

Lower Duwamish Waterway Remedial Investigation

REMEDIAL INVESTIGATION REPORT

APPENDIX B, BASELINE HUMAN HEALTH RISK ASSESSMENT

ERRATA: ADJUSTMENT TO TULALIP TRIBES SEAFOOD CONSUMPTION RATES AND THE IMPACT ON RISK ESTIMATES

For submittal to:

The US Environmental Protection Agency Region 10 Seattle, WA

The Washington State Department of Ecology Northwest Regional Office Bellevue, WA

July 17, 2009

Prepared by: Wind W

200 West Mercer Street, Suite 401 • Seattle, Washington • 98119

Human Health Risk Assessment Errata: Adjustment to Tulalip Tribes' Seafood Consumption Rates and the Impact on Risk Estimates

The final baseline human health risk assessment (HHRA) for the Lower Duwamish Waterway (LDW) (Windward 2007) was based, in part, on seafood consumption rate data supplied by the US Environmental Protection Agency (EPA) (EPA 2007). Some of the seafood consumption rates in the Framework were developed by EPA from data collected from a survey of the Tulalip Tribes' consumption of Puget Sound seafood. EPA recently discovered that some of the consumption rates it had calculated were incorrect and thus issued corrected rate information in comments on the draft final Remedial Investigation report for the LDW site (EPA 2009). Specifically, the apportionment of shellfish consumption (but not the total consumption rates) for scenarios developed from the Tulalip Tribes seafood consumption study were corrected. These errata present the revised shellfish consumption rates and the associated changes in the risk estimates for the Tulalip survey-based scenarios.

UPDATED SEAFOOD CONSUMPTION RATES

Table 1 compares the seafood consumption rates used in the final HHRA (Windward 2007) for the Tulalip Tribe scenarios to the revised consumption rates provided by EPA (2009). Essentially, the corrected apportionment of total shellfish consumption for crab and other shellfish categories is reversed from what was initially presented in the final HHRA. In the final HHRA, the percentage of shellfish consumption attributed to crabs was set at 53% while the percentage of shellfish associated with clams was set at 46%; the corrections provided by EPA reverse these percentages. The revised consumption rates were developed from these corrected percentages, following the process described in the final HHRA.

Scenario Name	CONSUMPTION CATEGORY	FINAL HHRA Consumption Rate (g/day)	REVISED Consumption Rate (g/day)
	Pelagic fish – fillet	8.1	8.1
	Benthic fish – fillet	7.5	7.5
Adult Tribal PME	Benthic fish – whole body	0	0
(Tulalip data)	Crab – edible meat	33	<u>28.7</u>
	Crab – whole body	10.4	<u>9.0</u>
	Mussels	0.8	0.8
	Clams	37.7	<u>43.4</u>

Table 1. HHRA consumption rates

Lower Duwamish Waterway Group

LDW RI: Baseline HHRA Errata July 17, 2009 Page 1

Scenario Name		FINAL HHRA Consumption Rate (g/day)	Revised Consumption Rate (g/day)
	Pelagic fish – fillet	1.3	1.3
	Benthic fish – fillet	1.2	1.2
Adult Tribal CT	Benthic fish – whole body	0	0
(Tulalip data)	Crab – edible meat	5.0	<u>4.4</u>
	Crab – whole body	1.6	<u>1.4</u>
	Mussels	0.1	0.1
	Clams	5.8	<u>6.6</u>
	Pelagic fish – fillet	3.2	3.2
	Benthic fish – fillet	3.0	3.0
Child Tribal RMF	Benthic fish – whole body	0	0
(Tulalip data)	Crab – edible meat	13.2	<u>11.5</u>
	Crab – whole body	4.2	<u>3.6</u>
	Mussels	0.33	0.33
	Clams	15.1	<u>17.4</u>
	Pelagic fish – fillet	0.52	0.52
	Benthic fish – fillet	0.48	0.48
	Benthic fish – whole body	0	0
(Tulalip data)	Crab – edible meat	2.0	<u>1.8</u>
	Crab – whole body	0.64	<u>0.6</u>
	Mussels	0.04	0.04
	Clams	2.3	<u>2.6</u>

Note: Underlined and bolded entries indicate that the rate has changed.

CT - central tendency

HHRA – human health risk assessment

RME - reasonable maximum exposure

As shown in Table 1, based on the EPA correction, the crab consumption rate decreased and the clam consumption rate increased. EPA did not make any changes in consumption rates for pelagic fish, benthic fish, or mussels.

UPDATED RISK ESTIMATES

Risk estimates for the Tulalip survey-based seafood consumption scenarios were updated using the corrected consumption rates. Tables 2 through 5 present a comparison of the cancer chronic daily intakes (CDIs) based on the consumption rates from the final HHRA and EPA's revised rates, the percent change in the CDIs, and the excess cancer risks calculated using the consumption rates from the final HHRA and EPA's revised rates. Consistent with the final HHRA, the CDIs for the central tendency (CT) scenarios were developed using mean concentrations as the exposure point

Port of Seattle / City of Seattle / King County / The Boeing Company

concentrations (EPCs), whereas the CDIs for the reasonable maximum exposure (RME) scenarios were developed using the 95% upper confidence limit on the mean (UCL). Hence, the percent differences in the CDIs for the same chemicals may differ between the CT and RME scenarios.

	CANCER CDI	(mg/kg-day)	PERCENT	Excess CA	NCER RISK
CHEMICAL	FINAL HHRA	REVISED	CHANGE IN CDI	FINAL HHRA	Revised
Arsenic ^{a, b}	9.7 x 10 ⁻⁴	1.1 x 10 ⁻³	+13%	1 x 10 ⁻³	2 x 10 ⁻³
Bis(2-ethylhexyl) phthalate	4.5 x 10 ⁻⁴	4.5 x 10 ⁻⁴	0%	6 x 10 ⁻⁶	6 x 10 ⁻⁶
cPAHs ^{a, c}	9.8 x 10 ⁻⁶	1.1 x 10 ⁻⁵	+12%	7 x 10 ⁻⁵	8 x 10 ⁻⁵
PCB TEQ ^a	8.1 x 10 ⁻⁹	8.1 x 10 ⁻⁹	0%	1 x 10 ⁻³	1 x 10 ⁻³
Total PCBs	8.0 x 10 ⁻⁴	8.1 x 10 ⁻⁴	+1%	2 x 10 ⁻³	2 x 10 ⁻³
Pentachlorophenol	7.3 x 10 ⁻⁴	7.2 x 10 ⁻⁴	-1%	9 x 10 ⁻⁵	9 x 10 ⁻⁵
	S	ubtotal excludi	ng PCB TEQ	3 x 10 ⁻³	4 x 10 ⁻³
	g total PCBs	2 x 10 ⁻³	3 x 10 ⁻³		
Tentatively identified chemicals	(JN-qualified)				
Aldrin	2.8 x 10 ⁻⁶	2.7 x 10 ⁻⁶	-4%	5 x 10 ⁻⁵	5 x 10 ⁻⁵
alpha-BHC	2.6 x 10 ⁻⁶	2.4 x 10 ⁻⁶	-8%	2 x 10 ⁻⁵	2 x 10 ⁻⁵
beta-BHC	3.5 x 10 ⁻⁶	3.4 x 10 ⁻⁶	-3%	6 x 10 ⁻⁶	6 x 10 ⁻⁶
Carbazole	2.3 x 10 ⁻³	2.2 x 10 ⁻³	-4%	5 x 10 ⁻⁵	4 x 10 ⁻⁵
Total chlordane	1.7 x 10 ⁻⁵	1.6 x 10 ⁻⁵	-6%	6 x 10 ⁻⁶	6 x 10 ⁻⁶
Total DDTs	6.2 x 10 ⁻⁵	6.0 x 10 ⁻⁵	-3%	2 x 10 ⁻⁵	2 x 10 ⁻⁵
Dieldrin	8.2 x 10 ⁻⁶	8.8 x 10 ⁻⁶	+7%	1 x 10 ⁻⁴	1 x 10 ⁻⁴
gamma-BHC	4.2 x 10 ⁻⁶	4.1 x 10 ⁻⁶	-2%	6 x 10 ⁻⁶	5 x 10 ⁻⁶
Heptachlor	3.2 x 10 ⁻⁶	3.0 x 10 ⁻⁶	-6%	1 x 10 ⁻⁵	1 x 10 ⁻⁵
Heptachlor epoxide	3.4 x 10 ⁻⁶	3.3 x 10 ⁻⁶	-3%	3 x 10 ⁻⁵	3 x 10⁻⁵
Hexachlorobenzene	6.5 x 10 ⁻⁶	6.0 x 10 ⁻⁶	-8%	1 x 10 ⁻⁵	1 x 10 ⁻⁵
	3 x 10 ⁻⁴	3 x 10 ⁻⁴			
Total excess cancer risk excludi		3 x 10 ⁻³	4 x 10 ⁻³		
Total excess cancer risk excludi	2 x 10 ⁻³	3 x 10 ⁻³			

Table 2. Comparison of excess cancer risk estimates for the adult tribal RME seafood consumption scenario based on Tulalip data

^a No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.

^b Arsenic risk estimates are based on inorganic arsenic.

^c cPAH concentrations are presented as benzo(a)pyrene equivalents. Tissue data for cPAHs are from only 2004; historical data were not used because of high reporting limits. Risk related to 2004 and historical data for cPAHs were analyzed in the uncertainty analysis of the HHRA (Windward 2007).

BHC - benzene hexachloride

CDI - chronic daily intake

cPAH – carcinogenic polycyclic aromatic hydrocarbon

DDT – dichlorodiphenyltrichloroethane

HHRA – human health risk assessment

- PCB polychlorinated biphenyl
- RME reasonable maximum exposure
- TEQ toxic equivalent

Lower Duwamish Waterway Group

LDW RI: Baseline HHRA Errata July 17, 2009 Page 3

Table 3.Comparison of excess cancer risk estimates for the adult tribal CT
seafood consumption scenario based on Tulalip data

	CANCER CDI	(mg/kg-day)	PERCENT	Excess Cancer Risk		
CHEMICAL	FINAL HHRA	REVISED	CHANGE	FINAL HHRA	Revised	
Arsenic ^{a, b}	4.1 x 10 ⁻⁵	4.5 x 10 ⁻⁵	+10%	6 x 10 ⁻⁵	7 x 10 ⁻⁵	
Bis(2-ethylhexyl) phthalate	1.2 x 10 ⁻⁵	1.2 x 10 ⁻⁵	0%	2 x 10 ⁻⁷	2 x 10 ⁻⁷	
cPAHs ^{a, c}	5.1 x 10 ⁻⁷	5.5 x 10 ⁻⁷	+8%	4 x 10 ⁻⁶	4 x 10 ⁻⁶	
PCB TEQ ^a	3.8 x 10 ⁻¹⁰	3.5 x 10 ⁻¹⁰	-8%	6 x 10 ⁻⁵	5 x 10 ⁻⁵	
Total PCBs	3.2 x 10 ⁻⁵	3.1 x 10 ⁻⁵	-3%	6 x 10 ⁻⁵	6 x 10⁻⁵	
Pentachlorophenol	1.4 x 10 ⁻⁵	1.4 x 10 ⁻⁵	0%	2 x 10 ⁻⁶	2 x 10 ⁻⁶	
	ing PCB TEQ	1 x 10 ⁻⁴	1 x 10 ⁻⁴			
	Sı	ubtotal excludir	ng total PCBs	1 x 10 ⁻⁴	1 x 10⁻⁴	
Tentatively identified chemicals (JN-qualified)					
Aldrin	8.7 x 10 ⁻⁸	8.3 x 10 ⁻⁸	-5%	1 x 10 ⁻⁶	1 x 10 ⁻⁶	
alpha-BHC	8.6 x 10 ⁻⁸	8.2 x 10 ⁻⁸	-5%	5 x 10 ⁻⁷	5 x 10 ⁻⁷	
beta-BHC	1.4 x 10 ⁻⁷	1.4 x 10 ⁻⁷	-0%	3 x 10 ⁻⁷	2 x 10 ⁻⁷	
Carbazole	5.0 x 10 ⁻⁵	4.6 x 10 ⁻⁵	-8%	1 x 10 ⁻⁶	9 x 10 ⁻⁷	
Total chlordane	5.7 x 10 ⁻⁷	5.5 x 10 ⁻⁷	-4%	2 x 10 ⁻⁷	2 x 10 ⁻⁷	
Total DDTs	3.1 x 10 ⁻⁶	3.0 x 10 ⁻⁶	-3%	1 x 10 ⁻⁶	1 x 10 ⁻⁶	
Dieldrin	1.6 x 10 ⁻⁷	1.6 x 10 ⁻⁷	0%	3 x 10 ⁻⁶	3 x 10 ⁻⁶	
gamma-BHC	9.8 x 10 ⁻⁸	9.4 x 10 ⁻⁸	-4%	1 x 10 ⁻⁷	1 x 10 ⁻⁷	
Heptachlor	8.9 x 10 ⁻⁸	8.5 x 10 ⁻⁸	-4%	4 x 10 ⁻⁷	4 x 10 ⁻⁷	
Heptachlor epoxide	1.3 x 10 ⁻⁷	1.2 x 10 ⁻⁷	-8%	1 x 10 ⁻⁶	1 x 10 ⁻⁶	
Hexachlorobenzene	1.5 x 10 ⁻⁷	1.5 x 10 ⁻⁷	0%	2 x 10 ⁻⁷	2 x 10 ⁻⁷	
			Subtotal	9 x 10 ⁻⁶	9 x 10 ⁻⁶	
Total risk across all exposure rou	TEQ	1 x 10 ⁻⁴	1 x 10 ⁻⁴			
Total risk across all exposure rou	1 x 10 ⁻⁴	1 x 10 ⁻⁴				

^a No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.

^b Arsenic risk estimates are based on inorganic arsenic.

^c cPAH concentrations are presented as benzo(a)pyrene equivalents. Tissue data for carcinogenic PAHs are from only 2004; historical data were not used because of high reporting limits. Risk related to 2004 and historical data for cPAHs were analyzed in the uncertainty analysis of the HHRA (Windward 2007).

BHC - benzene hexachloride

CDI - chronic daily intake

cPAH – carcinogenic polycyclic aromatic hydrocarbon CT – central tendency DDT – dichlorodiphenyltrichloroethane HHRA – human health risk assessment PCB – polychlorinated biphenyl TEQ – toxic equivalent

Port of Seattle / City of Seattle / King County / The Boeing Company

Table 4. Comparison of excess cancer risk estimates for the child tribal RME seafood consumption scenario based on Tulalip data

	CANCER CDI	(mg/kg-day)	PERCENT	Excess Cancer Risk		
CHEMICAL	FINAL HHRA	REVISED	CHANGE	FINAL HHRA	REVISED	
Arsenic ^{a, b}	1.8 x 10 ⁻⁴	2.0 x 10 ⁻⁴	+11%	3 x 10 ⁻⁴	3 x 10 ⁻⁴	
Bis(2-ethylhexyl) phthalate	8.3 x 10 ⁻⁵	8.3 x 10 ⁻⁵	0%	1 x 10 ⁻⁶	1 x 10 ⁻⁶	
cPAHs ^{a, c}	1.8 x 10 ⁻⁶	2.1 x 10 ⁻⁶	+17%	7 x 10 ⁻⁵	8 x 10 ⁻⁵	
PCB TEQ ^a	1.5 x 10 ⁻⁹	1.5 x 10 ⁻⁹	0%	2 x 10 ⁻⁴	2 x 10 ⁻⁴	
Total PCBs	1.5 x 10 ⁻⁴	1.5 x 10 ⁻⁴	0%	3 x 10⁻⁴	3 x 10 ⁻⁴	
Pentachlorophenol	1.3 x 10 ⁻⁴	1.3 x 10 ⁻⁴	0%	2 x 10 ⁻⁵	2 x 10 ⁻⁵	
	ing PCB TEQ	7 x 10 ⁻⁴	7 x 10 ⁻⁴			
	S	ubtotal excludir	ng total PCBs	6 x 10 ⁻⁴	6 x 10 ⁻⁴	
Tentatively identified chemicals	(JN-qualified)					
Aldrin	5.2 x 10 ⁻⁷	5.0 x 10 ⁻⁷	-4%	9 x 10 ⁻⁶	8 x 10 ⁻⁶	
alpha-BHC	4.8 x 10 ⁻⁷ 4.5 x 10 ⁻⁷		-6%	3 x 10 ⁻⁶	3 x 10 ⁻⁶	
beta-BHC	6.5 x 10 ⁻⁷	6.2 x 10 ⁻⁷	-5%	1 x 10 ⁻⁶	1 x 10 ⁻⁶	
Carbazole	4.2 x 10 ⁻⁴	4.0 x 10 ⁻⁴	-5%	8 x 10 ⁻⁶	8 x 10 ⁻⁶	
Total chlordane	3.1 x 10 ⁻⁶	3.0 x 10 ⁻⁶	-3%	1 x 10 ⁻⁶	1 x 10 ⁻⁶	
Total DDTs	1.1 x 10 ⁻⁵	1.1 x 10 ⁻⁵	0%	4 x 10 ⁻⁶	4 x 10 ⁻⁶	
Dieldrin	1.5 x 10 ⁻⁶	1.6 x 10 ⁻⁶	+7%	2 x 10 ⁻⁵	3 x 10⁻⁵	
gamma-BHC	7.8 x 10 ⁻⁷	7.5 x 10 ⁻⁷	-4%	1 x 10 ⁻⁶	1 x 10 ⁻⁶	
Heptachlor	5.9 x 10 ⁻⁷	5.6 x 10 ⁻⁷	-5%	3 x 10 ⁻⁶	3 x 10 ⁻⁶	
Heptachlor epoxide	6.2 x 10 ⁻⁷	6.1 x 10 ⁻⁷	-2%	6 x 10 ⁻⁶	6 x 10 ⁻⁶	
Hexachlorobenzene	1.2 x 10 ⁻⁶	1.1 x 10 ⁻⁶	-8%	2 x 10 ⁻⁶	2 x 10 ⁻⁶	
			Subtotal	6 x 10 ⁻⁵	7 x 10⁻⁵	
Total risk across all exposure ro	TEQ	8 x 10 ⁻⁴	8 x 10 ⁻⁴			
Total risk across all exposure ro	7 x 10 ⁻⁴	7 x 10 ⁻⁴				

^a No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.

^b Arsenic risk estimates are based on inorganic arsenic.

^c cPAH concentrations are presented as benzo(a)pyrene equivalents. Tissue data for carcinogenic PAHs are from only 2004; historical data were not used because of high reporting limits. Risk related to 2004 and historical data for cPAHs were analyzed in the uncertainty analysis of the HHRA (Windward 2007).

BHC - benzene hexachloride

CDI - chronic daily intake

cPAH – carcinogenic polycyclic aromatic hydrocarbon

 $\mathsf{DDT}-\mathsf{dichlorodiphenyltrichloroethane}$

HHRA – human health risk assessment PCB – polychlorinated biphenyl RME – reasonable maximum exposure TEQ – toxic equivalent

Port of Seattle / City of Seattle / King County / The Boeing Company

Table 5.Comparison of excess cancer risk estimates for the child tribal CT
seafood consumption scenario based on Tulalip data

	CANCER CDI	(mg/kg-day)	PERCENT	Excess CA	NCER RISK		
CHEMICAL	FINAL HHRA	REVISED	CHANGE	FINAL HHRA	REVISED		
Arsenic ^{a, b}	1.8 x 10 ⁻⁵	1.9 x 10 ⁻⁵	+6%	3 x 10 ⁻⁵	3 x 10 ⁻⁵		
Bis(2-ethylhexyl) phthalate	5.2 x 10 ⁻⁶	5.3 x 10 ⁻⁶	+2%	7 x 10 ⁻⁸	7 x 10 ⁻⁸		
cPAHs ^{a, c}	2.1 x 10 ⁻⁷	2.3 x 10 ⁻⁷	+10%	8 x 10 ⁻⁶	9 x 10 ⁻⁶		
PCB TEQ ^a	1.5 x 10 ⁻¹⁰	1.5 x 10 ⁻¹⁰	0%	2 x 10 ⁻⁵	2 x 10 ⁻⁵		
Total PCBs	1.4 x 10 ⁻⁵	1.3 x 10 ⁻⁵	-7%	3 x 10 ⁻⁵	3 x 10⁻⁵		
Pentachlorophenol	5.9 x 10 ⁻⁶	6.1 x 10 ⁻⁶	+3%	7 x 10 ⁻⁷	7 x 10 ⁻⁷		
	ing PCB TEQ	7 x 10 ⁻⁵	7 x 10 ⁻⁵				
	Sı	ubtotal excludir	ng total PCBs	6 x 10 ⁻⁵	6 x 10 ⁻⁵		
Tentatively identified chemicals	(JN-qualified)						
Aldrin	3.7 x 10 ⁻⁸	3.6 x 10 ⁻⁸	-3%	6 x 10 ⁻⁷	6 x 10 ⁻⁷		
alpha-BHC	3.7 x 10 ⁻⁸	3.5 x 10 ⁻⁸	-5%	2 x 10 ⁻⁷	2 x 10 ⁻⁷		
beta-BHC	6.0 x 10 ⁻⁸	5.9 x 10 ⁻⁸	-2%	1 x 10 ⁻⁷	1 x 10 ⁻⁷		
Carbazole	2.2 x 10 ⁻⁵	2.0 x 10 ⁻⁵	-9%	4 x 10 ⁻⁷	4 x 10 ⁻⁷		
Total chlordane	2.5 x 10 ⁻⁷	2.3 x 10 ⁻⁷	-8%	9 x 10 ⁻⁸	8 x 10 ⁻⁸		
Total DDTs	1.3 x 10 ⁻⁶	1.2 x 10 ⁻⁶	-8%	4 x 10 ⁻⁷	4 x 10 ⁻⁷		
Dieldrin	6.9 x 10 ⁻⁸	6.9 x 10 ⁻⁸	0%	1 x 10 ⁻⁶	1 x 10 ⁻⁶		
gamma-BHC	4.2 x 10 ⁻⁸	4.0 x 10 ⁻⁸	-5%	5 x 10 ⁻⁸	5 x 10 ⁻⁸		
Heptachlor	3.8 x 10 ⁻⁸	3.7 x 10 ⁻⁸	-3%	2 x 10 ⁻⁷	2 x 10 ⁻⁷		
Heptachlor epoxide	5.6 x 10 ⁻⁸	5.3 x 10 ⁻⁸	-5%	5 x 10 ⁻⁷	5 x 10 ⁻⁷		
Hexachlorobenzene	6.6 x 10 ⁻⁸	6.3 x 10 ⁻⁸	-5%	1 x 10 ⁻⁷	1 x 10 ⁻⁷		
			Subtotal	4 x 10 ⁻⁶	4 x 10 ⁻⁶		
Total risk across all exposure roo	Total risk across all exposure routes/pathways excluding PCB TEQ						
Total risk across all exposure roo	6 x 10 ⁻⁵	6 x 10 ⁻⁵					

^a No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.

^b Arsenic risk estimates are based on inorganic arsenic.

^c cPAH concentrations are presented as benzo(a)pyrene equivalents. Tissue data for carcinogenic PAHs are from only 2004; historical data were not used because of high reporting limits. Risk related to 2004 and historical data for cPAHs were analyzed in the uncertainty analysis of the HHRA (Windward 2007).

BHC - benzene hexachloride

CDI - chronic daily intake

cPAH – carcinogenic polycyclic aromatic hydrocarbon CT – central tendency DDT – dichlorodiphenyltrichloroethane HHRA – human health risk assessment PCB – polychlorinated biphenyl TEQ – toxic equivalent

Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

As shown in Tables 2 through 5, changes to the consumption rates resulted in increased CDIs and chemical-specific risk estimates in some cases and decreased CDIs and chemical-specific risk estimates in other cases. The largest increase in the cancer CDI (17% change) using the revised consumption rates was for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) for the child tribal RME seafood consumption scenario based on the Tulalip data. The largest decrease in the cancer CDI (-9% change) using the revised consumption rates was for carbazole for the child tribal CT seafood consumption scenario based on the Tulalip data. Overall, the total excess cancer risk estimates across chemicals stayed the same or increased a relatively small amount.

Revised non-cancer CDIs and non-cancer hazard quotients for the four tribal seafood consumption scenarios based on Tulalip data were also calculated (Tables 6 through 9). Changes to the consumption rates resulted in increased non-cancer CDIs and hazard quotients in some cases and decreased non-cancer CDIs and hazard quotients in other cases. The largest increase in the non-cancer CDI (14% change) using the revised consumption rates was for tributyltin (TBT) for the adult tribal RME seafood consumption scenario based on the Tulalip data and also for arsenic for the child tribal RME seafood consumption scenario based on the Tulalip data. The largest decrease in the non-cancer CDI (-17% change) using the revised consumption rates was for based on the Tulalip data. The largest decrease in the non-cancer CDI (-17% change) using the revised consumption scenario based on the Tulalip data. In almost all cases, hazard indices by endpoint stayed the same or increased slightly.

Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

	Non-CANCER CDI (mg/kg-day)			HAZARD QUOTIENT				
CHEMICAL	FINAL HHRA	REVISED	CHANGE	FINAL HHRA	REVISED			
4-Methylphenol	5.0 x 10 ⁻⁴	4.6 x 10 ⁻⁴	-8%	0.1	0.09			
Antimony	4.7 x 10 ⁻⁵	5.3 x 10 ⁻⁵	+13%	0.1	0.1			
Arsenic ^{a, b}	9.7 x 10 ⁻⁴	1.1 x 10 ⁻³	+13%	3	4			
Bis(2-ethylhexyl) phthalate	4.5 x 10 ⁻⁴	4.5 x 10 ⁻⁴	0%	0.02	0.02			
Butyl benzyl phthalate	5.4 x 10 ⁻⁴	4.9 x 10 ⁻⁴	-9%	0.003	0.002			
Cadmium	9.3 x 10 ⁻⁵	9.6 x 10⁻⁵	+3%	0.09	0.1			
Chromium	4.7 x 10 ⁻⁴	5.1 x 10 ⁻⁴	+9%	0.2	0.2			
Copper	8.6 x 10 ⁻³	8.3 x 10 ⁻³	-3%	0.2	0.2			
Mercury	5.1 x 10 ⁻⁵	4.8 x 10 ⁻⁵	-6%	0.5	0.5			
Nickel	4.0 x 10 ⁻⁴	4.5 x 10 ⁻⁴	+13%	0.02	0.02			
Total PCBs	8.0 x 10 ⁻⁴	8.1 x 10 ⁻⁴	+1%	40	40			
Pentachlorophenol	7.3 x 10 ⁻⁴	7.2 x 10 ⁻⁴	-1%	0.02	0.02			
TBT (as ion)	2.1 x 10 ⁻⁴	2.4 x 10 ⁻⁴	+14%	1	2			
Vanadium	8.3 x 10 ⁻⁴	9.3 x 10 ⁻⁴	+12%	0.8	0.9			
Zinc	3.4 x 10 ⁻²	3.3 x 10 ⁻²	-3%	0.1	0.1			
Tentatively identified chemicals (JN-qualified)								
Aldrin	2.8 x 10 ⁻⁶	2.7 x 10 ⁻⁶	-4%	0.09	0.09			
alpha-BHC	2.6 x 10 ⁻⁶	2.4 x 10 ⁻⁶	-8%	0.005	0.005			
beta-BHC	3.5 x 10 ⁻⁶	3.4 x 10 ⁻⁶	-3%	0.02	0.02			
Total chlordane	1.7 x 10 ⁻⁵	1.6 x 10 ⁻⁵	-6%	0.03	0.03			
Total DDTs	6.2 x 10 ⁻⁵	6.0 x 10 ⁻⁵	-3%	0.1	0.1			
Dieldrin	8.2 x 10 ⁻⁶	8.8 x 10 ⁻⁶	+7%	0.2	0.2			
Endrin	3.0 x 10 ⁻⁶	2.8 x 10 ⁻⁶	-7%	0.01	0.009			
Endrin aldehyde	1.1 x 10 ⁻⁵	1.1 x 10 ⁻⁵	0%	0.04	0.04			
gamma-BHC	4.2 x 10 ⁻⁶	4.1 x 10 ⁻⁶	-2%	0.01	0.01			
Heptachlor	3.2 x 10 ⁻⁶	3.0 x 10 ⁻⁶	-6%	0.006	0.006			
Heptachlor epoxide	3.4 x 10 ⁻⁶	3.3 x 10 ⁻⁶	-3%	0.3	0.3			
Hexachlorobenzene	6.5 x 10 ⁻⁶	6.0 x 10 ⁻⁶	-8%	0.008	0.008			
Hazard index for cardiovascular	endpoint ^c			4	5			
Hazard index for developmental		41	41					
Hazard index for hematologic en		0.2	0.2					
Hazard index for immunological	41	42						
Hazard index for kidney endpoint		0.4	0.4					
Hazard index for liver endpoint ^h	1	1						
Hazard index for neurological en	41	41						
Hazard index for dermal endpoin	3	4						

Table 6. Comparison of non-cancer hazard estimates for the adult tribal RME seafood consumption scenario based on Tulalip data

Lower Duwamish Waterway Group

LDW RI: Baseline HHRA Errata July 17, 2009 Page 8

- ^a No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.
- ^b Arsenic risk estimates are based on inorganic arsenic.
- ^c Cardiovascular endpoint is for arsenic and vanadium.
- ^d Developmental endpoint is for PCBs and mercury.
- ^e Hematologic endpoint is for antimony and zinc.
- ^f Immunological endpoint is for PCBs and TBT.
- ^g Kidney endpoint is for 4-methylphenol, cadmium, copper, gamma-BHC, and pentachlorophenol.
- ^h Liver endpoint is for 4-methylphenol, aldrin, alpha-BHC, beta-BHC, bis(2-ethylhexyl) phthalate, butyl benzyl phthalate, chlordane, copper, total DDTs, dieldrin, endrin, endrin aldehyde, gamma-BHC, heptachlor, heptachlor epoxide, hexachlorobenzene, and pentachlorophenol.
- ⁱ Neurological endpoint is for 4-methylphenol, mercury, and total PCBs.
- ^j Dermal endpoint is for 4-methylphenol and arsenic.
- BHC benzene hexachloride
- CDI chronic daily intake
- DDT dichlorodiphenyltrichloroethane
- HHRA human health risk assessment
- PCB polychlorinated biphenyl
- RME reasonable maximum exposure
- TBT tributyltin

Port of Seattle / City of Seattle / King County / The Boeing Company

	NON-CANCER C	DI (mg/kg-day)	PERCENT	HAZARD QUOTIENT				
CHEMICAL	FINAL HHRA	Revised	CHANGE	FINAL HHRA	REVISED			
4-Methylphenol	4.5 x 10 ⁻⁵	4.1 x 10 ⁻⁵	-9%	0.009	0.008			
Antimony	4.0 x 10 ⁻⁶	4.4 x 10 ⁻⁶	+10%	0.01	0.01			
Arsenic ^{a, b}	9.7 x 10 ⁻⁵	1.0 x 10 ⁻⁴	+3%	0.3	0.4			
Bis(2-ethylhexyl) phthalate	2.8 x 10 ⁻⁵	2.9 x 10 ⁻⁵	+4%	0.001	0.002			
Butyl benzyl phthalate	5.4 x 10 ⁻⁵	4.9 x 10 ⁻⁵	-9%	0.0003	0.0002			
Cadmium	1.2 x 10 ⁻⁵	1.3 x 10 ⁻⁵	+8%	0.01	0.01			
Chromium	5.5 x 10 ⁻⁵	6.2 x 10 ⁻⁵	+13%	0.02	0.02			
Copper	1.1 x 10 ⁻³	1.1 x 10 ⁻³	0%	0.03	0.03			
Mercury	6.9 x 10 ⁻⁶	6.6 x 10 ⁻⁶	-4%	0.07	0.07			
Nickel	5.3 x 10 ⁻⁵	5.8 x 10 ⁻⁵	+9%	0.003	0.003			
Total PCBs	7.5 x 10 ⁻⁵	7.3 x 10 ⁻⁵	-3%	4	4			
Pentachlorophenol	3.2 x 10 ⁻⁵	3.4 x 10 ⁻⁵	+6%	0.001	0.001			
TBT (as ion)	2.4 x 10 ⁻⁵	2.7 x 10 ⁻⁵	+13%	0.2	0.2			
Vanadium	1.1 x 10 ⁻⁴	1.2 x 10 ⁻⁴	+9%	0.1	0.1			
Zinc	4.8 x 10 ⁻³	4.7 x 10 ⁻³	-2%	0.02	0.02			
Tentatively identified chemicals (JN-qualified)								
Aldrin	2.0 x 10 ⁻⁷	1.9 x 10 ⁻⁷	-5%	0.007	0.007			
alpha-BHC	2.0 x 10 ⁻⁷	1.9 x 10 ⁻⁷	-5%	0.0004	0.0004			
beta-BHC	3.3 x 10 ⁻⁷	3.2 x 10 ⁻⁷	-3%	0.002	0.002			
Total chlordane	1.3 x 10 ⁻⁶	1.3 x 10 ⁻⁶	0%	0.003	0.003			
Total DDTs	7.1 x 10 ⁻⁶	6.9 x 10 ⁻⁶	-3%	0.01	0.01			
Dieldrin	3.7 x 10 ⁻⁷	3.8 x 10 ⁻⁷	+3%	0.007	0.008			
Endrin	2.6 x 10 ⁻⁷	2.5 x 10 ⁻⁷	-4%	0.0009	0.0008			
Endrin aldehyde	3.0 x 10 ⁻⁷	2.9 x 10 ⁻⁷	-3%	0.001	0.001			
gamma-BHC	2.3 x 10 ⁻⁷	2.2 x 10 ⁻⁷	-4%	0.0008	0.0007			
Heptachlor	2.1 x 10 ⁻⁷	2.0 x 10 ⁻⁷	-5%	0.0004	0.0004			
Heptachlor epoxide	3.0 x 10 ⁻⁷	2.9 x 10 ⁻⁷	-3%	0.02	0.02			
Hexachlorobenzene	3.6 x 10 ⁻⁷	3.4 x 10 ⁻⁷	-6%	0.0004	0.0004			
Hazard index for cardiovascular	endpoint ^c			0.4	0.5			
Hazard index for developmental	endpoint ^d			4	4			
Hazard index for hematologic en		0.03	0.03					
Hazard index for immunological	4	4						
Hazard index for kidney endpoin	0.05	0.05						
Hazard index for liver endpoint ^h		0.1	0.1					
Hazard index for neurological en	4	4						
Hazard index for dermal endpoir	0.3	0.4						

Table 7.Comparison of non-cancer hazard estimates for the adult tribal CT
seafood consumption scenario based on Tulalip data

Lower Duwamish Waterway Group

LDW RI: Baseline HHRA Errata July 17, 2009 Page 10

- ^a No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.
- ^b Arsenic risk estimates are based on inorganic arsenic.
- ^c Cardiovascular endpoint is for arsenic and vanadium.
- ^d Developmental endpoint is for PCBs and mercury.
- ^e Hematologic endpoint is for antimony and zinc.
- ^f Immunological endpoint is for PCBs and TBT.
- ^g Kidney endpoint is for 4-methylphenol, cadmium, copper, gamma-BHC, and pentachlorophenol.
- ^h Liver endpoint is for 4-methylphenol, aldrin, alpha-BHC, beta-BHC, bis(2-ethylhexyl) phthalate, butyl benzyl phthalate, chlordane, copper, total DDTs, dieldrin, endrin, endrin aldehyde, gamma-BHC, heptachlor, heptachlor epoxide, hexachlorobenzene, and pentachlorophenol.
- ⁱ Neurological endpoint is for 4-methylphenol, mercury, and total PCBs.
- ^j Dermal endpoint is for 4-methylphenol and arsenic.

BHC – benzene hexachloride

- CDI chronic daily intake
- CT central tendency
- DDT dichlorodiphenyltrichloroethane
- HHRA human health risk assessment
- J estimated concentration
- N tentative identification
- PCB polychlorinated biphenyl
- TBT tributyltin

Port of Seattle / City of Seattle / King County / The Boeing Company

	NON-CANCER C	DI (mg/kg-day)	PERCENT	HAZARD QUOTIENT			
CHEMICAL	FINAL HHRA	REVISED	CHANGE	FINAL HHRA	Revised		
4-Methylphenol	1.1 x 10 ⁻³	9.9 x 10 ⁻⁴	-10%	0.2	0.2		
Antimony	1.0 x 10 ⁻⁴	1.1 x 10 ⁻⁴	+10%	0.3	0.3		
Arsenic ^{a, b}	2.1 x 10 ⁻³	2.4 x 10 ⁻³	+14%	7	8		
Bis(2-ethylhexyl) phthalate	9.7 x 10 ⁻⁴	9.7 x 10 ⁻⁴	0%	0.05	0.05		
Butyl benzyl phthalate	1.2 x 10 ⁻³	1.1 x 10 ⁻³	-8%	0.006	0.005		
Cadmium	2.0 x 10 ⁻⁴	2.1 x 10 ⁻⁴	+5%	0.2	0.2		
Chromium	1.0 x 10 ⁻³	1.1 x 10 ⁻³	+10%	0.3	0.4		
Copper	1.8 x 10 ⁻²	1.8 x 10 ⁻²	0%	0.5	0.4		
Mercury	1.1 x 10 ⁻⁴	1.0 x 10 ⁻⁴	-9%	1	1		
Nickel	8.7 x 10 ⁻⁴	9.7 x 10 ⁻⁴	+11%	0.04	0.05		
PCBs (total calc'd)	1.7 x 10 ⁻³	1.7 x 10 ⁻³	0%	86	87		
Pentachlorophenol	1.6 x 10 ⁻³	1.5 x 10 ⁻³	-6%	0.05	0.05		
TBT (as ion)	4.5 x 10 ⁻⁴	5.1 x 10 ⁻⁴	+13%	3	3		
Vanadium	1.8 x 10 ⁻³	2.0 x 10 ⁻³	+11%	2	2		
Zinc	7.3 x 10 ⁻²	7.2 x 10 ⁻²	-1%	0.2	0.2		
Tentatively identified chemicals (JN-qualified)						
Aldrin	6.1 x 10 ⁻⁶	5.8 x 10 ⁻⁶	-5%	0.2	0.2		
alpha-BHC	5.6 x 10 ⁻⁶	5.2 x 10 ⁻⁶	-7%	0.01	0.01		
beta-BHC	7.6 x 10 ⁻⁶	7.3 x 10 ⁻⁶	-4%	0.04	0.04		
Chlordane (total calc'd)	3.6 x 10 ⁻⁵	3.5 x 10 ⁻⁵	-3%	0.07	0.07		
DDTs (total calc'd)	1.3 x 10 ⁻⁴	1.3 x 10 ⁻⁴	0%	0.3	0.3		
Dieldrin	1.8 x 10 ⁻⁵	1.9 x 10 ⁻⁵	+6%	0.4	0.4		
Endrin	6.4 x 10 ⁻⁶	6.0 x 10 ⁻⁶	-6%	0.02	0.02		
Endrin aldehyde	2.4 x 10 ⁻⁵	2.4 x 10 ⁻⁵	0%	0.08	0.08		
gamma-BHC	9.1 x 10 ⁻⁶	8.8 x 10 ⁻⁶	-3%	0.03	0.03		
Heptachlor	6.9 x 10 ⁻⁶	6.5 x 10 ⁻⁶	-6%	0.01	0.01		
Heptachlor epoxide	7.3 x 10 ⁻⁶	7.1 x 10 ⁻⁶	-3%	0.6	0.5		
Hexachlorobenzene	1.4 x 10 ⁻⁵	1.3 x 10 ⁻⁵	-7%	0.02	0.02		
Hazard index for cardiovascular	endpoint ^c			9	10		
Hazard index for developmental e		87	88				
Hazard index for hematologic end		0.5	0.5				
Hazard index for immunological		89	90				
Hazard index for kidney endpoint		1	0.9				
Hazard index for liver endpoint ^h		3	2				
Hazard index for neurological end		87	88				
Hazard index for dermal endpoint	7	8					

Table 8.Comparison of non-cancer hazard estimates for the child tribal RME
seafood consumption scenario based on Tulalip data

Lower Duwamish Waterway Group

LDW RI: Baseline HHRA Errata July 17, 2009 Page 12

- ^a No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.
- ^b Arsenic risk estimates are based on inorganic arsenic.
- ^c Cardiovascular endpoint is for arsenic and vanadium.
- ^d Developmental endpoint is for PCBs and mercury.
- ^e Hematologic endpoint is for antimony and zinc.
- ^f Immunological endpoint is for PCBs and TBT.
- ^g Kidney endpoint is for 4-methylphenol, cadmium, copper, gamma-BHC, and pentachlorophenol.
- ^h Liver endpoint is for 4-methylphenol, aldrin, alpha-BHC, beta-BHC, bis(2-ethylhexyl) phthalate, butyl benzyl phthalate, chlordane, copper, total DDTs, dieldrin, endrin, endrin aldehyde, gamma-BHC, heptachlor, heptachlor epoxide, hexachlorobenzene, and pentachlorophenol.
- ⁱ Neurological endpoint is for 4-methylphenol, mercury, and total PCBs.
- ^j Dermal endpoint is for 4-methylphenol and arsenic.

BHC – benzene hexachloride

CDI – chronic daily intake

- DDT dichlorodiphenyltrichloroethane
- HHRA human health risk assessment
- J estimated concentration
- N tentative identification
- PCB polychlorinated biphenyl
- RME reasonable maximum exposure
- TBT tributyltin

Port of Seattle / City of Seattle / King County / The Boeing Company

	Non-Cancer C	DI (mg/kg-day)	PERCENT	HAZARD QUOTIENT		
CHEMICAL	FINAL HHRA	Revised	CHANGE	FINAL HHRA	REVISED	
4-Methylphenol	9.7 x 10 ⁻⁵	8.9 x 10 ⁻⁵	-8%	0.02	0.02	
Antimony	8.5 x 10 ⁻⁶	9.4 x 10 ⁻⁶	+11%	0.02	0.02	
Arsenic ^{a, b}	2.1 x 10 ⁻⁴	2.2 x 10 ⁻⁴	+5%	0.7	0.7	
Bis(2-ethylhexyl) phthalate	6.1 x 10 ⁻⁵	6.2 x 10 ⁻⁵	+2%	0.003	0.003	
Butyl benzyl phthalate	1.2 x 10 ⁻⁴	1.0 x 10 ⁻⁴	-17%	0.0006	0.0005	
Cadmium	2.7 x 10 ⁻⁵	2.7 x 10 ⁻⁵	0%	0.03	0.03	
Chromium	1.2 x 10 ⁻⁴	1.3 x 10 ⁻⁴	+8%	0.04	0.04	
Copper	2.5 x 10 ⁻³	2.3 x 10 ⁻³	-8%	0.06	0.06	
Mercury	1.5 x 10 ⁻⁵	1.4 x 10 ⁻⁵	-7%	0.1	0.1	
Nickel	1.1 x 10 ⁻⁴	1.2 x 10 ⁻⁴	+9%	0.006	0.006	
Total PCBs	1.6 x 10 ⁻⁴	1.5 x 10 ⁻⁴	-6%	8	8	
Pentachlorophenol	6.9 x 10 ⁻⁵	7.2 x 10 ⁻⁵	+4%	0.002	0.002	
TBT (as ion)	5.2 x 10 ⁻⁵	5.8 x 10 ⁻⁵	+12%	0.3	0.4	
Vanadium	2.3 x 10 ⁻⁴	2.5 x 10 ⁻⁴	+9%	0.2	0.3	
Zinc	1.0 x 10 ⁻²	1.0 x 10 ⁻²	0%	0.03	0.03	
Tentatively identified chemicals ((JN-qualified)					
Aldrin	4.4 x 10 ⁻⁷	4.2 x 10 ⁻⁷	-5%	0.01	0.01	
alpha-BHC	4.3 x 10 ⁻⁷	4.1 x 10 ⁻⁷	-5%	0.0009	0.0008	
beta-BHC	7.0 x 10 ⁻⁷	6.8 x 10 ⁻⁷	-3%	0.004	0.003	
Total chlordane	2.9 x 10 ⁻⁶	2.7 x 10 ⁻⁶	-7%	0.006	0.005	
Total DDTs	1.5 x 10 ⁻⁵	1.4 x 10 ⁻⁵	-7%	0.03	0.03	
Dieldrin	8.0 x 10 ⁻⁷	8.0 x 10 ⁻⁷	0%	0.02	0.02	
Endrin	5.6 x 10 ⁻⁷	5.3 x 10 ⁻⁷	-5%	0.002	0.002	
Endrin aldehyde	6.5 x 10 ⁻⁷	6.2 x 10 ⁻⁷	-5%	0.002	0.002	
gamma-BHC	4.9 x 10 ⁻⁷	4.7 x 10 ⁻⁷	-4%	0.002	0.002	
Heptachlor	4.5 x 10 ⁻⁷	4.3 x 10 ⁻⁷	-4%	0.0009	0.0009	
Heptachlor epoxide	6.5 x 10 ⁻⁷	6.1 x 10 ⁻⁷	-6%	0.05	0.05	
Hexachlorobenzene	7.7 x 10 ⁻⁷	7.3 x 10 ⁻⁷	-5%	0.001	0.0009	
Hazard index for cardiovascular	endpoint ^c			0.9	1	
Hazard index for developmental		8	8			
Hazard index for hematologic en		0.05	0.05			
Hazard index for immunological		8	8			
Hazard index for kidney endpoint		0.1	0.1			
Hazard index for liver endpoint ^h		0.3	0.3			
Hazard index for neurological en		8	8			
Hazard index for dermal endpoin	0.7	0.7				

Table 9.Comparison of non-cancer hazard estimates for the child tribal CT
seafood consumption scenario based on Tulalip data

Lower Duwamish Waterway Group

LDW RI: Baseline HHRA Errata July 17, 2009 Page 14

- ^a No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.
- ^b Arsenic risk estimates are based on inorganic arsenic.
- ^c Cardiovascular endpoint is for arsenic and vanadium.
- ^d Developmental endpoint is for PCBs and mercury.
- ^e Hematologic endpoint is for antimony and zinc.
- ^f Immunological endpoint is for PCBs and TBT.
- ^g Kidney endpoint is for 4-methylphenol, cadmium, copper, gamma-BHC, and pentachlorophenol.
- ^h Liver endpoint is for 4-methylphenol, aldrin, alpha-BHC, beta-BHC, bis(2-ethylhexyl) phthalate, butyl benzyl phthalate, chlordane, copper, total DDTs, dieldrin, endrin, endrin aldehyde, gamma-BHC, heptachlor, heptachlor epoxide, hexachlorobenzene, and pentachlorophenol.
- ⁱ Neurological endpoint is for 4-methylphenol, mercury, and total PCBs.
- ^j Dermal endpoint is for 4-methylphenol and arsenic.

BHC – benzene hexachloride

- CDI chronic daily intake
- CT central tendency
- DDT dichlorodiphenyltrichloroethane
- HHRA human health risk assessment
- J estimated concentration
- N tentative identification
- PCB polychlorinated biphenyl
- TBT tributyltin

Port of Seattle / City of Seattle / King County / The Boeing Company

UPDATED RISK ESTIMATES BY SEAFOOD CATEGORY

This section summarizes the contribution of different seafood consumption categories to the total risk estimates by chemical (for arsenic, cPAHs, polychlorinated biphenyl [PCB] toxic equivalent [TEQ], and total PCB TEQ) based on the consumption rates used in the final HHRA and the revised consumption rates. Comparisons of the percent contribution to the risk estimates for each seafood consumption category are presented in Tables 10 and 11 for the adult/child tribal RME and the adult/child tribal CT seafood consumption scenarios, respectively, based on Tulalip data. For all four scenarios, the estimates using the revised consumption rates, which assumed a higher consumption of clams and a lower consumption of crabs, resulted in a slightly higher percentage of the risk attributable to clams and a lower percentage of risk attributable to crabs.

Port of Seattle / City of Seattle / King County / The Boeing Company

Table 10.Comparison of the percent contribution of seafood consumption categories to the excess cancer
risks and non-cancer hazards for selected chemicals in the adult tribal RME and child tribal RME
seafood consumption scenarios based on Tulalip data

	AD Consu Rate (ULT IMPTION (g/day)	CH Consu Rate (IILD IMPTION g/day)		ENT OF AL'S RISK	
CONSUMPTION CATEGORY	FINAL HHRA	Revised	FINAL HHRA	Revised	FINAL HHRA	Revised	Adult or Child Tribal RME (Tulalip data) Seafood Consumption Risk Expressed as Percentage of the Total Risk ^a
Arsenic ^b							
Pelagic	8.2	8.2	3.3	3.2	0.9%	0.8%	Final HHRA
Benthic – fillet	7.6	7.6	3.0	3.0	0.06%	0.05%	Revised
Crab – edible meat	33	29	13	12	1.8%	1.3%	0% 20% 40% 60% 80% 100%
Crab – whole body	10	9.1	4.2	3.6	1.5%	1.1%	Percent of Arsenic Risk
Clams	38	44	15	18	95.8%	96.7%	🔳 Pelagic 🛛 🔳 Benthic fillet 👘 Crab EM 👘 Crab WB 👘 Clams
cPAHs (2004 data o	only) ^{b, c}						
Pelagic	8.2	8.2	3.3	3.2	1.0%	0.8%	Final HHRA
Benthic – fillet	7.6	7.6	3.0	3.0	0.6%	0.5%	Revised
Crab – edible meat	33	29	13	12	2.7%	2.1%	0% 20% 40% 60% 80% 100%
Crab – whole body	10	9.1	4.2	3.6	1.2%	0.9%	Percent of cPAH Risk
Clams	38	44	15	18	94.5%	95.7%	🔳 Pelagic 🛛 🔳 Benthic fillet 👘 Crab EM 👘 Crab WB 👘 Clams

Lower Duwamish Waterway Group

LDW RI: Baseline HHRA Errata July 17, 2009 Page 17

	ADULT CONSUMPTION RATE (g/day)		CHILD CONSUMPTION RATE (g/day)		PERCENT OF CHEMICAL'S RISK		PERCENT OF CHEMICAL'S RISK		
CONSUMPTION CATEGORY	FINAL HHRA	Revised	FINAL HHRA	Revised	FINAL HHRA	Revised	Adult or Child Tribal RME (Tulalip data) Seafood Consumption Risk Expressed as Percentage of the Total Risk ^a		
PCB TEQ ^b									
Pelagic	8.2	8.2	3.3	3.2	41.4%	41.7%	Final HHRA		
Benthic – fillet	7.6	7.6	3.0	3.0	13.3%	13.4%	Revised		
Crab – edible meat	33	29	13	12	12.0%	10.6%	0% 20% 40% 60% 80% 100%		
Crab – whole body	10	9.1	4.2	3.6	15.3%	13.3%	Percent of PCB TEQ Risk		
Clams	38	44	15	18	18.0%	21.0%	■ Pelagic 🛛 Benthic fillet 📑 Crab EM 🔲 Crab WB 🔲 Clams		
Total PCBs ^d									
Pelagic	8.1	8.1	3.2	3.2	23.6%	23.3%	Final HHRA		
Benthic – fillet	7.5	7.5	3.0	3.0	13.8%	13.6%	- Revised		
Crab – edible meat	33	29	13	12	10.1%	8.7%			
Crab – whole body	10	9.0	4.2	3.6	17.6%	15.0%	0% 20% 40% 60% 80% 100%		
Mussels	0.82	0.80	0.33	0.30	0.05%	0.05%	Pologic Ponthic fillet Crob EM Crob W/R Muscele Come		
Clams	38	43	15	17	34.8%	39.4%			

^a Figures represent both cancer and non-cancer risks. Risk percentages are based on EPC and consumption rates, meaning that the percentage of risk from each consumption category is the same for cancer and non-cancer risks.

^b No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.

^c cPAH concentrations are given in terms of benzo(a)pyrene equivalents. Data used in the risk characterization portion of this document are from only 2004 because of high reporting limits in historical data. All cPAH data are analyzed in the uncertainty analysis (HHRA, Section B.6).

^d Although total PCBs data for mussels were included in the risk estimates, mussels are not shown in the bar charts because their percentage of total risk was so small.

cPAH – carcinogenic polycyclic aromatic hydrocarbon EM – edible meat

EPC – exposure point concentration

HHRA – human health risk assessment na – not applicable PCB – polychlorinated biphenyl RME – reasonable maximum exposure TEQ – toxic equivalent WB – whole body

Lower Duwamish Waterway Group

LDW RI: Baseline HHRA Errata July 17, 2009 Page 18

Table 11. Comparison of the percent contribution of seafood consumption categories to the excess cancerrisks and non-cancer hazards for selected chemicals in the adult tribal CT and child tribal CT seafoodconsumption scenarios based on Tulalip data

	Adult Consumption Rate (g/day)		CHILD CONSUMPTION RATE (g/day)		PERCENT OF CHEMICAL'S RISK		
CONSUMPTION CATEGORY	FINAL HHRA	Revised	FINAL HHRA	Revised	FINAL HHRA	Revised	Adult or Child Tribal RME (Tulalip data) Seafood Consumption Risk Expressed as Percentage of the Total Risk ^a
Arsenic ^b							
Pelagic	1.4	1.3	0.55	0.52	0.9%	0.9%	Final HHRA
Benthic – fillet	1.3	1.2	0.51	0.48	0.06%	0.06%	Revised
Crab – edible meat	5.3	4.4	2.1	1.8	1.5%	1.2%	0% 20% 40% 60% 80% 100%
Crab – whole body	1.7	1.4	0.68	0.60	1.6%	1.2%	Percent of Arsenic Risk
Clams	6.1	6.6	2.4	2.6	95.8%	96.6%	🔳 Pelagic 🛛 🔳 Benthic fillet 👘 Crab EM 👘 Crab WB 👘 Clams
cPAHs (2004 data c	only) ^{b, c}						
Pelagic	1.4	1.3	0.55	0.52	1.1%	1.0%	Final HHRA
Benthic fillet	1.3	1.2	0.51	0.48	0.6%	0.5%	Revised
Crab –edible meat	5.3	4.4	2.1	1.8	3.4%	2.7%	0% 20% 40% 60% 80% 100%
Crab – whole body	1.7	1.4	0.68	0.60	1.3%	1.0%	Percent of cPAH Risk
Clams	6.1	6.6	2.4	2.6	93.6%	94.8%	🔳 Pelagic 🛛 🔳 Benthic fillet 📄 Crab EM 📄 Crab WB 📄 Clams

Lower Duwamish Waterway Group

LDW RI: Baseline HHRA Errata July 17, 2009 Page 19

	AD Consu Rate	ADULT CONSUMPTION RATE (g/day)		CHILD CONSUMPTION RATE (g/day)		ent of al's Risk	
CONSUMPTION CATEGORY	FINAL HHRA	Revised	FINAL HHRA	Revised	FINAL HHRA	Revised	Adult or Child Tribal RME (Tulalip data) Seafood Consumption Risk Expressed as Percentage of the Total Risk ^a
PCB TEQ ^b							
Pelagic	1.4	1.3	0.55	0.52	37.9%	38.8%	Final HHRA
Benthic – fillet	1.3	1.2	0.51	0.48	16.7%	17.1%	Revised
Crab – edible meat	5.3	4.4	2.1	1.8	14.7%	13.2%	
Crab – whole body	1.7	1.4	0.68	0.60	18.1%	16.2%	Percent of PCB TEQ Risk
Clams	6.1	6.6	2.4	2.6	12.6%	14.7%	■ Pelagic Benthic fillet Crab EM Crab WB Clams
Total PCBs ^d							
Pelagic	1.3	1.3	0.52	0.52	35.6%	36.6%	Final HHRA
Benthic – fillet	1.2	1.2	0.48	0.48	13.8%	14.1%	- Bevised
Crab – edible meat	5.0	4.4	2.0	1.8	13.9%	12.6%	
Crab – whole body	1.6	1.4	0.64	0.60	23.3%	21.0%	0% 20% 40% 60% 80% 100%
Mussels	0.10	0.10	0.40	0.04	0.06%	0.06%	
Clams	5.8	6.6	2.3	2.6	13.3%	15.6%	Pelagic Benthic fillet Crab EM Crab WB Mussels Clams

^a Figures represent both cancer and non-cancer risks. Risk percentages are based on EPC and consumption rates, meaning that the percentage of risk from each consumption category is the same for cancer and non-cancer risks.

^b No mussel data were available for this chemical. When calculating the CDI and risk estimates, the portion of seafood consumption that had been assigned to mussels was divided proportionally among the remaining consumption categories.

^c cPAH concentrations are given in terms of benzo(a)pyrene equivalents. Data used in the risk characterization portion of this document are from only 2004 because of high reporting limits in historical data. All cPAH data are analyzed in the uncertainty analysis (HHRA, Section B.6).

^d Although total PCBs data for mussels were included in the risk estimates, mussels are not shown in the bar charts because their percentage of total risk was so small.

cPAH -carcinogenic polycyclic aromatic hydrocarbon

CT – central tendency

EM - edible meat

EPC – exposure point concentration HHRA – human health risk assessment na – not applicable PCB – polychlorinated biphenyl TEQ – toxic equivalent WB – whole body

LDW RI: Baseline HHRA Errata July 17, 2009 Page 20

CONCLUSIONS

As presented in these errata, the revised consumption rates for the child and adult tribal seafood consumption scenarios based on Tulalip data do not result in substantial changes to the risk estimates presented in the final LDW HHRA (Windward 2007). Risk estimates increased for some chemicals and decreased for other chemicals. In addition, although the revised consumption rates resulted in a slightly higher percentage of the risk attributable to clams, this change was minimal. The changes in excess cancer risk estimates or hazard quotients with the revised shellfish consumption rates do not change the chemicals of concern or risk drivers for any of the Tulalip survey-based seafood consumption scenarios that were identified in the final HHRA.

References

- EPA. 2007. Framework for selecting and using tribal fish and shellfish consumption rates for risk-based decision making at CERCLA and RCRA cleanup sites in Puget Sound and the Strait of Georgia. U.S. Environmental Protection Agency, Region 10, Seattle, WA.
- EPA. 2009. EPA and Ecology comments on Revised Draft Remedial Investigation report, dated October 30, 2008; comments dated February 23, 2009. US Environmental Protection Agency Region 10, Seattle, WA.
- Windward. 2007. Lower Duwamish Waterway remedial investigation. Baseline human health risk assessment. Prepared for Lower Duwamish Waterway Group. Windward Environmental LLC, Seattle, WA.

Port of Seattle / City of Seattle / King County / The Boeing Company