MS	Sediment	06/10/20
8	LDW20-IT359MSD	20F0	191-04MSD	Sediment	06/10/20
9	IMS		-03MS		
Notesl	o MSD		-03MSD		
1	BIFUGOS-BLKI				
2	BIF0612-B1K2				

CPAH = 2,3

L:\Windward\Duwamish\48680H2bW.wpd

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	0000. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW. 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

VALIDATION FINDINGS WORKSHEET **Initial Calibration Verification**

Page:_	of
Reviewer:	JYG
2nd Reviewer:	0

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

718	ase see	quai
(Y/	N N/A	
T	N/N/A	

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Were all %D within the validation criteria of <u>420</u>/30% %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><20.</u> 0%30%)	Associated Samples	Qualifications
	06/26/20	SI F0395-SCV1		65.7		J/UJ/A
				· · · · · · · · · · · · · · · · · · ·	1 4-6 9 10 MB2 (ND + Det)	
				· · · · · · · · · · · · · · · · · · ·		
			, 			
				1		
					·····	
						
 						
		· · · · · · · · · · · · · · · · · · ·			1	
┣						
11						

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:___of__ Reviewer:___JVG____ 2nd Reviewer:_____

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y(N)N/A Were percent differences (%D) ≤ 20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	06/30/20	NT14 200 630035	PPP	24.2 24.8		1.4-69.10 MB2	(ND+Det) J/UJ/A
			T	24.8			
				·····		V	· • •
┣		·					
<u>}</u> −−−							
						······································	
							· · · · ·
						·	
			~				
┣━━							
┣			<u></u>				
						· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·	
 							
 		· ·					· · · · · · · · · · · · · · · · · · ·
	<u> </u>						
				<u></u>		<u> </u>	
┣				· · · · · · · · · · · · · · · · · · ·		<u> </u>	·
┣							
 	<u> </u>) 			·····	
∥							
	L	L					<u> </u>]

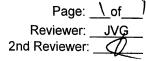
LDC #: 48680 H26

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	of
Reviewer:	JVG
2nd Reviewer:	\square

SVTA E METHOD: GC/MS PAH (EPA SW 846 Method 82700-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

VN N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? N/A

#	Date	MS/MSD ID	Compound	MS %R (Limits)	%	MSD R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		9 10	QQ	((27-120)	()	(ND)	J dets/A
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
						_()	()		
				()	()	()		
				()	()	()		·
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		ļ
				()	()	()		
				()	()	()		
				()	_()]	()		

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) / SRM

200A	E
METHOD: GC/MS PAH (EPA SW 846 Method 8270	Ø-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

M N/A Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIFOGOS_SRM1	CCC	46.3 (50-150)	()	()	2,3, MB1 (DA)	J/UJ/P
		DDD	51.3 (53-147)	()	()		/ · · · · ·
		111	36.0 (45-155)	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
╟──┤			()	()	()		
┣──┥			()	()	()		
╞╼╾┽			()			 	
		·····	()	()	()		
			()	()			
╟──┤							
┠							
┣──┤			()	()			
┣━━╉		· · · · ·	()	()	()		
╟──┦			()	()		· · · · · · · · · · · · · · · · · · ·	
╟──┤			()	()			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 7, 2020
Parameters:	Hexachlorobenzene
Validation Level:	Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0191

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT334	20F0191-03	Sediment	06/10/20
LDW20-SC238B	20F0191-06	Sediment	06/10/20
LDW20-SC235B	20F0191-08	Sediment	06/10/20
LDW20-SC250B	20F0191-09	Sediment	06/10/20
LDW20-IT334MS	20F0191-03MS	Sediment	06/10/20
LDW20-IT334MSD	20F0191-03MSD	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 15.8°C, 11.1°C, and 18.8°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 08/04 /2	ю
Page: <u>l</u> of <u>l</u>	
Reviewer: 04	
2nd Reviewer:	

Laboratory: Analytical Resources, Inc.

LDC #: 48680H3a

SDG #: 20F0191

METHOD: GC Hexachlorobenzene (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Co	nments	
<u> </u> .	Sample receipt/Technical holding times	SA, A	Cooler temps = 15,8°C	11.1°C, 18.8°C	(Insulficial time to INE 20 8
11.	GC Instrument Performance Check	N			Time to
	Initial calibration/ICV	AIA	10AL = 20% COV = 20%		INE 20 8
IV.	Continuing calibration	I'A'	CONE 20 %		
<u>v.</u>	Laboratory Blanks	A			
VI.	Field blanks	Ň			
VII.	Surrogate spikes	A		·	
VIII.	Matrix spike/Matrix spike duplicates	À.			
IX.	Laboratory control samples	A	us ip		
<u>X.</u>	Field duplicates	- N			
XI.	Compound quantitation/RL/LOQ/LODs	N			
XII.	Target compound identification	N			
XIII.	System Performance	N		·····	<u></u>
XIV	Overall assessment of data				
	SW = See worksheet FB	= Field blank	EB = Equipment	Matrix	Date
1	_DW20-IT334		20F0191-03	Sediment	06/10/20
~	_DW20-SC238B		20F0191-06	Sediment	06/10/20
	_DW20-SC235B		20F0191-08	Sediment	06/10/20
	 _DW20-SC250B		20F0191-09	Sediment	06/10/20
5 L	 _DW20-IT334MS		20F0191-03MS	Sediment	06/10/20
	_DW20-IT334MSD		20F0191-03MSD	Sediment	06/10/20
7					
8					
9					
10					
otes:					
	BI FOGOG-BLEI	<u>. </u>			
					- · · · · · · · · · · · · · · · · · · ·

Laboratory Data Consultants, Inc. Data Validation Report

Duwamish AOC4

LDC Report Date:	August 11,	2020
------------------	------------	------

- Parameters: Polychlorinated Biphenyls
- Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0191

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT364	20F0191-01	Sediment	06/10/20
LDW20-IT224	20F0191-02	Sediment	06/10/20
LDW20-IT224DL	20F0191-02DL	Sediment	06/10/20
LDW20-IT334	20F0191-03	Sediment	06/10/20
LDW20-IT359	20F0191-04	Sediment	06/10/20
LDW20-IT374	20F0191-05	Sediment	06/10/20
LDW20-SC238B	20F0191-06	Sediment	06/10/20
LDW20-IT228	20F0191-07	Sediment	06/10/20
LDW20-SC235B	20F0191-08	Sediment	06/10/20
LDW20-SC250B	20F0191-09	Sediment	06/10/20
LDW20-IT244	20F0191-10	Sediment	06/10/20
LDW20-IT334MS	20F0191-03MS	Sediment	06/10/20
LDW20-IT334MSD	20F0191-03MSD	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 15.8°C, 11.1°C, 18.8°C, and 11.2°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
06/10/20	SIF0176-SCV1	2C	Aroclor-1260	21.0	All samples in SDG 20F0191	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) UJ (all non-detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	Column	%R (Limits)	Associated Samples	Flag	A or P
BIF0615-SRM1	Aroclor-1260	1C	29.6 (38-167)	All samples in SDG 20F0039	J (all detects)	Р
BIF0615-SRM1	Aroclor-1260	2C	26.6 (38-167)	All samples in SDG 20F0039	J (all detects)	Р

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-IT374	Aroclor-1254	45.2	J (all detects)	A
LDW20-SC238B	Aroclor-1260	40.3	J (all detects)	А
LDW20-IT228	Aroclor-1248	40.7	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-IT224	Aroclor-1248 Aroclor-1254	Results exceeded calibration range.	Not reportable	-
LDW20-IT224DL	All compounds except Aroclor-1248 Aroclor-1254	Results from undiluted analyses were more usable.	Not reportable	-

Due to ICV %D, SRM %R, and RPD between two columns, data were qualified as estimated in eleven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0191

Sample	Compound	Flag	A or P	Reason
LDW20-IT364 LDW20-IT334 LDW20-IT359 LDW20-IT374 LDW20-SC238B LDW20-IT228 LDW20-SC235B LDW20-SC250B LDW20-IT244	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) UJ (all non-detects)	A	Initial calibration verification (%D)
LDW20-IT224	Aroclor-1260	J (all detects)	А	Initial calibration verification (%D)
LDW20-IT224DL	Aroclor-1248 Aroclor-1254	J (all detects) J (all detects)	A	Initial calibration verification (%D)
LDW20-IT364 LDW20-IT224 LDW20-IT334 LDW20-IT359 LDW20-IT374 LDW20-SC238B LDW20-IT228 LDW20-SC235B LDW20-SC250B LDW20-IT244	Aroclor-1260	J (all detects)	Ρ	Standard reference materials (%R)
LDW20-IT374	Aroclor-1254	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SC238B	Aroclor-1260	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-IT228	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-IT224	Aroclor-1248 Aroclor-1254	Not reportable	-	Overall assessment of data
LDW20-IT224DL	All compounds except Aroclor-1248 Aroclor-1254	Not reportable	-	Overall assessment of data

Duwamish AOC4 Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

LDC #: 48680H3b VALIDATION (COMPLETENESS WORKSHEET	Date: <u>08/04</u> /20
SDG #:20F0191	Stage 28 A 7	Page:)_of_/
Laboratory: Analytical Resources, Inc.		Reviewer: <u>04</u>

Reviewer: 2nd Reviewer

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments		4
١.	Sample receipt/Technical holding times	SW/A	cooler temps	= 15.8°0,11,1°0	18.8°C	LASULFICION time to co
.	Initial calibration/ICV	A ISW		· · · · · · · · · · · · · · · · · · ·	1019	505
<u>III.</u>	Continuing calibration	À	OWS :	20%		
IV.	Laboratory Blanks	Ă A				
<u>V.</u>	Field blanks	H I				
<u>VI.</u>	Surrogate spikes / 15	A/A	·····			
VII.	/ Matrix spike/Matrix spike duplicates	' A	·*			
VIII.	Laboratory control samples	SA	LCS	SRM		
IX.	Field duplicates	N		۲ 		
<u>X.</u>	Compound quantitation/RL/LOQ/LODs	SW				
XI.	Target compound identification	N				
XIL	Overall assessment of data]
ote:	A = Acceptable	ND = No compounds d	letected D =	Duplicate	SB=Source bla	ink

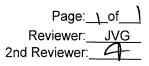
A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT364	20F0191-01	Sediment	06/10/20
2	LDW20-IT224	20F0191-02	Sediment	06/10/20
3	LDW20-IT22482)	20F0191-02RE DL	Sediment	06/10/20
4	LDW20-IT334	20F0191-03	Sediment	06/10/20
5	LDW20-IT359	20F0191-04	Sediment	06/10/20
6	LDW20-IT374	20F0191-05	Sediment	06/10/20
7	LDW20-SC238B	20F0191-06	Sediment	06/10/20
8	LDW20-IT228	20F0191-07	Sediment	06/10/20
9	LDW20-SC235B	20F0191-08	Sediment	06/10/20
10	LDW20-SC250B	20F0191-09	Sediment	06/10/20
11	LDW20-IT244	20F0191-10	Sediment	06/10/20
12	LDW20-IT334MS	20F0191-03MS	Sediment	06/10/20
13	LDW20-IT334MSD	20F0191-03MSD	Sediment	06/10/20
14				
15_				
16	\$1F06/5-BUKI		_	
17				

VALIDATION FINDINGS WORKSHEET

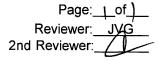

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ cis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	ww.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:

LDC #: 48680 H 96

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification


METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Plea	Please see qualifications below for all questions answered "N". Not applieable questions are identified as "N/A".								
Whq	Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". What type of initial calibration verification calculation was performed? <u>/</u> %D or <u>%</u> R								
YA	ĻΝ/Α	Was an initial calibr	ation verification star	ndard analyzed after	each ICAL for each	instrument?			
<u>Y(N</u>	<u>) N/A</u>	Did the initial calibra	ation verification stan	dards meet the %D	/ %R validation criter	ia of <u><</u> 20.0% /	/ 80-120%?		
#	Date	Standard ID	Detector/ Çolumn	Compound	%D (Limit ≤ 20.0)	Associ	ated Samples	Qualification	1s
	06/10/20	SIF0176-SC	V1 2C	BB	21.0	All	(Det7 MD)	J/UJ/A	
				•				(gual Z, AA	BB)
<u> </u>									
							· · · · · · · · · · · · · · · · · · ·		
									
	ļ								
	<u> </u>								
	l								
			1						

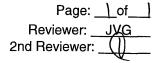
LDC #: 48 680 H3b

VALIDATION FINDINGS WORKSHEET

Laboratory Control Samples / SRM

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". \checkmark


Were laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? N_N/A

Y(N)N/AWere the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

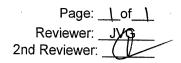
LCS/LCSD ID	Compound (LCS Col %R (Limits)		LCSD %R (Limits)		RPD (Limits)	Associated Samples	Qualifications
BIFOGIS- SRM1	BB (1() 29.6 38-167	7)	()	Τ	()	All (Det)	J/UJ/P
	·/ (2c) 26.6 ()	()		()		
		()	()	Τ	()		(qual \$7Bonly)
		()	()	Τ	()		
		()	L)		()		
		()	()		()		
		()	()		()		
		()	()		()		
		()	()	-	()		
		()	()	Ļ	()		
		(()	()	+	()		
		()	()	+	()		
		()	()	+	()		
<u> </u>		()	()	+	()		
		()	<u>()</u>		()		
		()	()	╇	()		
		()	()		()		
		()	()		()		
		()	()		()		
		()	()_	1	()		
		()	()		()		
		()	()		()		
		()	()		()		
		()	()		()		
		()	()		()		
		()	()		()		

N)N/A

VALIDATION FINDINGS WORKSHEET **Compound Quantitation and Reported CRQLs**

LDC #: <u>4868</u>0 H %b METHOD: <u>/</u>GC __HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only $\Re N N/A$ Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? VN N/A


Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns /detectors <40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD/%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	AA	6	45.2	J dets A
	BB	7	40.3	
	Z	d	40.7	
		8	40.7	Y
┣━━━┥				
╟──┤				
┠}				
+				
Comm	ents: See sample calculation verific	cation worksheet for recalculations		

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

METHOD: GC Pesticides/PCBs (EPA SW846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable?

#	Compound Name	Finding	Associated sample	Qualifications
	Z AA	y cal range	2	NR /A
	All except abor	e di l	3	
	All excent scott	di 1	2	
				· · · · · · · · · · · · · · · · · · ·
			· ·	

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 10, 2020

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0191

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT364	20F0191-01	Sediment	06/10/20
LDW20-IT224	20F0191-02	Sediment	06/10/20
LDW20-IT334	20F0191-03	Sediment	06/10/20
LDW20-IT359	20F0191-04	Sediment	06/10/20
LDW20-IT374	20F0191-05	Sediment	06/10/20
LDW20-SC238B	20F0191-06	Sediment	06/10/20
LDW20-IT228	20F0191-07	Sediment	06/10/20
LDW20-SC235B	20F0191-08	Sediment	06/10/20
LDW20-SC250B	20F0191-09	Sediment	06/10/20
LDW20-IT244	20F0191-10	Sediment	06/10/20
LDW20-IT334MS	20F0191-03MS	Sediment	06/10/20
LDW20-IT334MSD	20F0191-03MSD	Sediment	06/10/20
LDW20-IT334DUP	20F0191-03DUP	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Silver	0.033 ug/L	LDW20-IT334
ICB/CCB	Silver	0.018 ug/L	LDW20-SC238B LDW20-SC235B LDW20-SC250B

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
LDW20-IT334	Silver	0.21 mg/Kg	0.21U mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
LDW20-SC238B	Silver	0.2 mg/Kg	0.2U mg/Kg
LDW20-SC235B	Silver	0.17 mg/Kg	0.17U mg/Kg
LDW20-SC250B	Silver	0.2 mg/Kg	0.2U mg/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT379FDMS/MSD (LDW20-IT334 LDW20-SC238B LDW20-SC235B LDW20-SC250B)	Silver	34.1 (75-125)	43.2 (75-125)	J (all detects)	A
LDW20-IT334MS/MSD (LDW20-IT334 LDW20-SC238B LDW20-SC235B LDW20-SC250B)	Mercury	-	127 (75-125)	J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LDW20-IT379FDMS/MSD (LDW20-IT334 LDW20-SC238B LDW20-SC235B LDW20-SC250B)	Silver	23 (≤20)	J (all detects)	A

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD %R and RPD, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0191

Sample	Analyte	Flag	A or P	Reason
LDW20-IT334 LDW20-SC238B LDW20-SC235B LDW20-SC250B	Silver Mercury	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-IT334 LDW20-SC238B LDW20-SC235B LDW20-SC250B	Silver	J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD)

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 20F0191

Sample	Analyte	Modified Final Concentration	A or P
LDW20-IT334	Silver	0.21U mg/Kg	A
LDW20-SC238B	Silver	0.2U mg/Kg	A
LDW20-SC235B	Silver	0.17U mg/Kg	A
LDW20-SC250B	Silver	0.2U mg/Kg	A

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: 48680H4a SDG #: 20F0191

Date: 7/30/20 Page: 1 of 1 **Reviewer: ATL** 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A/A	
	ICP/MS Tune	A	
111.	Instrument Calibration	А	
IV.	ICP Interference Check Sample (ICS) Analysis	А	
V.	Laboratory Blanks	SW	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	(11,12), From SDG # 20F0186 (LDW20-IT379FD MS/MSD)
VIII.	Duplicate sample analysis	Α	13, From SDG # 20F0186 (LDW20-IT379FD MS/MSD)
IX.	Serial Dilution	N	
Х.	Laboratory control samples	А	LCS/SRM
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	Α	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT364	20F0191-01	Sediment	06/10/20
2	LDW20-IT224	20F0191-02	Sediment	06/10/20
3	LDW20-IT334	20F0191-03	Sediment	06/10/20
4	LDW20-IT359	20F0191-04	Sediment	06/10/20
5	LDW20-IT374	20F0191-05	Sediment	06/10/20
6	LDW20-SC238B	20F0191-06	Sediment	06/10/20
7	LDW20-IT228	20F0191-07	Sediment	06/10/20
8	LDW20-SC235B	20F0191-08	Sediment	06/10/20
9	LDW20-SC250B	20F0191-09	Sediment	06/10/20
10	LDW20-IT244	20F0191-10	Sediment	06/10/20
11	LDW20-IT334MS	20F0191-03MS	Sediment	06/10/20
12	LDW20-IT334MSD	20F0191-03MSD	Sediment	06/10/20
13	LDW20-IT334DUP	20F0191-03DUP	Sediment	06/10/20
14				
Vote	9S:			

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
3,6,8,9	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
1,2,4,5,7,10	As
QC	
11,12,13	Нд
·	
	Analysis Method

ICP			
ICP-MS			
CVAA			

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000) Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: m				erwise noted: mg/kg Associated Samples: 3								
							Samp	ole Identific	ation			
Analyte	PB (mg/kg)	Maximum ICB/CCB (ug/L)	Action Level	3								
Ag		0.033		0.21								

Sample Concentration, unless otherwise noted:				d: mg/kg		Associated	Samples:	6,8,9		_	
							Samp	ple Identif	ication		
Analyte	PB (mg/kg)	Maximum ICB/CCB (ug/L)	Action Level	6	8	9					
Ag		0.018		0.2	0.17	0.2					

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS/MSD analysis was performed by the laboratory. All MS/MSD percent recoveries (%R) and relative percent differences (RPDs) were within the acceptable limits with the following exceptions:

MS/MSD ID	Matrix	Analyte	MS %R	MSD %R	%R Limit	RPD	RPD Limit	Associated Samples	Qualification	Det/ND
LDW20-IT379FD	S	Ag	34.1	43.2	75-125			3,6,8,9	A/UJ/A	Det
		Ag				23		3,6,8,9	A/LU/L	Det
11 &12	S	Hg		127	75-125			3,6,8,9	Jdet/A	Det
		_ <u></u>								
	ļ									
			<u> </u>							
							· · · · · · · · · · · · · · · · · · ·			
			<u> </u>	[
							<u> </u>			
									_	
		+								
<u> </u>										
							ļ			
			 	 			 			
			ļ	ļ			ļ			
					ļ					

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Duwamish AOC4
August 11, 2020
Wet Chemistry
Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0191

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT364	20F0191-01	Sediment	06/10/20
LDW20-IT224	20F0191-02	Sediment	06/10/20
LDW20-IT334	20F0191-03	Sediment	06/10/20
LDW20-IT359	20F0191-04	Sediment	06/10/20
LDW20-IT374	20F0191-05	Sediment	06/10/20
LDW20-SC238B	20F0191-06	Sediment	06/10/20
LDW20-IT228	20F0191-07	Sediment	06/10/20
LDW20-SC235B	20F0191-08	Sediment	06/10/20
LDW20-SC250B	20F0191-09	Sediment	06/10/20
LDW20-IT244	20F0191-10	Sediment	06/10/20
LDW20-IT228MS	20F0191-07MS	Sediment	06/10/20
LDW20-IT228DUP	20F0191-07DUP	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

ALIDATION COMPLETENESS W

Stage 2B

LDC #: 48680H6 ٧ SDG #: 20F0191

Laboratory: Analytical Resources, Inc.

METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
11	Initial calibration	A	
III.	Calibration verification	А	
ıv	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	11
VII.	Duplicate sample analysis	А	12, From SDG # 20F0157 (LDW20-SC148C DUP)
VIII.	Laboratory control samples	A	LCS/SRM
IX.	Field duplicates	N	
Х.	Sample result verification	N	
XI.	Overall assessment of data	Α	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT364	20F0191-01	Sediment	06/10/20
2	LDW20-IT224	20F0191-02	Sediment	06/10/20
3	LDW20-IT334	20F0191-03	Sediment	06/10/20
4	LDW20-IT359	20F0191-04	Sediment	06/10/20
5	LDW20-IT374	20F0191-05	Sediment	06/10/20
6	LDW20-SC238B	20F0191-06	Sediment	06/10/20
7	LDW20-IT228	20F0191-07	Sediment	06/10/20
8	LDW20-SC235B	20F0191-08	Sediment	06/10/20
9	LDW20-SC250B	20F0191-09	Sediment	06/10/20
10	LDW20-IT244	20F0191-10	Sediment	06/10/20
11	LDW20-IT228MS	20F0191-07MS	Sediment	06/10/20
12	LDW20-IT228DUP	20F0191-07DUP	Sediment	06/10/20
13				
14				
15				
Vote	es:			

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1 to 10	TS, TOC	
QC		
11,12	тос	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 10, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0191

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT359	20F0191-04	Sediment	06/10/20
LDW20-IT374	20F0191-05	Sediment	06/10/20
LDW20-IT228	20F0191-07	Sediment	06/10/20
LDW20-IT244	20F0191-10	Sediment	06/10/20
LDW20-IT359DUP	20F0191-04DUP	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 11.1°C, 15.8°C, and 18.8°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0780-BLK1	06/29/20	1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	0.0726 ng/Kg 0.220 ng/Kg 0.477 ng/Kg 1.66 ng/Kg	All samples in SDG 20F0191

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LDW20-IT359DUP (LDW20-IT359)	OCDF	39.0 (≤25)	J (all detects)	A

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	e Compound		A or P
All samples in SDG 20F0191	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to DUP RPD and compounds reported as EMPC, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0191

Sample	Compound	Flag	A or P	Reason
LDW20-IT359	OCDF	J (all detects)	A	Duplicate sample analysis (RPD)
LDW20-IT359 LDW20-IT374 LDW20-IT228 LDW20-IT244	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0191

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary -SDG 20F0191

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

SDG #: 20F0191 Laboratory: Analytical Resources, Inc.

LDC #: 48680H21

Date: 08/07/20 Page: 1_of 1_ Reviewer: JV 2nd Reviewer:

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Commen	ts
<u> </u>	Sample receipt/Technical holding times	SW/A	Cooler temp = 15.8, 11.1, 18.8 deg C	(Insufficient time to cool)
	HRGC/HRMS Instrument performance check	А		
<u> </u>	Initial calibration/ICV	A/A	ICAL ≤ 20/35%	ICV ≤ QC Limits
IV.	Continuing calibration	А	CCV ≤ QC Limits	
V.	Laboratory Blanks	sw		
VI.	Field blanks	N		
VII.	Matrix spike/Matrix spike duplicates/LD	N/SW		
VIII.	Laboratory control samples	A	OPR, SRM	
IX.	Field duplicates	N		
Х.	Labeled Compounds	A		
XI.	Compound quantitation RL/LOQ/LODs	А	EMPC = Jdets/A	
XII.	Target compound identification	A		
XIII.	System performance	А		
XIV.	Overall assessment of data	A		

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	LDW20-IT359	 		20F0191-04	Sediment	06/10/20
2	LDW20-IT374	 		20F0191-05	Sediment	06/10/20
3	LDW20-IT228			20F0191-07	Sediment	06/10/20
4	LDW20-IT244	 <u> </u>		20F0191-10	Sediment	06/10/20
5	LDW20-IT359DUP	 		20F0191-04DUP	Sediment	06/10/20
6		 				
7		 				
8						
9						
10_						
Notes		 				
	BFI0780-BLK1					

VALIDATION FINDINGS CHECKLIST

Page: <u>1_of_2</u> Reviewer: <u>___JVG</u> 2nd Reviewer: _____

Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	\checkmark			
Cooler temperature criteria was met.		√		
II. GC/MS Instrument performance check				
Was PFK exact mass 380.9760 verified?	√_			
Were the retention time windows established for all homologues?	√			
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers $\leq 25\%$?	√			
Is the static resolving power at least 10,000 (10% valley definition)?	\checkmark			
Was the mass resolution adequately check with PFK?	_√			
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?				
Illa. Initial calibration				
Was the initial calibration performed at 5 concentration levels?	\checkmark			
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled compounds and \leq 35% for unlabeled compounds?	√			
Did all calibration standards meet the Ion Abundance Ratio criteria?	√			
Was the signal to noise ratio for each target compound and labeled compound \geq 10?	√			
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	√			
Were all concentrations for the unlabeled compounds and for labeled compounds within QC limits?	\checkmark			
IV. Continuing calibration				
Was a continuing calibration performed at the beginning of each 12 hour period?	√			
Were all concentrations for the unlabeled compounds and for labeled compounds within QC limits (Method 1613B, Table 6)?	\checkmark			
Did all continuing calibration standards meet the Ion Abundance Ratio criteria?	\checkmark			
V. Blanks				
Was a method blank associated with every sample in this SDG?	√			
Was a method blank performed for each matrix and whenever a sample extraction was performed?	√			
Was there contamination in the method blanks?	\checkmark			
VI. Field blanks				
Were field blanks identified in this SDG?		√		
Were target compounds detected in the field blanks?			\checkmark	
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?		\checkmark		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			\checkmark	

VALIDATION FINDINGS CHECKLIST

Page: <u>1_of_2</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u></u>

Validation Area	Yes	No	NA	Findings/Comments				
VIII. Laboratory control samples								
Was an LCS analyzed per extraction batch?	✓							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	√							
IX. Field duplicates								
Were field duplicate pairs identified in this SDG?		\checkmark						
Were target compounds detected in the field duplicates?			\checkmark					
X. Labeled Compounds								
Were labeled compounds within QC limits (Method 1613B, Table 7)?	√_							
Was the minimum S/N ratio of all labeled compound peaks \geq 10?	\checkmark							
XI. Compound quantitation								
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	\checkmark							
Were the correct labeled compound, quantitation ion and relative response factor (RRF) used to quantitate the compound?	~							
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	~							
XII. Target compound identification								
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	~							
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	√							
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	~							
Did compound spectra contain all characteristic ions listed in the table attached?	\checkmark							
Was the Ion Abundance Ratio for the two quantitation ions within criteria?	√_							
Was the signal to noise ratio for each target compound ≥ 2.5 and ≥ 10 for the labeled compound?	√							
Does the maximum intensity of each specified characteristic ion coincide within <u>+</u> 2 seconds (includes labeled standards)?	√							
For PCDF identification, was any signal (S/N \geq 2.5, at <u>+</u> seconds RT) detected in the corresponding PCDPE channel?	√							
Was an acceptable lock mass recorded and monitored?	\checkmark							
XIII. System performance								
System performance was found to be acceptable.	\checkmark							
XIV. Overall assessment of data								
Overall assessment of data was found to be acceptable.	\checkmark							

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

LDC #: 48680H21

VALIDATION FINDINGS WORKSHEET

<u>Blanks</u>

Page _1_of_1_ Reviewer: JVG 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

- Was a method blank performed for each matrix and whenever a sample extraction was performed?
- Y Y Y Was the method blank contaminated?

Blank analysis date: 07/02/20 Blank extraction date: 06/29/20 Associated samples: All (>5X) Conc. units: na/Ka

Compound	Blank ID		Sample Identification							
	BIF0780-BLK1	(5x)								
0	0.0726*	0.36								
F	0.220*	1.10								
Q	0.477*	2.39								
G	1.66	8.30								

*EMPC

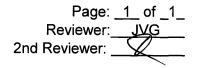
LDC #: <u>48680H21</u>

VALIDATION FINDINGS WORKSHEET Duplicate Analysis

Page: <u>1</u> of <u>1</u> Reviewer: <u>1/6</u> 2nd Reviewer: _____

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

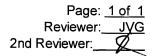

Y Was a duplicate sample analyzed for each matrix in this SDG?

N Were all duplicate sample relative percent differences (RPD) < 25?

#	Duplicate ID	Compound	RPD (Lir	nits)	Associated Samples	Qualifications
	5	Q	39.0	(≤25%)	1 (Det)	Jdets/A
				(≤)		
				(≤)		
				(≤)		
				(≤)		
				(≤)		
		· · · · · · · · · · · · · · · · · · ·		(≤)		
				(≤)		
				(≤)		
		;		(≤)		
				(≤)		
				(≤)		
				(≤)		
				$\left(\leq \right)$		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	$\left(\leq \ \right)$ $\left(\leq \ \right)$		
				<u> </u>		
				(\leq) (\leq)		
				(≤) (≤)	<u> </u>	
		· · · · · · · · · · · · · · · · · · ·		(≤) (≤)		
			······································	(≤)		
				(≤)		
				(≤)		

Comments:_____

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification


METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

$RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$	A_x = Area of Compound	A _{is} = Area of associated internal standard
average RRF = sum of the RRFs/number of standards	C_x = Concentration of compound,	C _{is} = Concentration of internal standard
%RSD = 100 * (S/X)	S= Standard deviation of the RRFs,	X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Com	pound (IS)			(Initial)	(Initial)		
1	ICAL	7/1/2020	2,3,7,8-TCDF	(13C-2,3,7,8-TCDF)	0.8118	0.8117	0.8223	0.8223	6.7	6.7
	Autospec01		2,3,7,8-TCDD	(13C-2,3,7,8-TCDD)	1.2126	1.2125	1.2310	1.2310	11.4	11.4
			1,2,3,6,7,8-HxCDF	(13C-1,2,3,6,7,8-HxCDF)	0.9856	0.9856	0.9154	0.9154	11.0	11.0
			1,2,3,4,6,7,8-HpCDD	(13C-1,2,4,6,7,8,-HpCDD)	1.1931	1.1930	1.1246	1.1246	12.3	12.3
			OCDD	(13C-OCDD)	1.0731	1.0732	1.2095	1.2095	12.4	12.4

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
		Calibration			Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compou	und (Ref IS)	(Initial)	(CCV)	(CCV)	i	
1	20070202	7/2/2020	2,3,7,8-TCDF	(13C-2,3,7,8-TCDF)	0.8223	0.8060	0.8060	2.0	2.0
I	Autospec01		2,3,7,8-TCDD	(13C-2,3,7,8-TCDD)	1.2310	1.2380	1.2380	0.6	0.6
			1,2,3,6,7,8-HxCDF	(13C-1,2,3,6,7,8-HxCDF)	0.9154	0.9359	0.9359	2.2	2.2
			1,2,3,4,6,7,8-HpCDD	(13C-1,2,4,6,7,8,-HpCDD)	1.1246	1.1394	1.1394	1.3	1.3
			OCDD	(13C-OCDD)	1.2095	1.1641	1.1641	3.8	3.8

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: <u>1_</u> of_1	
Reviewer: JVG	
2nd Reviewer:	

METHOD: GC/MS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery LCSD = Laboratory control sam

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: BIF0780-BS1

	Sr	bike	Spiked S	ample	LC	s	LCS	SD	LCS/I	_CSD
Compound	Added (ng/Kg)		Concentration (ng/Kg)		Percent Recovery		Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
2,3,7,8-TCDD	20		19.97		99.9	99.9				
1,2,3,7,8-PeCDD	100		101.79		102	102				
1,2,3,4,7,8-HxCDD	100		99.30		99.3	99.3				
1,2,3,4,7,8,9-HpCDF	100		105.44		105	105				
OCDF	200		182.39		91.2	91.2				

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page: <u>1_</u> of_1
Reviewer: <u>∕đ∿G</u>
2nd reviewer:

METHOD: GC/MS Dioxins/Dibenzofurans (Method 1613B)

- Y Y
- Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	ntratio	$ = (A_{*})(I_{*})(DF) = (A_{*})(RRF)(V_{*})(\%S) $	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D,OCDD:
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (1.037e6+1.171e6)(200)(20uL) (3.537e5+3.825e5)(1.2095)(17.24g)(0.583)
V。	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
RRF	=	Relative Response Factor (average) from the initial calibration	= 986.85
Df	=	Dilution Factor.	= 987 ng/Kg
%S	=	Percent solids, applicable to soil and solid matrices	

%5 only.

#	Sample ID	Compound	Reported Concentration (ng/Kg)	Calculated Concentration (ng/Kg)	Acceptable (Y/N)
	1	OCDD	987	987	-
ļ					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0194

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS356	20F0194-01	Sediment	06/10/20
LDW20-SS364	20F0194-02	Sediment	06/10/20
LDW20-SS338	20F0194-03	Sediment	06/10/20
LDW20-SS338-FD	20F0194-04	Sediment	06/10/20
LDW20-SS336	20F0194-05	Sediment	06/10/20
LDW20-SS106	20F0194-06	Sediment	06/10/20
LDW20-SS121	20F0194-07	Sediment	06/10/20
LDW20-SS123	20F0194-08	Sediment	06/10/20
LDW20-SS123-FD	20F0194-09	Sediment	06/10/20
LDW20-SS125	20F0194-10	Sediment	06/10/20
LDW20-SS130	20F0194-11	Sediment	06/10/20
LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
LDW20-SS135	20F0194-13	Sediment	06/10/20
LDW20-SS135MS	20F0194-13MS	Sediment	06/10/20
LDW20-SS135MSD	20F0194-13MSD	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 13.6°C, 15.6°C, and 20.1°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0662-SRM1	Acenaphthylene Anthracene	51.7 (52-148) 54.7 (57-143)	All samples in SDG 20F0194	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ

X. Field Duplicates

Samples LDW20-SS338 and LDW20-SS338-FD, samples LDW20-SS123 and LDW20-SS123-FD, and samples LDW20-SS130 and LDW20-SS130-FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SS338	LDW20-SS338-FD	RPD
2-Methylnaphthalene	10.2	10.2	0
Fluorene	20.0U	10.6	Not calculable
Phenanthrene	69.3	77.2	11
Anthracene	19.8	21.1	6
Fluoranthene	156	153	2
Pyrene	146	137	6

	Concentra		
Compound	LDW20-SS338	LDW20-SS338-FD	RPD
Butylbenzylphthalate	18.3	21.8	17
Benzo(a)anthracene	58.0	63.6	9
Chrysene	117	115	2
Bis(2-ethylhexyl)phthalate	230	202	13
Benzofluoranthenes, total	180	170	6
Benzo(a)pyrene	67.4	63.7	6
Indeno(1,2,3-cd)pyrene	49.9	47.8	4
Dibenzo(a,h)anthracene	18.1	14.1	25
Benzo(g,h,i)perylene	62.6	58.9	6

	Concentra	Concentration (ug/Kg)	
Compound	LDW20-SS123	LDW20-SS123-FD	RPD
Phenanthrene	38.5	38.0	1
Anthracene	12.7	13.9	9
Fluoranthene	91.4	92.3	1
Pyrene	89.7	91.2	2
Butylbenzylphthalate	11.1	20.0U	Not calculable
Benzo(a)anthracene	39.7	38.8	2
Chrysene	66.0	61.4	7
Bis(2-ethylhexyl)phthalate	86.8	118	30
Benzofluoranthenes, total	109	112	3
Benzo(a)pyrene	42.1	42.9	2
Indeno(1,2,3-cd)pyrene	29.8	3.5	158

	Concentration (ug/Kg)		
Compound	LDW20-SS123	LDW20-SS123-FD	RPD
Dibenzo(a,h)anthracene	11.1	20.0U	Not calculable
Benzo(g,h,i)perylene	37.0	36.5	1

	Concentra		
Compound	LDW20-SS130	LDW20-SS130-FD	RPD
Phenanthrene	30.6	30.1	2
Anthracene	10.4	10.5	1
Fluoranthene	60.3	501	157
Pyrene	81.4	65.7	21
Butylbenzylphthalate	19.9U	10.4	Not calculable
Benzo(a)anthracene	28.3	25.0	12
Chrysene	45.9	65.8	36
Bis(2-ethylhexyl)phthalate	66.8	61.0	9
Benzofluoranthenes, total	85.8	71.1	19
Benzo(a)pyrene	34.8	27.6	23
Indeno(1,2,3-cd)pyrene	24.0	19.9	19
Benzo(g,h,i)perylene	25.6	25.8	1

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to SRM %R, data were qualified as estimated in thirteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0194

Sample	Compound	Flag	A or P	Reason
LDW20-SS356 LDW20-SS364 LDW20-SS338 LDW20-SS338-FD LDW20-SS366 LDW20-SS106 LDW20-SS121 LDW20-SS123 LDW20-SS123-FD LDW20-SS130 LDW20-SS130 LDW20-SS130-FD LDW20-SS135	Acenaphthylene Anthracene	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Standard reference materials (%R)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: <u>68/05/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>3/4</u> 2nd Reviewer:

SDG #: <u>20F0194</u> Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 48680l2a

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments (Insufficient
<u> </u>	Sample receipt/Technical holding times	SW/A	Coster temps = 13.6°C 15.6°C 20,1°C time to call,
١١.	GC/MS Instrument performance check	A	<i>ble</i>
	Initial calibration/ICV	ASAT	A ICAL 5 20% M ICN 5 30%
IV.	Continuing calibration	A	COVE Zolo
V.	Laboratory Blanks	Ι Ά	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	SAI	LCS SRM
Х.	Field duplicates	ŚW	D = 3/4 8/9 11/12
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	A	
xv.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS356	20F0194-01	Sediment	06/10/20
2	LDW20-SS364	20F0194-02	Sediment	06/10/20
3	LDW20-SS338	20F0194-03	Sediment	06/10/20
4	LDW20-SS338-FD	20F0194-04	Sediment	06/10/20
5	LDW20-SS336	20F0194-05	Sediment	06/10/20
6	LDW20-SS106	20F0194-06	Sediment	06/10/20
7	LDW20-SS121	20F0194-07	Sediment	06/10/20
8	LDW20-SS123 Dr	20F0194-08	Sediment	06/10/20
9	LDW20-SS123-FD D ~	20F0194-09	Sediment	06/10/20
10	LDW20-SS125	20F0194-10	Sediment	06/10/20
11_	LDW20-SS130	20F0194-11	Sediment	06/10/20
12	LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
13	LDW20-SS135	20F0194-13	Sediment	06/10/20
14	LDW20-SS135MS	20F0194-13MS	Sediment	06/10/20

VALIDATION COMPLETENESS WORKSHEET

Stage 4

SDG #: <u>20F0194</u> Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 4868012a

Date: <u>08/65/20</u> Page: <u>06</u> Reviewer: <u>06</u> 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

15	LDW20-SS135MSD	20F0194-13MSD	Sediment	06/10/20
16	· · · · · · · · · · · · · · · · · · ·	 		
17				
18		L		
Notes:		 		
	BIF0662-BIKL			

VALIDATION FINDINGS CHECKLIST

Page:_1_of_2_ Reviewer:_JXG_ 2nd Reviewer:____

	t	-
Method: Semivolatiles	(EPA SW 846 Method 8270)	

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?		/	1	
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	/	1		
Illa. Initial calibration	· · · · · · · · · · · · · · · · · · ·	.		
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) <u><</u> 30%?		/		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	[-		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?		ſ		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.		/	{	
VI. Field blanks				
Were field blanks were identified in this SDG?		/	ſ	
Were target compounds detected in the field blanks?			/	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R ?				F
VIII. Matrix spike/Matrix spike duplicates		/		
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	1			

LDC #: 48680 [20

e

VALIDATION FINDINGS CHECKLIST

Page: <u>2_of_2</u> Reviewer: <u>JVG</u> 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	/			
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?	/			
XII. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.	\square			

•

.

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

METTOD. GONIO OVOA				
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	lli. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	000. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

A2. Benzofluoranthenes, Total

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) (SRM

Page:	<u> </u>	f_1
Reviewer:		G
2nd Reviewer:	5	

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $\left(\begin{array}{c|c} Y & N & N/A \\ \hline Y & N & N/A \end{array} \right)$

N/A Was a LCS required?

N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIFOGG2-SRM1	PÞ	51.7 (52-148)	()	()	All (ND+Det)	JUJA
		$\gamma\gamma$	54.7 (57-143)	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	· · · · · · · · · · · · · · · · · · ·	
			()	()	()		
ļ			()	()	()		
			()	()	()		
			()	()	()		
			()	()	· ()		
			()	()			

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page: 1_of 1/2 Reviewer: JVG 2nd Reviewer: 🤆

$\begin{array}{c} \textbf{METHOD:} \ \text{GCMS SVOA} \ (\text{EPA SW 846 Method 8270E}) \\ \underline{\textbf{Y} \textbf{N} \textbf{NA}} \end{array} \\ \text{Were field duplicate pairs identified in this SDG?}$

Y/N NA

Were target analytes detected in the field duplicate pairs?

	Concentra		
Compound	3 4		RPD
w	10.2	10.2	0
NN	20.0U	10.6	NC
UU	69.3	77.2	11
w	19.8	21.1	6
YY	156	153	2
ZZ	146	137	6
AAA	18.3	21.8	17
ccc	58.0	63.6	9
DDD	117	115	2
EEE	230	202	13
A2	180	170	6
1	67.4	63.7	6
ſſſ	49.9	47.8	4
ккк	18.1	14.1	25
LLL	62.6	58.9	6

	Concent		
Compound	8	9	= RPD
υυ	38.5	38.0	1
w	12.7	13.9	9
YY	91.4	92.3	1
ZZ	89.7	91.2	2
AAA	11.1	20.0U	NC
CCC	39.7	38.8	2
DDD	66.0	61.4	7
EEE	. 86.8	118	30
A2	109	112	3
11	42.1	42.9	2
JJJ	29.8	3.5	158
ккк	11.1	20.0U	NC
	37.0	36.5	1

	Concentral		
Compound	11	12	RPD
UU	30.6	30.1	2
w	10.4	10.5	1
YY	60.3	501	157

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_2_of_2_ Reviewer:_JVG 2nd Reviewer:_____

METHOD: GC MS SVOA (EPA SW 846 Method 8270E)

YNNA Were field duplicate pairs identified in this SDG?

YX NA Were target analytes detected in the field duplicate pairs?

	Concentral		
Compound	11 12		RPD
ZZ	81.4	65.7	21
ААА	19.9U	10.4	NC
ccc	28.3	25.0	12
DDD	45.9	65.8	36
EEE	66.8	61.0	9
A2	85.8	71.1	19
	34.8	27.6	23
JJJ	24.0	19.9	19
	25.6	25.8	1

V:\Josephine\FIELD DUPLICATES\48680I2a windward duwamish.wpd

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

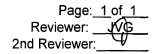
 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound

 C_x = Concentration of compound,

S= Standard deviation of the RRFs,

A_{is} = Area of associated internal standard


C_{is} = Concentration of internal standard

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(IS)	(RRF 10 std)	(RRF 10 std)	(Initial)	(Initial)		
1	ICAL	06/26/20	Phenol	(DCB)	1.56542	1.56542	1.51555	1.51555	6.8	6.8
			Naphthalene	(NPT)	1.02917	1.02917	0.98495	0.98495	4.3	4.3
	NT10		Fluorene	(ANT)	1.74545	1.74545	1.53228	1.53228	9.1	9.1
			Phenanthrene	(PHN)	1.09634	1.09634	1.07498	1.07498	3.3	3.3
			Fluoranthene	(CRY)	1.79823	1.79823	1.73035	1.73035	6.4	6.4
			BEHP	(DNOP)	0.51752	0.51752	0.48659	0.48659	4.2	4.2
			Benzo(g,h,i)perylen	e (PRY)	1.28998	1.28998	1.23261	1.23261	4.9	4.9

LDC # <u>48680l2a</u>

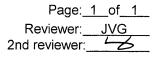
VALIDATION FINDINGS WORSHEET Continuing Calibration Calculation Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound,


Ais = Area of associated internal standard

Cis = Concentration of internal standard

#	Standard ID	Calibration Date	Compound	(IS)	Average RRF (Initial)	Reported RRF (CCV)	Recalculated RRF (CCV)	Reported % D	Recalculated %D
1	NT1020062902	6/29/2020	Phenol	(DCB)	1.51555	1.61191	1.61191	6.4	6.4
			Naphthalene	(NPT)	0.98495	1.01749	1.01749	3.3	3.3
	NT10		Fluorene	(ANT)	1.53228	1.70139	1.70139	11.0	11.0
			Phenanthrene	(PHN)	1.07498	1.09561	1.09561	1.9	1.9
			Fluoranthene	(CRY)	1.73035	1.81567	1.81567	4.9	4.9
			BEHP	(DNOP)	0.48659	0.50856	0.50856	4.5	4.5
			Benzo(g,h,i)perylen	e (PRY)	1.23261	1.22650	1.22650	0.5	0.5

LDC #: 486 80 IZA

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	5.00	3.732	66.6	66.6	0
2-Fluorobiphenyl		3.5gq	71.9	71.9	
Terphenyl-d14		3.650	73.0	73.0	
Phenol-d5	7.50	4.567	60.9	60.9	
2-Fluorophenol		4.603	61.4	61.4	
2,4,6-Tribromophenol		5.912	78.8	78-5	
2-Chlorophenol-d4	7	5,081	67.7	67.7	
1,2-Dichlorobenzene-d4	5,00	3.746	64.9	64.9	X

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:__

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

.

LDC #:_ 48680 I20

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page: <u>1_of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>_</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

14/15

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: _____

Compound	Ad	ded Arg)	Sample Concentration (45, kg)	Spiked Concer (<i>V</i> G	ntration	Matrix Percent F		<u>Matrix Spike</u> Percent F		MS/I	<u>MSD</u>
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
Phenol	500	500	υ	438	925	87.0	87.6	85.1	35.0	2,93	3.0
N-Nitroso-di-n-propylamithe				•							
4-Chloro-3-methylphenoi											
Acenaphthene	500	500	0	4 28	421	85.7	85.6	84.2	84.2	1.76	1.65
Pentachlorophenol											
Pyrene	500	िन्द	39.8	480	468	88.1	88.0	85.7	85.6	2,46	2,53

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 486812a

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: JVG

Page: 1 of 1

2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: ____

BI#0662-BS1

		Spike Spike <u>LCS</u>				IC				
Compound	(45)			(te)	Percent I	Recovery	Percent	Recovery	R	PD
					Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol	500	NA	432	NA	86.5	86.6				
N-Nitroso-di-n-proputamine										
4-Chiero-3-methylphenol										
Acenaphthene	500		427		84.4	84.4				7
Pentachlorophenol										
Pyrene	500	X	474	8	94.7	94.8				
							· · · · · · · · · · · · · · · · · · ·			

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 48680 ILa

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u>1_of_1_</u>
Reviewer:	JVG
2nd reviewer:	A

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

N N/A N N/A

Were all reported results recalculated and verified for all level IV samples?
 Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_{s})(I_{s})(V_{t})(DF)(2.0)$ $(A_{s})(RRF)(V_{o})(V_{i})(\%S)$

- A_x = Area of the characteristic ion (EICP) for the compound to be measured
 A_{is} = Area of the characteristic ion (EICP) for the specific
- internal standard I_s = Amount of internal standard added in nanograms (ng)
- V_o = Volume or weight of sample extract in milliliters (ml) or grams (g).
- V_I = Volume of extract injected in microliters (ul)
- V_t = Volume of the concentrated extract in microliters (ul) Df = Dilution Factor
- Df = Dilution Factor. %S = Percent solids, applicable to soil and solid matrices only.
- 2.0 = Factor of 2 to account for GPC cleanup

Example: Sample I.D. #2, _7Y $Conc. = \frac{(1974332)(4.0)(100)}{(45954)(1.730346)(25.48g)(0.385)}$ = 1159.5 = 1160 ug /kg

#	Sample ID	Compound	Reported Concentration (149 Kg	Calculated Concentration (りた)	Qualification
	2	ΥY	1160	1160	
		· · · · · · · · · · · · · · · · · · ·			
	·	· · · · · · · · · · · · · · · · · · ·			
				·····	

LDC Report# 48680I2b

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
--------------------	---------------

LDC Report Date: August 7, 2020

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0194

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS356	20F0194-01	Sediment	06/10/20
LDW20-SS364	20F0194-02	Sediment	06/10/20
LDW20-SS338	20F0194-03	Sediment	06/10/20
LDW20-SS338-FD	20F0194-04	Sediment	06/10/20
LDW20-SS336	20F0194-05	Sediment	06/10/20
LDW20-SS106	20F0194-06	Sediment	06/10/20
LDW20-SS121	20F0194-07	Sediment	06/10/20
LDW20-SS123	20F0194-08	Sediment	06/10/20
LDW20-SS123-FD	20F0194-09	Sediment	06/10/20
LDW20-SS125	20F0194-10	Sediment	06/10/20
LDW20-SS130	20F0194-11	Sediment	06/10/20
LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
LDW20-SS135	20F0194-13	Sediment	06/10/20
LDW20-SS135MS	20F0194-13MS	Sediment	06/10/20
LDW20-SS135MSD	20F0194-13MSD	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 13.6°C, 15.6°C, and 20.1°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/26/20	N-Nitrosodiphenylamine	41.9	All samples in SDG 20F0194	UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIF0662-SRM2	1,4-Dichlorobenzene 1,2-Dichlorobenzene	32.0 (34-166) 29.8 (36-164)	All samples in SDG 20F0039	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ

X. Field Duplicates

Samples LDW20-SS338 and LDW20-SS338-FD, samples LDW20-SS123 and LDW20-SS123-FD, and samples LDW20-SS130 and LDW20-SS130-FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SS338	LDW20-SS338-FD	RPD
Benzyl alcohol	25.4	34.2	30

	Concentra		
Compound	LDW20-SS338	LDW20-SS338-FD	RPD
Benzoic acid	58.9	51.5	13
Pentachlorophenol	2.4	2.6	8

	Concentra		
Compound	LDW20-SS123	LDW20-SS123-FD	RPD
1,4-Dichlorobenzene	17.7	5.0U	Not calculable
Benzyl alcohol	9.3	7.3	24

	Concentra		
Compound	LDW20-SS130	LDW20-SS130-FD	RPD
1,4-Dichlorobenzene	1.9	1.7	11
Benzyl alcohol	4.7	20.0U	Not calculable

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and SRM %R, data were qualified as estimated in thirteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0194

Sample	Compound	Flag	A or P	Reason
LDW20-SS356 LDW20-SS364 LDW20-SS338 LDW20-SS338-FD LDW20-SS36 LDW20-SS106 LDW20-SS126 LDW20-SS123 LDW20-SS123-FD LDW20-SS125 LDW20-SS130 LDW20-SS130-FD LDW20-SS135	N-Nitrosodiphenylamine	UJ (all non-detects)	A	Initial calibration verification (%D)
LDW20-SS356 LDW20-SS364 LDW20-SS338 LDW20-SS338-FD LDW20-SS366 LDW20-SS106 LDW20-SS121 LDW20-SS123 LDW20-SS123-FD LDW20-SS125 LDW20-SS130 LDW20-SS130-FD LDW20-SS130-FD	1,4-Dichlorobenzene 1,2-Dichlorobenzene	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Standard reference materials (%R)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: 08/06/20 Page: _____0f___ Reviewer: ______0 2nd Reviewer: ______

Laboratory: Analytical Resources, Inc.

LDC #: <u>4868012b</u> SDG #: 20F0194

S v v A METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	SW/A	Cooler temps = 13.6°C, 15.6°C, 20.1°C (Insufficient to the
И.	GC/MS Instrument performance check	A	, , , , ,
111.	Initial calibration/ICV	A ISW	ICAL = 20% M IONE 30?
IV.	Continuing calibration	A	COV = 20%
V.	Laboratory Blanks	A	
VI.	Field blanks	Z	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Á	
IX.	Laboratory control samples	SW	LCS, SRM
Х.	Field duplicates	SW	D = 3/4 8/9 11/12
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	Ä	
XIII.	Target compound identification	A	
XIV.	System performance	À	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS356	20F0194-01	Sediment	06/10/20
2	LDW20-SS364	20F0194-02	Sediment	06/10/20
3	LDW20-SS338 D,	20F0194-03	Sediment	06/10/20
4	LDW20-SS338-FD D	20F0194-04	Sediment	06/10/20
5	LDW20-SS336	20F0194-05	Sediment	06/10/20
6	LDW20-SS106	20F0194-06	Sediment	06/10/20
7	LDW20-SS121	20F0194-07	Sediment	06/10/20
8	LDW20-SS123	20F0194-08	Sediment	06/10/20
9	LDW20-SS123-FD D7	20F0194-09	Sediment	06/10/20
10	LDW20-SS125	20F0194-10	Sediment	06/10/20
11	LDW20-SS130	20F0194-11	Sediment	06/10/20
12	LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
13_	LDW20-SS135	20F0194-13	Sediment	06/10/20
14	LDW20-SS135MS	20F0194-13MS	Sediment	06/10/20

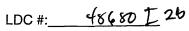
VALIDATION COMPLETENESS WORKSHEET

Stage 4

SDG #: <u>20F0194</u> Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 48680l2b

Date: <u>68/04 /20</u> Page: <u>2</u> of <u>2</u> Reviewer: <u>2</u> 2nd Reviewer: <u>2</u>


METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

15	LDW20-SS135MSD	 20F0194-13MSD	Sediment	06/10/20
16		 		
17		 		
18		 	l	
Notes		 		
2	BIF0662-BU2			

VALIDATION FINDINGS CHECKLIST

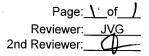
Page:_1_of_2_ Reviewer:__JVG 2nd Reviewer:__(

Method: Semivolatiles (EPA SW 846 Method 8270C-SIM)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	\square			
Was cooler temperature criteria met?		/		
II. GC/MS Instrument performance check (Not required)				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?	/			
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	\square			
Were all percent relative standard deviations (%RSD) $\leq \frac{20}{15\%}$ and relative response factors (RRF) ≥ 0.05 ?	1			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification	• ,	 ,		
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		r		
Were all percent differences (%D) ≤ 2 0%?		\square		
IV. Continuing calibration	.			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?				
V. Laboratory Blanks	·	e7	,	
Was a laboratory blank associated with every sample in this SDG?	\square			
Was a laboratory blank analyzed for each matrix and concentration?]		
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.				
VI. Field blanks	.	·		
Were field blanks identified in this SDG?		1		
Were target compounds detected in the field blanks?			\square	
VII. Surrogate spikes		,		
Were all surrogate percent differences (%R) within QC limits?		\square		
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			\angle	[
If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?			1	

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: JVG 2nd Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates	/	,		•
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
IX. Laboratory control samples				
Was an LCS analyzed per analytical batch?	[
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		•		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	/			
Were target compounds detected in the field duplicates?		1		
XI. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?		,		
Were retention times within + 30 seconds of the associated calibration standard?				
XII. Compound quantitation			_	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			~
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	_			
Were chromatogram peaks verified and accounted for?	/			
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	\square			

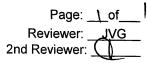

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioat
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	0000. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW. 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

LDC #: 48680 I26

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification


METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

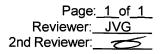
Please see o	qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
YN N/A	Was an initial calibration verification standard analyzed after each ICAL for each instrument?
<u>Y N N/A</u> Y <u>N N/A</u>	Were all %D within the validation criteria of ≤ 20/ 30% %D ?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><20.</u> 0%//30%)	Associated Samples	Qualifications
	06/26/20	SIF0393-SCV	1 QQ	41.9	Ă11 (N))	J/UJ/A
		<u></u>				
					L	
			h			
					······	
┣──						
						······
			l		·	

LDC #: 48680 + 26

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) (SRM

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)


Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\underline{(Y)}$ N N/A Was a LCS required?

YN N/A YN N/A

A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	L %R (I	.CS Limits)	LCSD %R (Limits)		RPD (Limits)	Associated Samples	Qualifications
	BIFOGG2-SRM2	ш	32,0	(34-166)	()	()	All (ND +Det)	J/UJ/P
		F	29.8	(36-164)	()	()		}
				()	()	()		· · · · · · · · · · · · · · · · · · ·
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
	*			()	· ()	()		
				()	()	()		
				()	()	()		
				()	()	()	·	
				()	()	()		
	"			()	()	()		
				()	()	()		
)	()	()		
				()	()	()		
				() ()	()	()		
				()	(<u> </u>	()		
				()	(<u> </u>		· · · · · · · · · · · · · · · · · · ·	
				()	()			
				()	(· · ·			
	·			()	(<u> </u>			
					(·····			

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GCMS SVOA (EPA SW 846 Method 8270E-SIM) Y N NA Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs? MINA

	Concentrat	tion (ug/Kg)	
Compound	3	4	RPD
QQQ	25.4	34.2	30
PPP	58.9	51.5	13
TT	2.4	2.6	8

	Concentra			
Compound	8 9		RPD	
E	17.7	5.0U	NC	
QQQ	9.3	7.3	24	

	Concentra		
Compound	11	12	RPD
E	1.9	1.7	11
QQQ	4.7	20.0U	NC

V:\Josephine\FIELD DUPLICATES\48680I2b windward duwamish.wpd

LDC #: 4868012b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E-SIM)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of Compound

 C_x = Concentration of compound,

S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated	
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD	
#	Standard ID	Date	Compound (IS)	(RRF 5 std)	(RRF 5 std)	(Initial)	(Initial)			
1	ICAL	06/26/20	1,4-DCB (DCB	1.37648	1.37648	1.36262	1.36262	2.6	2.6	
	SIM		1,2,4-TCB (NPT	0.39447	0.39447	0.41526	0.41526	7.6	7.6	
Į –	NT10		N-Nitrosodiphenylamine (PH	N) 0.46933	0.46933	0.48124	0.48124	6.7	6.7	

LDC # 4868012a

VALIDATION FINDINGS WORSHEET Continuing Calibration Calculation Verification

Page: <u>1 of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u> </u>

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E-SIM)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound,

Ais = Area of associated internal standard

Cis = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
		Calibration			Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound	(IS)	(Initial)	(CCV)	(CCV)		
1	NT1020062902	6/29/2020	1,4-DCB	(DCB)	1.36262	1.33210	1.33210	2.2	2.2
1 1			1,2,4-TCB	(NPT)	0.41526	0.40708	0.40708	2.0	2.0
	NT10		Pentachlorophenol	(PHN)	0.48124	0.49999	0.49999	3.9	3.9

LDC #:___48680 [26

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 82700)- SIM

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:	SS = Surrogate Spiked								
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference				
Nitrobenzene-d5									
2-Fluorobiphenyl									
Terphenyl-d14	5.00	3,445	68.9	68.9	Ó				
Phenol-d5									
2-Fluorophenol	7.50	4.619	61.6	61.6	6				
2,4,6-Tribromophenol									
2-Chlorophenol-d4									
1,2-Dichlorobenzene-d4									

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4				······································	· · · · · · · · · · · · · · · · · · ·

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
1,2-Dichlorobenzene-d4					

LDC #: 48680 J26

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

	Page:_	<u>1_of_1</u>
	Reviewer:_	JYG
2nd	Reviewer:	A

SVTA METHOD: GC/MS PAFI (EPA SW 846 Method 8270C-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

MS/MSD samples: ____

Where: SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

SC = Sample concentation

MSDC = Matrix spike duplicate concentration

RPD = I MSC - MSC I * 2/(MSC + MSDC)

14/15

Compound	l Ac	pike Ided) Kg)	Sample Concentration (45 14	Spiked Sample Concentration (Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
Acenaphthene											
Pyrene											
PGP	1500	(500	0	1310	1300	87.1	87.1	86.8	86.7	0. 403	0.77
		ļ									
						~				·	
					·						

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 48680 I26

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: <u>JVG</u> 2nd Reviewer: ()

Page: 1 of 1

SV7A E METHOD: GC/MS PAH (EPA SW 846 Method 8270E-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: BIF 0662 - BS2

Compound	Ad	bike ded Kg)	Spike Concentration (45 kg)			I CS Percent Recovery		LCSD Percent Recovery		LCS/LCSD RPD	
	LCS		LCS		Reported	Recalc.	Reported	Recalc.	Reported	Recalculated	
Acenaphthene											
Pyrene											
POP	1500	NA	1300	NA	86-8	86.8					
	-										

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

RECALC.wpd

LDC #	#:	48680726	VALIDATION FIN Sample Calcu		GS WORKSHEE		Page: <u>1</u> of_ Reviewer: JVG		
METH	IOD: (GC/MS PAH (EP)	A SW 846 Method 8270C-SIM			2n	Reviewer: <u>JVG</u> d reviewer:		
YN YN	<u>N/A</u> N/A		orted results recalculated and alculated results for detected				e reported results?		
Conc	entratic	$n = \frac{(A_x)(I_x)(V_i)(DF)(2}{(A_{is})(RRF)(V_o)(V_i)(2)}$	<u>2.0)</u> %S)		nple:	1 C Den			
A _x	=	Area of the characte compound to be me	eristic ion (EICP) for the easured	Sam	ple I.D,	1.9.103			
A_{is}	=	Area of the characte internal standard	eristic ion (EICP) for the specific		(1037) (4.				
ا _s	=		standard added in nanograms (ng)	Con	$c_{n} = \frac{(100) (100)}{(1571) (1.3)}$	$\frac{1}{6262}$ (17 25 a	$\frac{60}{2}$		
V _o	=	grams (g).	f sample extract in milliliters (ml) or		1 02 . /	(1.559)	/ (0.5///)		
V	=	Volume of extract in	jected in microliters (ul)	$Conc. = \frac{(1037)(4.0)(1 \text{ mL})(1000)}{(157111)(1.36262)(17.359)(0.5777)}$ $= 1.93 \text{ Mg/Key}$					
Vt	=	Volume of the conce	entrated extract in microliters (ul)						
Df	=	Dilution Factor.							
%S	-	only.	icable to soil and solid matrices						
2.0	=	Factor of 2 to accou	nt for GPC cleanup	L					
#		Sample ID	Compound		Reported Concentration (145, 145	Calculated Concentration (46 /Kg)	Qualification		
		7	1, 9-DCB		1.9	, ,			
			· · · · · · · · · · · · · · · · · · ·						

Page:	<u>_1_of_1</u>
Reviewer:	JVG
nd reviewer:	6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4
LDC Report Date:	August 7, 2020
Parameters:	Hexachlorobenzene
Validation Level:	Stage 2B
Laboratory:	Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0194

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS356	20F0194-01	Sediment	06/10/20
LDW20-SS364	20F0194-02	Sediment	06/10/20
LDW20-SS338	20F0194-03	Sediment	06/10/20
LDW20-SS338-FD	20F0194-04	Sediment	06/10/20
LDW20-SS336	20F0194-05	Sediment	06/10/20
LDW20-SS106	20F0194-06	Sediment	06/10/20
LDW20-SS121	20F0194-07	Sediment	06/10/20
LDW20-SS123	20F0194-08	Sediment	06/10/20
LDW20-SS123-FD	20F0194-09	Sediment	06/10/20
LDW20-SS125	20F0194-10	Sediment	06/10/20
LDW20-SS130	20F0194-11	Sediment	06/10/20
LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
LDW20-SS135	20F0194-13	Sediment	06/10/20
LDW20-SS356MS	20F0194-01MS	Sediment	06/10/20
LDW20-SS356MSD	20F0194-01MSD	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 13.6°C, 15.6°C, and 20.1°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples LDW20-SS338 and LDW20-SS338-FD, samples LDW20-SS123 and LDW20-SS123-FD, and samples LDW20-SS130 and LDW20-SS130-FD were identified as field duplicates. No results were detected in any of the samples.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

AL	IDATION	COMPL	ETENESS	WORKSHEET

Stage 2B

LDC #:_	4868013a	VALI
SDG #:_	20F0194	
Laborato	ory: Analytical Resour	<u>ces, Inc.</u>

Note:

Date: 08/04 /20 Page: 1 of Reviewer: 2nd Reviewer:

METHOD: GC Hexachlorobenzene (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comm	ents
1.	Sample receipt/Technical holding times	SHY A	Cooler temps = 13.6° 1	ents 15.6°C 20,1°C (Insuffic) Time to
11.	GC Instrument Performance Check	· ' N '		(time to
111.	Initial calibration/ICV	AIA	10AL = 202 COV = 302	1015203
IV.	Continuing calibration	A	CW 5 30%	
V.	Laboratory Blanks	A		
<u>VI.</u>	Field blanks			
VII.	Surrogate spikes / (5		<u></u>	
VIII.	Matrix spike/Matrix spike duplicates	Ă A		
IX.	Laboratory control samples	Â	103	
<u>X.</u>	Field duplicates	ND	D= 3/4 8/9	11/12
XI.	Compound quantitation/RL/LOQ/LODs	N	/	
XII.	Target compound identification	N		
XIII.	System Performance	N		
XIV	Overall assessment of data			

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
 1	LDW20-SS356	20F0194-01	Sediment	06/10/20
2	LDW20-SS364	20F0194-02	Sediment	06/10/20
3	LDW20-SS338	20F0194-03	Sediment	06/10/20
4	LDW20-SS338-FD D	20F0194-04	Sediment	06/10/20
5	LDW20-SS336	20F0194-05	Sediment	06/10/20
+ 6	LDW20-SS106	20F0194-06	Sediment	06/10/20
7_	LDW20-SS121	20F0194-07	Sediment	06/10/20
8	LDW20-SS123	20F0194-08	Sediment	06/10/20
9	LDW20-SS123-FD D_{Y}	20F0194-09	Sediment	06/10/20
10	LDW20-SS125	20F0194-10	Sediment	06/10/20
- 11_	LDW20-SS130 D3	20F0194-11	Sediment	06/10/20
12	LDW20-SS130-FD D	20F0194-12	Sediment	06/10/20
13_	LDW20-SS135	20F0194-13	Sediment	06/10/20
14	LDW20-SS356MS	20F0194-01MS	Sediment	06/10/20
15	LDW20-SS356MSD	20F0194-01MSD	Sediment	06/10/20

BIF0599- BLK1

L:\Windward\Duwamish\48680I3aW.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwan	nish AOC4
--------------------------	-----------

LDC Report Date: August 10, 2020

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0194

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS356	20F0194-01	Sediment	06/10/20
LDW20-SS364	20F0194-02	Sediment	06/10/20
LDW20-SS338	20F0194-03	Sediment	06/10/20
LDW20-SS338-FD	20F0194-04	Sediment	06/10/20
LDW20-SS336	20F0194-05	Sediment	06/10/20
LDW20-SS106	20F0194-06	Sediment	06/10/20
LDW20-SS121	20F0194-07	Sediment	06/10/20
LDW20-SS123	20F0194-08	Sediment	06/10/20
LDW20-SS123-FD	20F0194-09	Sediment	06/10/20
LDW20-SS125	20F0194-10	Sediment	06/10/20
LDW20-SS130	20F0194-11	Sediment	06/10/20
LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
LDW20-SS135	20F0194-13	Sediment	06/10/20
LDW20-SS364MS	20F0194-02MS	Sediment	06/10/20
LDW20-SS364MSD	20F0194-02MSD	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 13.6°C, 15.6°C, and 20.1°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Retention time windows were established as required by the method.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
06/10/20	SIF0176-SCV1	2C	Aroclor-1260	21.0	All samples in SDG 20F0194	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

Samples LDW20-SS338 and LDW20-SS338-FD, samples LDW20-SS123 and LDW20-SS123-FD, and samples LDW20-SS130 and LDW20-SS130-FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SS338	LDW20-SS338-FD	RPD
Aroclor 1248	26.2	26.3	0
Aroclor 1254	33.8	33.8	0
Aroclor 1260	55.3	36.8	40

	Concentration (ug/Kg)		
Compound	LDW20-SS123	LDW20-SS123-FD	RPD
Aroclor 1248	25.0	27.2	8
Aroclor 1254	32.8	34.8	6
Aroclor 1260	36.7	130	112

	Concentra		
Compound	LDW20-SS130	LDW20-SS130-FD	RPD
Aroclor 1248	37.3	35.4	5
Aroclor 1254	53.3	46.1	14
Aroclor 1260	99.6	132	28

X. Compound Quantitation

All compound quantitations met validation criteria.

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SS106	Aroclor-1248	42.5	J (all detects)	A

XI. Target Compound Identification

All target compound identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and RPD between two columns, data were qualified as estimated in thirteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0194

Sample	Compound	Flag	A or P	Reason
LDW20-SS356 LDW20-SS364 LDW20-SS338 LDW20-SS338-FD LDW20-SS336 LDW20-SS106 LDW20-SS121 LDW20-SS123 LDW20-SS123 LDW20-SS125 LDW20-SS130 LDW20-SS130 LDW20-SS130-FD LDW20-SS135	Aroclor-1248 Aroclor-1254 Aroclor-1260	J (all detects) J (all detects) J (all detects)	A	Initial calibration verification (%D)
LDW20-SS106	Aroclor-1248	J (all detects)	A	Compound quantitation (RPD between two columns)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: 08/64/2 Page: of 7 Reviewer: 04 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

LDC #: 4868013b

SDG #: 20F0194

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments (Lusufficient
١.	Sample receipt/Technical holding times	SIN / A	Cooler temps = 13.6°C 15.6°C, 20.1°C (Text)
<u>II.</u>	Initial calibration/ICV	Â,	$\frac{\text{Corder femps} = 13.6^{\circ}\text{C} \ 15.6^{\circ}\text{C} \ 20.1^{\circ}\text{C}}{1 \text{ CV} \leq 202}$
111.	Continuing calibration	Á	CAVE Zo/s
IV.	Laboratory Blanks	A	
V.	Field blanks	Ń.	
VI.	Surrogate spikes / (>	A/A	
VII.	Matrix spike/Matrix spike duplicates	Á	
VIII.	Laboratory control samples	Á	LOS 10, SRM
IX.	Field duplicates	ŚW	D = 3/4 8/9 11/12
Х.	Compound quantitation/RL/LOQ/LODs	SW	
XI.	Target compound identification	A	
	Overall assessment of data	A	

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
7	LDW20-SS356	20F0194-01	Sediment	06/10/20
2+	LDW20-SS364	20F0194-02	Sediment	06/10/20
³ 4	LDW20-SS338	20F0194-03	Sediment	06/10/20
4	LDW20-SS338-FD <i>b</i> ,	20F0194-04	Sediment	06/10/20
5	LDW20-SS336	20F0194-05	Sediment	06/10/20
6	LDW20-SS106	20F0194-06	Sediment	06/10/20
7	LDW20-SS121	20F0194-07	Sediment	06/10/20
8	LDW20-SS123	20F0194-08	Sediment	06/10/20
9	LDW20-SS123-FD DV	20F0194-09	Sediment	06/10/20
10	LDW20-SS125	20F0194-10	Sediment	06/10/20
11_	LDW20-SS130 2m	20F0194-11	Sediment	06/10/20
12	LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
13_	LDW20-SS135	20F0194-13	Sediment	06/10/20
14	LDW20-SS364MS	20F0194-02MS	Sediment	06/10/20
15	LDW20-SS364MSD	20F0194-02MSD	Sediment	06/10/20
16				
17	BIF0602-BULL	<u> </u>		

VALIDATION FINDINGS CHECKLIST

Page: 1 of 1 Reviewer: JVG 2nd Reviewer:

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

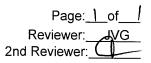
Validation Area	Yes	No	NA	Findings/Comments			
I. Technical holding times	I. Technical holding times						
Were all technical holding times met?	/						
Was cooler temperature criteria met?							
II. GC/ECD Instrument performance check							
Was the instrument performance found to be acceptable?			/				
Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift?			/				
Were endrin and 4,4'-DDT breakdowns \leq 15% for individual breakdown in the Evaluation mix standards?			/	·			
Illa. Initial calibration							
Did the laboratory perform a 5 point calibration prior to sample analysis?							
Were all percent relative standard deviations (%RSD) < 20%?							
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?							
Were the RT windows properly established?			ļ	3.			
IIIb. Initial calibration verification				27 ¹ .			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?							
Were all percent differences (%D) <u><</u> 20%?							
IV. Continuing calibration							
Was a continuing calibration analyzed daily?							
Were all percent differences (%D) ≤ 20%?							
Were all the retention times within the acceptance windows?							
V. Laboratory Blanks							
Was a laboratory blank associated with every sample in this SDG?							
Was a laboratory blank analyzed for each matrix and concentration?							
Was there contamination in the laboratory blanks?		/					
VI. Field blanks							
Were field blanks identified in this SDG?		\square					
Were target compounds detected in the field blanks?				· · · · · · · · · · · · · · · · · · ·			
VII. Surrogate spikes/Internal Standards							
Were all surrogate percent recovery (%R) within the QC limits?							
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?							

VALIDATION FINDINGS CHECKLIST

	Page:_	<u>1_</u> of	2
Re	viewer:	JV	Ð
2nd Re	viewer:	\Box	\checkmark

Validation Area	Yes	No	NA	Findings/Comments		
If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R?			/			
Were internal standard area counts within <u>+</u> 50% of the average area calculated during calibration?						
VII. Matrix spike/Matrix spike duplicates						
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?						
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?						
IX. Laboratory control samples						
Was an LCS analyzed per extraction batch?						
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?						
X. Field duplicates						
Were field duplicate pairs identified in this SDG?	\langle					
Were target compounds detected in the field duplicates?						
XI. Compound quantitation			_			
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/					
Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?	/					
Were relative percent difference (RPD) of the results between two columns \leq 40%?		/				
XII. Target compound identification						
Were the retention times of reported detects within the RT windows?						
XIII. Overall assessment of data						
Overall assessment of data was found to be acceptable.		_				

14


VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ cis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	W
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	WW.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:_____

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Wha	at type of initial calibration verification calculation was performed? <u>/</u> %D or <u>%</u> R <u>N/A</u> Was an initial calibration verification standard analyzed after each ICAL for each instrument?									
		Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?								
#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications			
	06/10/20	SIF0176-SCV	1 20	BB	21.0	All (Pet)	JUJA			
							(qual Z AA BB)			
							0 1 1 2			
		· · · · · · · · · · · · · · · · · · ·								
-										
					·					
 										
	+									
	+									
							+			
	+									
							+			
	<u> </u>									
						· · · · · · · · · · · · · · · · · · ·				
	<u> </u>	, <u>, , , , , , , , , , , , , , , ,</u>				· · · · · · · · · · · · · · · · · · ·				

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: <u>1 of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>S</u>

METHOD: GC PCB (EPA SW 846 Method 8082A)

 YN NA
 Were field duplicate pairs identified in this SDG?

 VN NA
 Were target analytes detected in the field duplicate pairs?

	Concentra		
Compound	3	4	RPD
Aroclor 1248	26.2	26.3	0
Aroclor 1254	33.8	33.8	0
Arocior 1260	55.3	36.8	40

	Concentra	222	
Compound	8	9	RPD
Aroclor 1248	25.0	27.2	8
Aroclor 1254	32.8	34.8	6
Aroclor 1260	36.7	130	112

	Concentral	000	
Compound	11	12	RPD
Aroclor 1248	37.3	35.4	5
Aroclor 1254	53.3	46.1	14
Aroclor 1260	99.6	132	28

V:\Josephine\FIELD DUPLICATES\48680I3b windward duwamish.wpd

LDC #: 4868 J 35

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: _	of
Reviewer:	_JVG
2nd Reviewer:	A

___GC ___ HPLC METHOD:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors ≤40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD)%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	Z	6	425	J dets A
			· · · · · · · · · · · · · · · · · · ·	
Comm	nents: See sample calculation ver	ification worksheet for recalculations		

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>1</u>	_ of _1_
Reviewer:	JVG
2nd Reviewer:	1

METHOD: GC PCBs (EPA SW 846 Method 8082A)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound C_x = Concentration of compound, S= Standard deviation of the RRFs, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(250 std)	(250 std)	(Initial)	(Initial)		
1	ICAL	6/10/2020	1260-1 ZB5 (HBP)	0.03748	0.03748	0.03633	0.03633	1.944	1.946
	ECD7		1260-1 ZB35 (HBP)	0.04683	0.04683	0.04865	0.04865	13.540	13.537

LDC # <u>4868013b</u>

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: <u>1 of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer:

METHOD: GC PCBs (EPA SW 846 Method 8082A)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
		Calibration		Conc	Conc	Conc	% D	%D
#	Standard ID	Date	Compound (IS)		(CCV)	(CCV)		
1	20062403ECD7	6/24/2020	1260-1 ZB5 (HBP)	250.0	270.6	270.6	8.2	8.2
			1260-1 ZB35 (HBP)	250.0	205.8	205.8	17.7	17.7
2	20062428ECD7	6/24/2020	1260-1 ZB5 (HBP)	250.0	286.1	286.1	10.6	14.5
			1260-1 ZB35 (HBP)	250.0	202.5	202.5	3.6	19.0

LDC #: 48680 I 35

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd reviewer: <u>></u>

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 🕁 🔄

Surrogate Surrogate Percent Percent Percent Surrogate Column Spiked Found Recovery Recovery Difference Reported Recalculated \$8. 7 76.6 40.0 76.5 Tetrachloro-m-xylene 61 30.6 O Tetrachloro-m-xylene 40.0 35.3 88. 2 88.2 Col Decachlorobiphenyl О Decachlorobiphenyl

Sample ID:_

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:_____

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:

LDC #: 486 80 [36

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page: <u>1_of_1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>_</u>___

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration

RPD = I MS - MSD I * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery

MS/MSD samples: 14/15

	S	pike dded	Sample		Sample	Matrix	c Spike	Matrix Spik	e Duplicate	MS	MSD
Compound		g k)	Concentration (劣人ち)		ntration	Percent	Recovery	Percent	Recovery	R	PD
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
gamma-BHC											
4,4'-DDT											
Aroclor 1260	92.0	99.6	36.]	116	20	86.8	86.8	84,2	84,2	3.14	3.39
											-

Comments: <u>Refer ot Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #:____48680 [36

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page: 1 of 1 Reviewer: JVG 2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

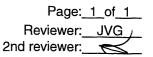
% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery


LCS/LCSD samples:____BIFUG02-BS/

	S	pike	Spike	d Sample	L	.CS	LC	SD	LC	S/LCSD	
Compound	<u>,</u> û	dded 9 K (entration	Percent	Percent Recovery		Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.	
gamma-BHC											
4,4'-DDT					-						
Aroclor 1260	10]	61	98.5	98]	97.7	97.5	97.3	97, 1	0.427	0467	
									· · · · · · · · · · · · · · · · · · ·		

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 48680136

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration =((A) (Fv) (Df) RF) (Vs or Ws) (%S/100)
A = Area of compound Fv = Final Volume of Df = Dilution Factor RF = Average Response Vs = Initial Volume of Ws = Initial Weight of %S = Percent Solid	f extract onse Factor of compound in ICal f sample

Example: Sample I.D. $\frac{12}{1260}$ (Col 1) $\frac{12}{1260}$ (Col 1) Conc. = (32435)(85) (103753)(0.03633)1260-1 = 688.8 $1260 \text{ Ave.} = \frac{688.87 + 558.7 + 642.1 + 579.9 + 852.6}{5}$ = 664.34 $final conc. = \frac{(664.34)(2.5ml)}{(17.88g)(0.7621)}$ = 132.3 ug/kg

#	Sample ID	Compound	Reported Concentration (14) Tel	Calculated Concentration (45 /15	Qualification
	12	1260	132 0	32	-
				ļ	
			<u></u>	L.	

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 10, 2020

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0194

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS356	20F0194-01	Sediment	06/10/20
LDW20-SS364	20F0194-02	Sediment	06/10/20
LDW20-SS338	20F0194-03	Sediment	06/10/20
LDW20-SS338-FD	20F0194-04	Sediment	06/10/20
LDW20-SS336	20F0194-05	Sediment	06/10/20
LDW20-SS106	20F0194-06	Sediment	06/10/20
LDW20-SS121	20F0194-07	Sediment	06/10/20
LDW20-SS123	20F0194-08	Sediment	06/10/20
LDW20-SS123-FD	20F0194-09	Sediment	06/10/20
LDW20-SS125	20F0194-10	Sediment	06/10/20
LDW20-SS130	20F0194-11	Sediment	06/10/20
LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
LDW20-SS135	20F0194-13	Sediment	06/10/20
LDW20-SS125MS	20F0194-10MS	Sediment	06/10/20
LDW20-SS125MSD	20F0194-10MSD	Sediment	06/10/20
LDW20-SS125DUP	20F0194-10DUP	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Silver	0.02 mg/Kg	LDW20-SS125 LDW20-SS130 LDW20-SS130-FD LDW20-SS135
ІСВ/ССВ	Silver	0.02 ug/L	All samples in SDG 20F0194

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
LDW20-SS125	Silver	0.27 mg/Kg	0.27U mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
LDW20-SS130	Silver	0.14 mg/Kg	0.14U mg/Kg
LDW20-SS130-FD	Silver	0.13 mg/Kg	0.13U mg/Kg
LDW20-SS135	Silver	0.09 mg/Kg	0.09U mg/Kg
LDW20-SS356	Silver	0.17 mg/Kg	0.17U mg/Kg
LDW20-SS364	Silver	0.2 mg/Kg	0.2U mg/Kg
LDW20-SS338	Silver	0.24 mg/Kg	0.24U mg/Kg
LDW20-SS338-FD	Silver	0.27 mg/Kg	0.27U mg/Kg
LDW20-SS336	Silver	0.16 mg/Kg	0.16U mg/Kg
LDW20-SS106	Silver	0.18 mg/Kg	0.18U mg/Kg
LDW20-SS121	Silver	0.18 mg/Kg	0.18U mg/Kg
LDW20-SS123	Silver	0.17 mg/Kg	0.17U mg/Kg
LDW20-SS123-FD	Silver	0.14 mg/Kg	0.14U mg/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT379FDMS/MSD (LDW20-SS356 LDW20-SS364 LDW20-SS338 LDW20-SS338-FD LDW20-SS336 LDW20-SS366 LDW20-SS106 LDW20-SS121 LDW20-SS123 LDW20-SS123-FD)	Silver	34.1 (75-125)	43.2 (75-125)	J (all detects)	A

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT334MS/MSD (LDW20-SS356 LDW20-SS364 LDW20-SS388 LDW20-SS388-FD LDW20-SS366 LDW20-SS106 LDW20-SS121 LDW20-SS123 LDW20-SS123-FD)	Mercury	-	127 (75-125)	J (all detects)	A
LDW20-SS125MS/MSD (LDW20-SS125 LDW20-SS130 LDW20-SS130-FD LDW20-SS135)	Mercury	138 (75-125)	143 (75-125)	J (all detects)	A
LDW20-SS125MS/MSD (LDW20-SS125 LDW20-SS130 LDW20-SS130-FD LDW20-SS135)	Silver	62.5 (75-125)	60.7 (75-125)	J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LDW20-IT379FDMS/MSD (LDW20-SS356 LDW20-SS364 LDW20-SS338 LDW20-SS338-FD LDW20-SS336 LDW20-SS106 LDW20-SS121 LDW20-SS123 LDW20-SS123-FD)	Silver	23 (≤20)	J (all detects)	A

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

Samples LDW20-SS338 and LDW20-SS338-FD, samples LDW20-SS123 and LDW20-SS123-FD, and samples LDW20-SS130 and LDW20-SS130-FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ation (mg/Kg)	
Analyte	LDW20-SS338	LDW20-SS338-FD	RPD
Arsenic	17.0	16.5	3
Cadmium	0.26	0.30	14
Chromium	27.1	27.6	2
Copper	54.8	55.2	1
Lead	17.9	18.6	4
Mercury	0.143	0.161	12
Silver	0.24	0.27	12
Zinc	111	112	1

	Concentration (mg/Kg)		
Analyte	LDW20-SS123	LDW20-SS123-FD	RPD
Arsenic	7.34	6.66	10
Cadmium	0.26	0.20	26
Chromium	20.1	19.0	6
Copper	34.4	30.4	12
Lead	14.3	12.2	16
Mercury	0.116	0.0777	40
Silver	0.17	0.14	19
Zinc	76.8	72.3	6

	Concentra	Concentration (mg/Kg)	
Analyte	LDW20-SS130	LDW20-SS130-FD	RPD
Arsenic	6.16	5.68	8
Cadmium	0.18	0.20	11
Chromium	20.2	22.6	11
Copper	28.2	34.3	20
Lead	11.8	11.8	0
Mercury	0.0919	0.0684	29
Silver	0.14	0.13	7
Zinc	66.7	67.7	1

XII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD %R and RPD, data were qualified as estimated in thirteen samples.

Due to laboratory blank contamination, data were qualified as not detected in thirteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0194

Sample	Analyte	Flag	A or P	Reason
LDW20-SS356 LDW20-SS364 LDW20-SS338 LDW20-SS338-FD LDW20-SS36 LDW20-SS106 LDW20-SS121 LDW20-SS123 LDW20-SS123-FD LDW20-SS125 LDW20-SS130 LDW20-SS130-FD LDW20-SS130-FD	Silver Mercury	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-SS356 LDW20-SS364 LDW20-SS338 LDW20-SS338-FD LDW20-SS336 LDW20-SS106 LDW20-SS121 LDW20-SS123 LDW20-SS123	Silver	J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD)

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 20F0194

Sample	Analyte	Modified Final Concentration	A or P
LDW20-SS125	Silver	0.27U mg/Kg	A
LDW20-SS130	Silver	0.14U mg/Kg	A
LDW20-SS130-FD	Silver	0.13U mg/Kg	A
LDW20-SS135	Silver	0.09U mg/Kg	A
LDW20-SS356	Silver	0.17U mg/Kg	A
LDW20-SS364	Silver	0.2U mg/Kg	A
LDW20-SS338	Silver	0.24U mg/Kg	A
LDW20-SS338-FD	Silver	0.27U mg/Kg	А
LDW20-SS336	Silver	0.16U mg/Kg	A

Sample	Analyte	Modified Final Concentration	A or P
LDW20-SS106	Silver	0.18U mg/Kg	A
LDW20-SS121	Silver	0.18U mg/Kg	A
LDW20-SS123	Silver	0.17U mg/Kg	A
LDW20-SS123-FD	Silver	0.14U mg/Kg	A

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: 4868014a

SDG #: 20F0194

Laboratory: Analytical Resources, Inc.

Date: 7/30/20 Page: 1_of_2 Reviewer: ATL 2nd Reviewer: _____

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
п.	ICP/MS Tune	Α	
ш.	Instrument Calibration	Α	
IV.	ICP Interference Check Sample (ICS) Analysis	Α	
V.	Laboratory Blanks	sw	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	(14,15), From SDG # 20F0191 (LDW20-IT334MS/MSD), SDG # 20F0186 (LDW20-IT379FD MS/MSD)
VIII.	Duplicate sample analysis	Α	16, From SDG # 20F0191 (LDW20-IT334DUP), SDG # 20F0186 (LDW20- IT379FD DUP)
IX.	Serial Dilution	N	
Х.	Laboratory control samples	А	LCS/SRM
XI.	Field Duplicates	SW	(3,4), (8,9), (11,12)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = RinsateFB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS356	20F0194-01	Sediment	06/10/20
2	LDW20-SS364	20F0194-02	Sediment	06/10/20
3	LDW20-SS338	20F0194-03	Sediment	06/10/20
4	LDW20-SS338-FD	20F0194-04	Sediment	06/10/20
5	LDW20-SS336	20F0194-05	Sediment	06/10/20
6	LDW20-SS106	20F0194-06	Sediment	06/10/20
7	LDW20-SS121	20F0194-07	Sediment	06/10/20
8	LDW20-SS123	20F0194-08	Sediment	06/10/20
9	LDW20-SS123-FD	20F0194-09	Sediment	06/10/20
10	LDW20-SS125	20F0194-10	Sediment	06/10/20
11	LDW20-SS130	20F0194-11	Sediment	06/10/20
12	LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
13	LDW20-SS135	20F0194-13	Sediment	06/10/20
14	LDW20-SS125MS	20F0194-10MS	Sediment	06/10/20

Δι	ΙΠΔΤΙ	COMPL	ETENESS	WORK	SHEET
AL	IVAII		EIENE33	VVUNN	JHEE I

Stage 2B

SDG #: <u>20F0194</u> Laboratory: <u>Analytical Resources, Inc.</u> Date: 7/30/20 Page: 7/30/20 Reviewer: ATL 2nd Reviewer: 4

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

	Client ID	Lab ID	Matrix	Date
15	LDW20-SS125MSD	20F0194-10MSD	Sediment	06/10/20
16	LDW20-SS125DUP	20F0194-10DUP	Sediment	06/10/20
17				
18				
19				
lote	s:			

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1 to 13	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
·····	
QC	
14,15,16	Cr,Pb,Ag,As,Cd,Cu,Zn,Hg
in mai na mangangan sa	
<u></u>	
	Analysis Method

ICP			
ICP-MS			
CVAA			

VALIDATION FINDINGS WORKSHEET Laboratory Blank Contamination (PB/ICB/CCB)

Associated Samples: 10 to 13

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000) Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: mg/kg

							Samp	ole Identi	fication	 	
Analyte	PB (mg/kg)	Maximum ICB/CCB (ug/L)	Action Level	10	11	12	13				
Ag	0.02			0.27	0.14	0.13	0.09				

Sample Co	ncentratior	n, unless othe	rwise note	ed: mg/kg		Associated	Samples:	all				
				Sample Identification								
Analyte	PB (mg/kg)	Maximum ICB/CCB (ug/L)	Action Level	1	2	3	4	5	6	7	8	9
Ag		0.02		0.17	0.2	0.24	0.27	0.16	0.18	0.18	0.17	0.14
		[<u></u>]			I	I	lSamp	l ole Identific	ation			
Analyte	PB (mg/kg)	Maximum ICB/CCB (ug/L)	Action Level	10	11	12	13					
Ag		0.02		see above	see above	see above	see above					

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS/MSD analysis was performed by the laboratory. All MS/MSD percent recoveries (%R) and relative percent differences (RPDs) were within the acceptable limits with the following exceptions:

MS/MSD ID	Matrix	Analyte	MS %R	MSD %R	%R Limit	RPD	RPD Limit	Associated Samples	Qualification	Det/ND
DW20-IT379FD	S	Ag	34.1	43.2	75-125			1 to 9	A/LU/L	Det
		Ag				23	20	1 to 9	A/UJ/A	Det
LDW20-IT334	S	Hg		127	75-125			1 to 9	Jdet/A	Det
14 & 15		Hg	138	143	75-125			10 to 13	Jdet/A	Det
		Ag	62.5	60.7	75-125			10 to 13	A/LU/L	Det

Comments:

VALIDATION FINDINGS WORKSHEET Field Duplicates

Method: Metals

	Concentrat	ion (mg/kg)	RPD	Quelifican (Bernata Only)
Analyte	3	4		Qualifiers (Parents Only)
Arsenic	17.0	16.5	3	
Cadmium	0.26	0.30	14	
Chromium	27.1	27.6	2	
Copper	54.8	55.2	1	
Lead	17.9	18.6	4	
Mercury	0.143	0.161	12	
Silver	0.24	0.27	12	
Zinc	111	112	1	

Aralida	Concentrat	tion (mg/kg)	RPD	Qualifiers (Parents Only)	
Analyte	8	9		Quantiers (Parents Only)	
Arsenic	7.34	6.66	10		
Cadmium	0.26	0.20	26		
Chromium	20.1	19.0	6		
Copper	34.4	30.4	12		
Lead	14.3	12.2	16		
Mercury	0.116	0.0777	40		
Silver	0.17	0.14	19		
Zinc	76.8	72.3	6		

Analida	Concentrat	ion (mg/kg)	RPD	Qualifiera (Perento Only)	
Analyte	11	12		Qualifiers (Parents Only)	
Arsenic	6.16	5.68	8		
Cadmium	0.18	0.20	11		
Chromium	20.2	22.6	11		
Copper	28.2	34.3	20		
Lead	11.8	11.8	0		
Mercury	0.0919	0.0684	29		
Silver	0.14	0.13	7		
Zinc	66.7	67.7	1		

LDC Report# 4868016

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Duwamish AOC4

LDC Report Date: August 10, 2020

Parameters: Wet Chemistry

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0194

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS356	20F0194-01	Sediment	06/10/20
LDW20-SS364	20F0194-02	Sediment	06/10/20
LDW20-SS338	20F0194-03	Sediment	06/10/20
LDW20-SS338-FD	20F0194-04	Sediment	06/10/20
LDW20-SS336	20F0194-05	Sediment	06/10/20
LDW20-SS106	20F0194-06	Sediment	06/10/20
LDW20-SS121	20F0194-07	Sediment	06/10/20
LDW20-SS123	20F0194-08	Sediment	06/10/20
LDW20-SS123-FD	20F0194-09	Sediment	06/10/20
LDW20-SS125	20F0194-10	Sediment	06/10/20
LDW20-SS130	20F0194-11	Sediment	06/10/20
LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
LDW20-SS135	20F0194-13	Sediment	06/10/20
LDW20-SS356DUP	20F0194-01DUP	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A Total Solids by Standard Method 2540G

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

Samples LDW20-SS338 and LDW20-SS338-FD, samples LDW20-SS123 and LDW20-SS123-FD, and samples LDW20-SS130 and LDW20-SS130-FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concen		
Analyte	LDW20-SS338	LDW20-SS338-FD	RPD
Total solids	39.01	38.79	1
Total organic carbon	3.12	3.30	6

	Concen		
Analyte	LDW20-SS123	LDW20-SS123-FD	RPD
Total solids	62.87	61.53	2
Total organic carbon	1.03	1.14	10

	Concent		
Analyte	LDW20-SS130	LDW20-SS130-FD	RPD
Total solids	66.58	66.31	0
Total organic carbon	0.89	0.87	2

X. Sample Result Verification

All sample result verifications were acceptable.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

Duwamish AOC4 Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEI

Stage 4

Date: <u>7/30/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>ATL</u> 2nd Reviewer: <u>4</u>

SDG #: 20F0194 Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 4868016

METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
١.	Sample receipt/Technical holding times	A/A		
	Initial calibration	A		
.	Calibration verification	A		
١V	Laboratory Blanks	А		
v	Field blanks	N		
VI.	Matrix Spike/Matrix Spike Duplicates	A	From SDG # 20F0191 (LDW20-IT228MS)	
VII.	Duplicate sample analysis	A	14, From SDG # 20F0191 (LDW20-IT228DUP)	
VIII.	Laboratory control samples	A	LCS/SRM	
IX.	Field duplicates	sw	(3,4), (8,9), (11,12)	
<u>x</u> .	Sample result verification	A		
XI.	Overall assessment of data	А		

Note:

F

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

71

OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS356	20F0194-01	Sediment	06/10/20
2	LDW20-SS364	20F0194-02	Sediment	06/10/20
з	LDW20-SS338	20F0194-03	Sediment	06/10/20
4	LDW20-SS338-FD	20F0194-04	Sediment	06/10/20
5	LDW20-SS336	20F0194-05	Sediment	06/10/20
6	LDW20-SS106	20F0194-06	Sediment	06/10/20
7	LDW20-SS121	20F0194-07	Sediment	06/10/20
8	LDW20-SS123	20F0194-08	Sediment	06/10/20
9	LDW20-SS123-FD	20F0194-09	Sediment	06/10/20
10	LDW20-SS125	20F0194-10	Sediment	06/10/20
11	LDW20-SS130	20F0194-11	Sediment	06/10/20
12	LDW20-SS130-FD	20F0194-12	Sediment	06/10/20
13	LDW20-SS135	20F0194-13	Sediment	06/10/20
14	LDW20-SS356DUP	20F0194-01DUP	Sediment	06/10/20
15				
Note	s:			

METHOD: Inorganics				
Validation Area	Yes	No	NA	Comments
I. Technical holding times				
Were all technical holding times met?	X	T		
II. Calibration			,	
Were all instruments calibrated at the	Τ	T		
required frequency?	x			
Were the proper number of standards		1		
used?	х			
Were all initial and continuing calibration				
verifications within the QC limits?	x			
Were all initial calibration correlation				
coefficients within limits as specifed by the				
method?	x			
Were balance checks performed as				
required?	x			
III. Blanks	- -			
Was a method blank associated with every				
sample in this SDG?	x			
Was there contamination in the method				
blanks?		x		
Was there contamination in the initial and				
continuing calibration blanks?		x		
IV. Matrix Spike/Matrix Spike Duplicates/	Labora	tory Du	plicate	S
Were MS/MSD recoveries within the QC				
limits? (If the sample concentration				
exceeded the spike concentration by a				
factor of 4, no action was taken.)	x			
Were the MS/MSD or laboratory duplicate				
relative percent differences (RPDs) within				
the QC limits?	x			
V. Laboratory Control Samples		-		· · · · · · · · · · · · · · · · · · ·
Was a LCS analyzed for each batch in the				
SDG?	X			
Were the LCS recoveries and RPDs (if				
applicable) within QC limits?	x			
X. Sample Result Verification		_		·
Were all reporting limits adjusted to reflect				
sample dilutions?	x			
Were all soil samples dry weight corrected?	Р X			
XI. Overall Assessment of Data				
Was the overall assessment of the data				
found to be acceptable?	x			

METHOD: Inorganics				
Validation Area	Yes	No	NA	Comments
XII. Field Duplicates				
Were field duplicates identifed in this SDG?	x			
Were target analytes detected in the field duplicates?	x			
XIII. Field Blanks	•			· · · · · · · · · · · · · · · · · · ·
Were field blanks identified in this SDG?		x		
Were target analytes detected in the field blanks?			x	

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1 to 13	TS, TOC	
QC		
14	TS	

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Inorganics

	Concentration (%)		RPD	Qualifians (Descrite Ortho)
Analyte =	3	4		Qualifiers (Parents Only)
Total Solids	39.01	38.79	1	
Total Organic Carbons	3.12	3.30	6	

Analista	Concent	Concentration (%)		Qualifiara (Paranta Only)
Analyte =	8	9		Qualifiers (Parents Only)
Total Solids	62.87	61.53	2	
Total Organic Carbons	1.03	1.14	10	

Analida	Concentration (%)		RPD	Qualifiara (Baranta Only)
Analyte	11	12		Qualifiers (Parents Only)
Total Solids	66.58	66.31	0	
Total Organic Carbons	0.89	0.87	2	

LDC #: 4868016

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page:	of
Reviewer:	ATT
2nd Reviewer:	L_

METHOD: Inorganics, Method _	TUC	(EPA 9060-A)	
		1/1/	

The correlation coefficient (r) for the calibration of <u>NHA</u> was recalculated. Calibration date: <u>NHA</u>

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True Where, Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

			90	90	Recalculated	Reported		
Type of Analysis	Analyte	Standard ID	Found (units)	True (units)	r or %R	r or %R	Acceptable (Y/N)	
Initial calibration		Blank						
		Standard 1						
		Standard 2						
	NIA	Standard 3	 		NHA	NIA	NIA ·	
	1.11	Standard 4				1~(1)		MA
		Standard 5						
		Standard 6				·		
		Standard 7						
Calibration verification	TOC		44.782	44.44G	101	101	Y	
Calibration verification $CCVB$	TOC		44.927	44.44C	101	101	Y	
Calibration verification	TOC		45.155	44.44 <i>6</i>	102	102	Y	

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

1 .

METHOD: Inorganics

Percent recoveries (%R) for the laboratory control sample (LCS) and matrix spike (MS) were recalcuated using the following formula:

%R = (Found/True) x 100

Found = concentration of each analyte measured in the analysis. For the MS calculation, Found = SSR (Spiked Sample Result) - SR (Sample

Result)

True = concentration of each analyte in the source

The sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = (Absolute value(S-D)x 200) / (S+D)

S = Original sample concentration

D = Duplicate sample concentration

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found/S	True/D	%R/RPD	%R/RPD	Acceptable (Y/N)
LCS	LCS	тос	44.48	44.4	100.1801802	100	Y
LDW20-IT228MS	MS	тос	1.162	1.32	88.03030303	87.9	Y
14	Duplicate	TS	44.6896	44.571	0.265738747	0.266	Y

METHOD: Inorganics

Analytes were recalculated and verified using the following equation:

Concentration = (Result from raw data x Final volume x Dilution factor) / (Percent solids (if applicable) x Initial weight or volume)

Commis ID	Analista	Dave Data (%)	Dilution	Initial Weight/ Volume (g)		Percent	Reported	Recalculated	Acceptable
Sample ID		Raw Data (%)	Dilution				Result (%)	Result (%)	(Y/N)
1	TS		1	5.2855	2.3558		44.57	44.57099612	Υ
2	тос	1.292	1	0.1926	0.1926	36.54	3.54	3.535851122	Y
3	TS		1	5.3274	2.0781		39.01	39.00777115	Y
4	тос	1.28	1	0.2071	0.2071	38.79	3.3	3.299819541	Y
5	TS		1	5.3714	2.3906		44.51	44.5060878	Y
6	тос	0.922	1	0.3038	0.3038	44.46	2.07	2.073774179	Y
7	TS		1	6.1452	3.4749		56.55	56.54657293	Y
8	тос	0.646	1	0.2484	0.2484	62.87	1.03	1.027517099	Y
9	TS		1	6.3469	3.9052		61.53	61.5292505	Y
10	тос	1.258	1	0.3344	0.3344	48.8	2.58	2.577868852	Y
11	TS		1	6.2133	4.1368		66.58	66.57975633	Y
12	тос	0.577	1	0.191	0.191	66.31	0.87	0.870155331	Y
13	TS		1	6.2156	4.5569		73.31	73.31391981	Y

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwar

LDC Report Date: August 10, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0194

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS356	20F0194-01	Sediment	06/10/20
LDW20-SS336	20F0194-05	Sediment	06/10/20
LDW20-SS130	20F0194-11	Sediment	06/10/20
LDW20-SS130-FD	20F0194-12	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 13.6°C, 15.6°C, and 20.1°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIF0780-BLK1	06/29/20	1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	0.0726 ng/Kg 0.220 ng/Kg 0.477 ng/Kg 1.66 ng/Kg	All samples in SDG 20F0194

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

Samples LDW20-SS130 and LDW20-SS130-FD were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LDW20-SS130	LDW20-SS130-FD	RPD
2,3,7,8-TCDF	0.397	0.418	5
2,3,7,8-TCDD	0343	0.254	30
1,2,3,7,8-PeCDF	0.278	0.995U	Not calculable

	Concentra				
Compound	LDW20-SS130	LDW20-SS130-FD	RPD		
2,3,4,7,8-PeCDF	0.483	0.541	11		
1,2,3,7,8-PeCDD	0.508	0.639	23		
1,2,3,4,7,8-HxCDF	1.94	1.77	9		
1,2,3,6,7,8-HxCDF	0.657	0.750	13		
2,3,4,6,7,8-HxCDF	0.851	0.867	2		
1,2,3,7,8,9-HxCDF	0.393	0.385	2		
1,2,3,4,7,8-HxCDD	0.419	0.602	36		
1,2,3,6,7,8-HxCDD	2.12	2.15	1		
1,2,3,7,8,9-HxCDD	1.20	1.42	17		
1,2,3,4,6,7,8-HpCDF	,8-HpCDF 14.2		12		
1,2,3,4,7,8,9-HpCDF	1.28	1.17	9		
1,2,3,4,6,7,8-HpCDD	67.2	61.1	10		
OCDF	41.4	34.5	18		
OCDD	542	522	4		
Total TCDF	3.42	5.08	39		
Total TCDD	0.271	1.05	118		
Total PeCDF	5.42	5.39	1		
Total PeCDD	0.526	1.25	82		
Total HxCDF	19.4	18.7	4		
Total HxCDD	14.0	13.3	5		
Total HpCDF	55.1	42.6	26		
Total HpCDD	157	141	11		

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20F0194	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to compounds reported as EMPC, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0194

Sample	Compound	Flag	A or P	Reason
LDW20-SS356 LDW20-SS336 LDW20-SS130 LDW20-SS130-FD	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0194

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary -SDG 20F0194

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: <u>08/07/20</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>____</u>

Laboratory: Analytical Resources, Inc.

LDC #: <u>48680I21</u> SDG #: <u>20F0194</u>

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments					
<u> </u>	Sample receipt/Technical holding times	SW/A	Cooler temp = 13.6, 15.6, 20.1 deg C	(Insufficient time to cool)				
П.	HRGC/HRMS Instrument performance check	A						
- 111.	Initial calibration/ICV	A/A	ICAL ≤ 20/35%	ICV ≤ QC Limits				
IV.	Continuing calibration	A	CCV ≤ QC Limits					
V.	Laboratory Blanks	sw						
VI.	Field blanks	N						
VII.	Matrix spike/Matrix spike duplicates	N						
VIII.	Laboratory control samples	A	OPR, SRM					
IX.	Field duplicates	sw	D = 3/4					
X .	Labeled Compounds	А						
XI.	Compound quantitation RL/LOQ/LODs	А	EMPC = Jdets/A					
XII.	Target compound identification	А						
XIII.	System performance	A						
XIV.	Overall assessment of data	А						

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	LDW20-SS356		 	20F0194-01	Sediment	06/10/20
2	LDW20-SS336			20F0194-05	Sediment	06/10/20
3	LDW20-SS130			20F0194-11	Sediment	06/10/20
4	LDW20-SS130-FD	····		 20F0194-12	Sediment	06/10/20
5				 ······		
6						
7			 			
8						
9						
10						
Notes						
	BIF0780-BLK1					

1

VALIDATION FINDINGS CHECKLIST

Page: <u>1_of_2</u> Reviewer: <u>1/7G</u> 2nd Reviewer: _____

Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments						
I. Technical holding times										
All technical holding times were met.	\checkmark									
Cooler temperature criteria was met.		√_								
II. GC/MS Instrument performance check										
Was PFK exact mass 380.9760 verified?	\checkmark									
Were the retention time windows established for all homologues?	\checkmark									
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers $\leq 25\%$?	\checkmark									
Is the static resolving power at least 10,000 (10% valley definition)?	\checkmark									
Was the mass resolution adequately check with PFK?	\checkmark									
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?	\checkmark									
Illa. Initial calibration										
Was the initial calibration performed at 5 concentration levels?	√									
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled compounds and \leq 35% for unlabeled compounds?	√									
Did all calibration standards meet the Ion Abundance Ratio criteria?	√									
Was the signal to noise ratio for each target compound and labeled compound \geq 10?	\checkmark									
IIIb. Initial Calibration Verification										
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	√									
Were all concentrations for the unlabeled compounds and for labeled compounds within QC limits?	\checkmark									
IV. Continuing calibration										
Was a continuing calibration performed at the beginning of each 12 hour period?	\checkmark									
Were all concentrations for the unlabeled compounds and for labeled compounds within QC limits (Method 1613B, Table 6)?	√									
Did all continuing calibration standards meet the Ion Abundance Ratio criteria?	\checkmark									
V. Blanks										
Was a method blank associated with every sample in this SDG?	\checkmark									
Was a method blank performed for each matrix and whenever a sample extraction was performed?	√									
Was there contamination in the method blanks?	\checkmark									
VI. Field blanks										
Were field blanks identified in this SDG?		\checkmark								
Were target compounds detected in the field blanks?			\checkmark							
VII. Matrix spike/Matrix spike duplicates										
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?		\checkmark								
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			\checkmark							

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
VIII. Laboratory control samples				
Was an LCS analyzed per extraction batch?	\checkmark			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	√			
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?	√			
Were target compounds detected in the field duplicates?	\checkmark			
X. Labeled Compounds				
Were labeled compounds within QC limits (Method 1613B, Table 7)?	\checkmark			
Was the minimum S/N ratio of all labeled compound peaks \geq 10?	\checkmark			
XI. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	\checkmark			
Were the correct labeled compound, quantitation ion and relative response factor (RRF) used to quantitate the compound?	\checkmark			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\checkmark			
XII. Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	√			
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	\checkmark			
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	\checkmark			
Did compound spectra contain all characteristic ions listed in the table attached?	\checkmark			
Was the Ion Abundance Ratio for the two quantitation ions within criteria?	√			
Was the signal to noise ratio for each target compound \ge 2.5 and \ge 10 for the labeled compound?	√			
Does the maximum intensity of each specified characteristic ion coincide within <u>+</u> 2 seconds (includes labeled standards)?	\checkmark			
For PCDF identification, was any signal (S/N ≥ 2.5, at <u>+</u> seconds RT) detected in the corresponding PCDPE channel?	√			
Was an acceptable lock mass recorded and monitored?	\checkmark			
XIII. System performance				
System performance was found to be acceptable.	\checkmark			
XIV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	\checkmark			

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

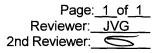
VALIDATION FINDINGS WORKSHEET Blanks

Page _	<u>1_of_1_</u>
Reviewer:	J <u>V</u> G
2nd Reviewer:	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?


- Was a method blank performed for each matrix and whenever a sample extraction was performed?
- $\frac{Y}{Y}$ Was the method blank contaminated?

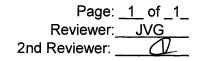
Blank extraction date: 06/29/20 Blank analysis date: 07/02/20 Associated samples: All (>5X) Conc. units: na/Ka

Compound	Blank ID		Sample Identification						
	BIF0780-BLK1	(5x)							
0	0.0726*	0.36							
F	0.220*	1.10							
Q	0.477*	2.39	 						
G	1.66	8.30							
									L

*EMPC

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: HRGC/HRMS PCDD/PCDF (EPA Method 1613B) <u>Y N NA</u> Were field duplicate pairs identified in this SDG?


Were target analytes detected in the field duplicate pairs? Y N NA

	Concent			
Compound	3	4	RPD	
Н	0.397	0.418	5	
А	0.343	0.254	30	
1	0.278	0.995U	NC	
J	0.483	0.541	11	
В	0.508	0.639	23	
к	1.94	1.77	9	
L	0.657	0.750	13	
М	0.851	0.867	2	
N	0.393	0.385	2	
С	0.419	0.602	36	
D	2.12	2.15	1	
E	1.20	1.42	17	
0	14.2	12.6	12	
Р	1.28	1.17	9	
F	67.2	61.1	10	
Q	41.4	34.5	18	
G	542	522	4	
V	3.42	5.08	39	
R	0.271	1.05	118	
W	5.42	5.39	1	
S	0.526	1.25	82	
Х	19.4	18.7	4	
Т	14.0	13.3	5	
Y	55.1	42.6	26	
U	157	141	11	

C:\Users\jgo\Desktop\48680 dioxins\48680I21\3 48680I21 fd.wpd

LDC #: 48680121

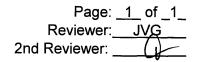
VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound C_x = Concentration of compound,


S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Com	pound (IS)			(Initial)	(Initial)	L	
1	ICAL	7/1/2020	2,3,7,8-TCDF	(13C-2,3,7,8-TCDF)	0.8118	0.8117	0.8223	0.8223	6.7	6.7
	Autospec01		2,3,7,8-TCDD	(13C-2,3,7,8-TCDD)	1.2126	1.2125	1.2310	1.2310	11.4	11.4
1			1,2,3,6,7,8-HxCDF	(13C-1,2,3,6,7,8-HxCDF)	0.9856	0.9856	0.9154	0.9154	11.0	11.0
h			1,2,3,4,6,7,8-HpCDD	(13C-1,2,4,6,7,8,-HpCDD)	1.1931	1.1930	1.1246	1.1246	12.3	12.3
		L	OCDD	(13C-OCDD)	1.0731	1.0732	1.2095	1.2095	12.4	12.4

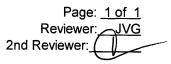
VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound C_x = Concentration of compound,


S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Com	pound (IS)			(Initial)	(Initial)		
1	ICAL	7/1/2020	2,3,7,8-TCDF	(13C-2,3,7,8-TCDF)	0.8118	0.8117	0.8223	0.8223	6.7	6.7
	Autospec01		2,3,7,8-TCDD	(13C-2,3,7,8-TCDD)	1.2126	1.2125	1.2310	1.2310	11.4	11.4
			1,2,3,6,7,8-HxCDF	(13C-1,2,3,6,7,8-HxCDF)	0.9856	0.9856	0.9154	0.9154	11.0	11.0
			1,2,3,4,6,7,8-HpCDD	(13C-1,2,4,6,7,8,-HpCDD)	1.1931	1.1930	1.1246	1.1246	12.3	12.3
			OCDD	(13C-OCDD)	1.0731	1.0732	1.2095	1.2095	12.4	12.4

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

			*			Reported	Recalculated	Reported	Recalculated
		Calibration			Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compou	ind (Ref IS)	(Initial)	(CCV)	(CCV)		
1	20070202	7/2/2020	2,3,7,8-TCDF	(13C-2,3,7,8-TCDF)	0.8223	0.8060	0.8060	2.0	2.0
1	Autospec01		2,3,7,8-TCDD	(13C-2,3,7,8-TCDD)	1.2310	1.2380	1.2380	0.6	0.6
			1,2,3,6,7,8-HxCDF	(13C-1,2,3,6,7,8-HxCDF)	0.9154	0.9359	0.9359	2.2	2.2
1			1,2,3,4,6,7,8-HpCDD	(13C-1,2,4,6,7,8,-HpCDD)	1.1246	1.1394	1.1394	1.3	1.3
			OCDD	(13C-OCDD)	1.2095	1.1641	1.1641	3.8	3.8

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:_	<u>1_</u> 0	f_1_
Reviewer:	Л	G
Reviewer:		
-		

METHOD: GC/MS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = | LCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery

LCS ID: BIF0780-BS1

	S	bike Ided	Spiked S Concent	Sample	LC	s	LC	SD	LCS/I	CSD
Compound		lded J/Kg)	(ng/ł		Percent Recovery Percent Recovery			RF	RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
2,3,7,8-TCDD	20		19.97		99.9	99.9				
1,2,3,7,8-PeCDD	100		101.79		102	102				
1,2,3,4,7,8-HxCDD	100		99.30		99.3	99.3				
1,2,3,4,7,8,9-HpCDF	100		105.44		105	105				
OCDF	200		182.39		91.2	91.2				
	L	L			L	l	L	l		

T.

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:	<u>1_of_1_</u>
Reviewer:	JVG
2nd reviewer:	8

METHOD: GC/MS Dioxins/Dibenzofurans (Method 1613B)

- Y Y
- Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(\underline{A}_{,i})(\underline{I}_{,i})(DF)$ $(\underline{A}_{is})(RRF)(V_{o})(\%S)$			Example:				
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. <u>1</u> , <u>OCDD</u> :				
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard					
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = <u>(9.932e5+1.120e6)(200)(20uL)</u> (4.626e5+4.974e5)(1.2095)(22.38g)(0.4483)				
V.	=	Volume or weight of sample extract in milliliters (ml) or grams (g).					
RRF	=	Relative Response Factor (average) from the initial calibration	= 725.6				
Df	=	Dilution Factor.	= 726 ng/Kg				
%S	=	Percent solids, applicable to soil and solid matrices only.					

#	Sample ID	Compound	Reported Concentration (ng/Kg)	Calculated Concentration (ng/Kg)	Acceptable (Y/N)
	1	OCDD	726	726	-