Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

TECHNICAL MEMORANDUM: SUMMARY OF CHEMISTRY DATASETS TO BE USED IN THE PHASE 2 RI/FS – ADDENDUM 1

FINAL

For submittal to

The US Environmental Protection Agency Region 10 Seattle, WA

The Washington State Department of Ecology Northwest Regional Office Bellevue, WA

October 19, 2005

Prepared by: Wind Wa

200 West Mercer Street, Suite 401 • Seattle, Washington • 98119

Table of Contents

LIST C	OF TABLE	S	I							
Acro	NYMS		II							
1.0	Introd									
2.0	SUMMA	RY OF DATA QUALITY REVIEW	2							
2.2	l Dat	TASET SUMMARY	2							
2.2	2 DAT	fa Quality Review Summary	3							
	2.2.1	Boyer Towing	4							
	2.2.2	Lehigh Northwest	5							
	2.2.3	KC WQA (water chemistry)	5							
3.0	Refere	ENCES	7							
	NDIX A.	DATASET SUMMARIES	15							
APPENDIX B.		SAMPLE-SPECIFIC DATA QUALIFIER CHANGES	28							

List of Tables

Table 2-1. Table 2-2.	Chemistry datasets reviewed by Windward for this addendum Summary of data quality reviews conducted by Windward for	2
	datasets not previously reviewed in Windward (2005b)	3
Table A-1.	Chemistry datasets acceptable for all uses in the Phase 2 RI/FS	15
Table A-2.	Chemistry datasets not acceptable for all uses in the Phase 2 RI/FS	25

Acronyms

ARI	Analytical Resources, Inc.
CAS	Columbia Analytical Services, Inc.
CSO	combined sewer overflow
DQO	data quality objective
Ecology	Washington State Department of Ecology
EPA	US Environmental Protection Agency
FS	feasibility study
ICP-MS	inductively coupled plasma-mass spectrometry
KC WQA	King County (1999a) Water Quality Assessment
LDW	Lower Duwamish Waterway
LDWG	Lower Duwamish Waterway Group
MS/MSD	matrix spike/matrix spike duplicate
NOAA	National Oceanic and Atmospheric Administration
PAH	polycyclic aromatic hydrocarbon
РСВ	polychlorinated biphenyl
PSDDA	Puget Sound Dredged Disposal Authority
PSEP	Puget Sound Estuary Program
QA/QC	quality assurance/quality control
QA1	summary data validation (EPA 1999, 2002)
QA2	full data validation (EPA 1999, 2002)
QAPP	Quality Assurance Project Plan
RCRA	Resource Conservation and Recovery Act
RFI	RCRA Facility Investigation
RI	Remedial Investigation
RM	river mile
RPD	relative percent difference
RSD	relative standard deviation
SPMD	semipermeable membrane device
SRM	standard reference material
SVOC	semivolatile organic compound
ТВТ	tributyltin
тос	total organic carbon
ТРН	total petroleum hydrocarbons
USACE	US Army Corps of Engineers
VOC	volatile organic compound
Windward	Windward Environmental LLC

Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

Final

1.0 Introduction

The Lower Duwamish Waterway Group (LDWG) is conducting a Remedial Investigation/Feasibility Study (RI/FS) of the Lower Duwamish Waterway (LDW). As part of the RI/FS, historical chemistry data have been compiled. The Phase 1 RI report, which was completed by Windward Environmental LLC (Windward) in 2003 (Windward 2003), was based on existing sediment and tissue chemistry data that were considered acceptable for use in Phase 1 (Windward 2001a, b). The Phase 1 database was finalized, as agreed to by the US Environmental Protection Agency (EPA) and the Washington Department of Ecology (Ecology), in December 2001, so chemistry data collected or made available to Windward after that time were not incorporated into the Phase 1 RI.

Phase 2 of the RI and the FS will consider the following additional data:

- Data collected by other parties prior to the end of 2001, but not discovered during Phase 1 data compilation
- Data collected by other parties after the end of 2001
- Data collected by LDWG members for purposes other than the RI/FS, including Early Action Area investigations
- Data collected specifically for the Phase 2 RI, as described in the Phase 2 RI work plan (Windward 2004b)

These data will be combined with the data used in Phase 1 to characterize the nature and extent of contamination in the LDW, and to assess the risks to humans, fish, wildlife, and benthic invertebrates. A technical memorandum documenting the data quality of sediment and tissue chemistry datasets used in Phase 1 and data collected after 2001 was prepared after additional chemistry data, as described above, were compiled (Windward 2005b). This addendum describes the data quality of additional datasets identified since the original technical memorandum was prepared. Data collected specifically for the Phase 2 RI are not included in this addendum because separate data reports that document data quality have been prepared or will be prepared in the upcoming months.

The data quality objectives (DQOs) described in the original technical memorandum (Windward 2005b) were also used to review the additional datasets summarized in this addendum. Section 2 of this addendum presents a summary of the data quality reviews recently conducted by Windward. Appendix A presents a summary of all datasets reviewed to date, including those previously summarized in Windward (2005b). Appendix B summarizes the data qualifier changes that were made based on Windward's data quality reviews that are summarized in this addendum.

Final

Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

2.0 Summary of Data Quality Review

2.1 DATASET SUMMARY

Table 2-1 lists the LDW chemistry datasets not previously summarized in Windward (2005b) that are now being considered for use in the Phase 2 RI.

Table 2-1. Chemistry datasets reviewed by Windward for this addended
--

SAMPLING EVENT	EVENT CODE	YEAR	CHEMICALS	NUMBER OF SAMPLES BY MEDIUM	Reference
Boyer Towing dock replacement	BoyerTowing	2004	metals, SVOCs, PCB Aroclors, conventionals	4 surface and 4 subsurface sediment	WR Consulting (2004)
PSDDA characterization at the Lehigh Northwest Duwamish Waterway Facility	LehighNW	2004	metals, SVOCs, PCB Aroclors, organochlorine pesticides, conventionals	3 subsurface sediment	MCS (2004b)
King County combined sewer overflow water quality assessment for the Duwamish River and Elliott Bay ^a	KC WQA	1996- 1997	metals, SVOCs, conventionals; PCB congeners and Aroclors; organochlorine pesticides	1,249 surface water and 4 semi-permeable membrane devices ^b	King County (1999a)
RCRA Facility Investigation Duwamish Waterway sediment investigation, Plant 2 – Phase 1	Plant 2 RFI-1	1995	metals, PCB Aroclors, TPH, SVOCs, VOCs	22 seep water	Weston (1998)
Rhône-Poulenc RCRA Facility Investigation for the Marginal Way facility – Round 3	Rhône-Poulenc RFI-3	1995	VOCs	7 seep water	Rhône-Poulenc (1996)
	GreatWestern Apr-94	1994	VOCs	6 seep water	Hart Crowser (1994a)
	GreatWestern Jul-94	1994	VOCs	9 seep water	Hart Crowser (1994b)
	GreatWestern Nov-94	1994	VOCs	7 seep water	Hart Crowser (1996)
	GreatWestern May-95	1995	VOCs	7 seep water	Hart Crowser (1996)
Supplemental remedial	GreatWestern- 1995Annual	1995	VOCs	7 seep water	Hart Crowser (1996)
study. Great Western International	GreatWestern- 1996Annual	1996	VOCs	5 seep water	Hart Crowser (1997)
	GreatWestern- 1997Annual	1997	VOCs	4 seep water	Terra Vac, Floyd & Snider (2000)
	GreatWestern- 1998Annual	1998	VOCs	9 seep water	Terra Vac, Floyd & Snider (2000)
	GreatWestern- Embayment Study	1998	VOCs	10 seep water	Terra Vac, Floyd & Snider (2000)
	GreatWestern- 1999Annual	1999	VOCs, SVOCs	5 seep water	Terra Vac, Floyd & Snider (2000)

^a Water chemistry data only. Sediment and tissue chemistry data from this sampling event were previously reviewed in Windward (2005b).

^b Data collected using semi-permeable membrane devices, including PCB congeners, PAHs, and organochlorine pesticides, are not discussed in this memorandum. The applicability of these data for this project will be discussed in a separate memorandum.

PCB – polychlorinated biphenyl

TPH - total petroleum hydrocarbons

SVOC – semivolatile organic compound VOC – volatile organic compound

Final

Lower Duwamish Waterway Group

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 2

2.2 DATA QUALITY REVIEW SUMMARY

This section summarizes the data quality reviews conducted by Windward on the datasets summarized in Table 2-1. A summary of the data quality reviews is presented in Table 2-2. Specific data quality issues researched by Windward for particular datasets are described in greater detail later in this section, as referenced in the "Summary" column of Table 2-2. Data not reviewed (i.e., seep water) are not discussed other than the summary in Table 2-2. The data quality review conclusions are also summarized in Appendix A.

EVENT CODE	YEAR	SUMMARY	ACCEPTABLE FOR ALL PHASE 2 USES?
Sediment data			
BoyerTowing	2004	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database (see Section 2.2.1)	yes
LehighNW	2004	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database (see Section 2.2.2)	yes
Surface water data			
KC WQA	1996- 1997	QC consistent with previous King County events approved for all uses by EPA; validation qualifiers added to database (see Section 2.2.3)	yes
Seep water data			
Plant 2 RFI-1	1995	Comprehensive data quality review not warranted because EPA has previously approved these data for all uses in the RCRA program. Data validation consistent with EPA guidelines has been conducted, as verified by Windward.	yes
Rhône-Poulenc RFI-3	1995	Comprehensive data quality review not warranted because EPA has previously approved these data for all uses in the RCRA program. Data validation consistent with EPA guidelines has been conducted, as verified by Windward.	yes
GreatWestern Apr-94	1994		no
GreatWestern Jul-94	1994		no
GreatWestern Nov-94	1994		no
GreatWestern May-95	1995	Comprehensive data quality review not warranted because	no
GreatWestern-1995Annual	1995	estimates in Phase 2. Data will be collected at this site	no
GreatWestern-1996Annual	1996	under the Phase 2 porewater sampling program. These	no
GreatWestern-1997Annual	1997	aquatic organisms and will be validated according to EPA	no
GreatWestern-1998Annual	1998	guidelines.	no
GreatWestern-Embayment Study	1998		no
GreatWestern-1999Annual	1999		no

Table 2-2.Summary of data quality reviews conducted by Windward for
datasets not previously reviewed in Windward (2005b)

Each of the datasets listed in Table 2-2 have been validated at some level. Summaries of data validations for datasets not previously reviewed in Windward (2005b), but now considered acceptable for use in Phase 2 based on the reviews summarized in this memorandum, are included in Sections 2.2.1 through 2.2.3.

Final

Lower Duwamish Waterway Group

2.2.1 Boyer Towing

On May 8, 2004, three closely-spaced pairs of manual push-core sediment samples (plus a field duplicate pair) were collected under the Boyer Towing dock, located on the west side of the LDW at approximately river mile (RM) 2.4. Those core samples were split into surface and subsurface fractions (0-10 cm and 1-2 ft depth below mudline) and composited to form 8 samples (WR Consulting 2004). Those composite samples were analyzed by Analytical Resources, Inc. (ARI) for metals (EPA 6010B, EPA 7471A), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (EPA 8270C), polychlorinated biphenyl (PCB) Aroclors (EPA 8082), tributyltin (TBT) (Krone), grain size (modified PSEP), and conventional analyses (total solids by ILM 03.0 and total organic carbon [TOC] by SM 5310B). All analytical data and laboratory quality control (QC) procedures were evaluated and reviewed by WR Consulting following QA1 guidelines (PTI 1989).

Copper was found in the method blank, but sample concentrations were at least 30 times the blank concentration, so no qualification was necessary. The relative percent differences (RPD) between the matrix spike (MS) and matrix spike duplicate (MSD), and between two laboratory duplicate samples exceeded quality control (QC) criteria (Sample ID B1AB 0-10). Because the percent recovery for the laboratory control sample (LCS) was acceptable, the original data validator concluded that the QC deviation was likely attributable to matrix effects and did not qualify the copper result for this sample. As part of Windward's review, however, the copper result was qualified as an estimate (JK, indicating unknown bias) because the matrix effect is relevant to the sample concentration. The RPDs for chromium (MS/MSD) and lead (laboratory duplicates) in the same sample also exceeded QC criteria. The original data validator did not qualify these results, but as part of Windward's review, JK qualifiers (estimated concentration, unknown bias) were assigned to chromium and lead in Sample B1AB 0-10.

Several results for PAHs were J-qualified by the laboratory, indicating that the detected concentration was less than the sample-specific reporting limit. Windward mapped this laboratory qualifier to a JK qualifier (estimated concentration, unknown bias).

One Aroclor 1248 result was qualified Y by the laboratory, indicating an elevated reporting limit. Windward mapped this laboratory qualifier to a U validation qualifier (undetected) because Aroclors 1254 and 1260 were also detected in this sample at concentrations higher than the reporting limit.

These validation qualifiers were incorporated into the LDW project database. The sample-specific qualifier changes identified during Windward's review are shown in Appendix B. Form 1s were reviewed and found to be acceptable. The data from this event should be usable for all purposes in Phase 2.

Final

Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

2.2.2 Lehigh Northwest

On August 29, 2003, four sediment cores were collected by MCS Environmental along the west end of the Lehigh Northwest pier, located on the east side of the LDW at approximately RM 1.1, and composited into one subsurface and two surface samples. These samples were analyzed by ARI for conventional parameters (ammonia by EPA 350.1M, total solids by EPA 160.3 and 160.4, sulfides by EPA 376.2, TOC by Plumb 1981), metals (EPA 6010B, mercury by EPA 7471A, selenium by EPA 7740), SVOCs (EPA 8270), volatile organic compounds (VOCs) (EPA 8260), organochlorine pesticides and PCBs (EPA 8081A, EPA 8082), and grain size (PSEP). All sediment analytical data and laboratory QC procedures were evaluated and reviewed by Sayler Data Solutions following QA1 guidelines (PTI 1989).

All antimony results were rejected by the original data validator because of very low MS recovery. Lead from sample C1 was J-qualified by the validator because of an RPD for a matrix duplicate pair above QC criteria. Windward mapped this to a JL qualifier (estimated concentration, low bias).

In sample C2, RPDs for fluoranthene and phenanthrene laboratory duplicates were outside QC criteria. The results were J-qualified by the original data validator; Windward mapped these qualifiers to a JK qualifier (estimated concentration, unknown bias).

Several pesticide and PCB results were qualified Y by the laboratory because of elevated RLs. Windward mapped this laboratory qualifier to a U validation qualifier (undetected).

All ammonia results were J-qualified by the original data validator because the percent recovery for the standard reference material was above QC criteria. Windward mapped these qualifiers to a JH qualifier (estimated concentration, high bias).

These validation qualifiers were incorporated into the LDW project database. The sample-specific qualifier changes identified during Windward's review are shown in Appendix B. Form 1s were reviewed and found to be acceptable. The data from this event should be usable for all purposes in Phase 2.

2.2.3 KC WQA (water chemistry)

Over 1,200 surface water samples were collected by King County as part of the Water Quality Assessment project from October 1996 to June 1997. The samples were analyzed for conventional parameters (EPA 120.1, EPA 130.1, EPA 360.2, SM 2540-D, SM 2540-E, SM 4500-NH3-H, SM 4500-NO3-F, SM 5220-D), metals (EPA 200.8, EPA 245.2), and SVOCs (EPA 625). The King County Environmental Laboratory conducted all analyses of the surface water samples. All analytical data and laboratory QC procedures were evaluated and reviewed by King County following QA1 guidelines (PTI 1989).

Final

Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

Holding times for 38 surface water samples analyzed for ammonia nitrogen and nitrate + nitrite in a single batch were exceeded by one day. This exceedance was considered minor and no validation qualifiers were added to these results as part of Windward's review.

Phthalates were detected in several blank samples, which affected 151 surface water results for bis(2-ethylhexyl)phthalate, 1 result for butyl benzyl phthalate, and 9 results for di-n-butyl phthalate. In all cases, detected concentrations of these phthalates were less than 10 times the concentrations in the associated blank samples. As part of the original data validation, these results were qualified as U (undetected).

As part of the sampling and analysis program for metals, field, filter, and method blanks were analyzed. Lead and zinc were consistently detected in field blanks that were collected after the first 8 weeks of sampling had been completed (no field blanks were collected during the first 8 weeks). Consequently, detected concentrations for both dissolved and total lead and zinc for all samples, including samples from the first 8 weeks, were qualified E (estimated) by the laboratory. This qualifier was added to 2,062 records, as shown in Appendix B. This laboratory qualifier was mapped to a JH validation qualifier (estimated concentration, high bias).

To meet the project requirements for high sensitivity for metals analyses, a reductive co-precipitation procedure was developed for the receiving water samples. Because of the high sensitivity of the procedure, metals were routinely detected in the method blanks. Following efforts to minimize and control contamination, King County decided that blank subtraction could be used to minimize the effects of contamination on the sample results. Evaluation of the method blanks from multiple batches of analyses indicated that certain metals could be accurately characterized by the method blank and therefore the blank responses could be subtracted from sample results. Cadmium, chromium, cobalt, copper, and nickel met the criteria for method blank subtraction. Three method blanks per batch were analyzed for these 5 metals. The average concentration determined from the three method blanks was then subtracted from all sample and QC results. The use of method blank subtraction showed a clear improvement in the observed accuracy of the results for the certified reference materials. Blank subtraction was not performed for any other metals, even those such as lead and zinc, which were routinely detected in the method blanks. The method blank results for these two metals were deemed too variable for blank subtraction. All detected results for copper, chromium, and nickel (total and dissolved) were qualified E (estimated) to indicate that blank correction had occurred. This laboratory qualifier was mapped to a JL validation qualifier (estimated concentration, low bias) for these 3,959 results. Blank correction was also applied to detected cadmium and cobalt results (total and dissolved), but no E laboratory qualifier was assigned by the laboratory. A validation qualifier of JL was also applied to these 2,874 results, as shown in Appendix B.

Final

Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

Metals surface water data were flagged with a B qualifier (blank contamination) by the laboratory if detectable sample results were less than 10 times the highest method blank or filter blank response. If detectable samples were less than 5 times the highest method blank or filter blank response, the result was qualified U (undetected) as part of Windward's data quality review. Results for total nickel (18 samples), dissolved nickel (20 samples), dissolved copper (3 samples), and total copper (1 sample) were qualified in this manner. These 42 results were also qualified E by the laboratory and JH as part of Windward's review because of detected field blank results, resulting in a hybrid data validation qualifier of UJH.

B-qualified surface water results between 5 and 10 times the highest method blank or filter blank response were qualified JH (estimated concentration, high bias) as part of Windward's review. Results for dissolved antimony (28 samples), dissolved chromium (284 results), total chromium (7 results), dissolved thallium (10 results), total thallium (30 results), dissolved nickel (8 results), and total nickel (7 results) were qualified in this manner.

Many other metals results received both B and E qualifiers by the laboratory, which were mapped to JH validation qualifiers as part of this review, except for the 42 results described above which were mapped to UJH because the sample concentrations did not exceed 5 times the highest method blank or filter blank response. Results qualified in this manner include chromium (284 dissolved results, 7 total results), copper (15 dissolved results, 6 total results), lead (370 dissolved results, 136 total results), nickel (9 dissolved results, 6 total results), and zinc (233 dissolved results, 240 total results).

These validation qualifiers were incorporated into the LDW project database. The sample-specific qualifier changes identified during Windward's review are shown in Appendix B. The electronic data transferred to the LDW project database came directly from King County's Laboratory Information Management System. Consequently, no comparison to hard copy results (e.g., Form 1s) was necessary because the data did not travel through any intermediary source before being incorporated to the LDW project database 2.

3.0 References

- Anchor. 2003. Data report: sediment characterization results for the Duwamish River navigational channel turning basin. Prepared for Dredged Material Management Office, US Army Corps of Engineers. Anchor Environmental L.L.C, Seattle, WA.
- Battelle. 1996. Final report for the PCB Aroclor and congener analyses on fish tissue samples from the Elliott Bay/Duwamish River project. Pacific Northwest Division, Battelle Marine Research Laboratory, Sequim, WA.

Lower Duwamish Waterway Group

- Ecology. 2000. Sediment quality in Puget Sound. Year 2 central Puget Sound. No. 00-03-055. Washington Department of Ecology, Olympia, WA.
- Ecology. 2003. Norfolk combined sewer overflow (Duwamish River) sediment cap recontamination. Phase I investigation. Publ. no. 03-03-004. Environmental Assessment Program, Washington Department of Ecology, Olympia, WA.
- EPA. 1999. USEPA contract laboratory program national functional guidelines for organic data review. EPA-540/R-99/008. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.
- EPA. 2002. USEPA contract laboratory program national functional guidelines for inorganic data review. EPA 540-R-01-008. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.
- EPA. 2003. Review of the analytical data used for the scoping Phase 1 Remedial Investigation report for Lower Duwamish Waterway for use in the Phase 2 baseline risk assessments. Memorandum to the Lower Duwamish Waterway Group, February 10, 2003. US Environmental Protection Agency, Region 10, Seattle, WA.
- ESG. 1999. Waterway sediment operable unit, Harbor Island Superfund site. Assessing human health risks from the consumption of seafood: human health risk assessment report. Prepared for Port of Seattle, Todd Shipyards, and Lockheed-Martin for submittal to US Environmental Protection Agency, Region 10, Seattle, WA. Environmental Solutions Group, Inc., Seattle, WA.
- EVS. unpublished. Elliott Bay/Duwamish River fish tissue investigation, 1995. Fish collection field log. EVS Environment Consultants, Inc., Seattle, WA.
- Exponent. 1998. Duwamish Waterway phase I site characterization report. Prepared for The Boeing Company. Exponent, Bellevue, WA.
- Floyd Snider McCarthy. 2004. Boeing Plant 2, Seattle/Tukwila, Washington: Phase 1 transformer PCB investigation report. Floyd Snider McCarthy, Inc., Seattle, WA.
- Frontier Geosciences. 1996. Mercury results in 18 fish samples for the Elliott Bay/Duwamish River project. Frontier Geosciences, Seattle, WA.
- Hart Crowser. 1993. Results of sampling and analysis, sediment monitoring plan, Duwamish Shipyard, Inc., Seattle, Washington. Hart Crowser, Inc., Seattle, WA.
- Hart Crowser. 1994a. Technical memorandum no. 9 Duwamish Waterway seep and shellfish sampling, Great Western Chemical Company Remedial Investigation. Hart Crowser, Inc., Seattle, WA (as cited in Terra Vac and Floyd Snyder 2000).

Final

Hart Crowser. 1994b. Technical memorandum no. 10 - Second quarter Duwamish Waterway seep and shellfish sampling, Great Western Chemical Company

Lower Duwamish Waterway Group

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 8

Remedial Investigation. Hart Crowser, Inc., Seattle, WA (as cited in Terra Vac and Floyd Snyder 2000).

- Hart Crowser. 1996. Technical memorandum No. 11- off-site GeoProbe study and baseline sampling and analysis results, Great Western Chemical Company facility, Seattle, Washington. Hart Crowser, Inc., Seattle, WA (as cited in Terra Vac and Floyd Snyder 2000).
- Hart Crowser. 1997. Technical memorandum No. 13 RI/FS annual monitoring, December 1996. Hart Crowser, Inc., Seattle, WA (as cited in Terra Vac and Floyd Snyder 2000).
- Hart Crowser. 1998. Dredge material characterization, Hurlen Construction Company and Boyer Alaska Barge Lines Berthing Areas, Duwamish Waterway, Seattle, Washington. Prepared for Peratrovich, Nottingham & Drage. Hart Crowser, Inc., Seattle, WA.
- Hart Crowser. 1999. Dredge material characterization, Duwamish Yacht Club, Duwamish Waterway, Seattle, Washington. Prepared for Peratrovich, Nottingham & Drage. Hart Crowser, Inc., Seattle, WA.
- Hartman. 1992. Lone Star Northwest west terminal, Duwamish River PSDDA sampling and analysis results. Hartman Associates, Inc., Seattle, WA.
- Hartman. 1995. Lone Star Northwest and James Hardie Gypsum, Kaiser Dock Upgrade. Duwamish Waterway PSDDA sampling and analysis results. Hartman Associates, Inc., Seattle, WA.
- Herrera. 1997. Seaboard Lumber Site. Phase 2 site investigation. Draft. Prepared for Seattle Department of Parks and Recreation. Herrera Environmental Consultants, Inc., Seattle, WA.
- Integral. 2004. Lower Duwamish Waterway slip 4 early action area: cruise and data report. Prepared for City of Seattle and King County. Integral Consulting, Inc., Mercer Island, WA.
- King County. 1996. Norfolk CSO sediment cleanup study. Prepared for Elliott Bay/Duwamish Restoration Program. King County Department of Natural Resources, Seattle, WA.
- King County. 1999a. King County combined sewer overflow water quality assessment for the Duwamish River and Elliott Bay. Vol 1: Overview and interpretation, plus appendices. King County Department of Natural Resources, Seattle, WA.
- King County. 1999b. Norfolk CSO sediment remediation project five-year monitoring program: April 1999 monitoring report. Prepared for Elliott Bay/Duwamish Restoration Program. King County Department of Natural Resources, Seattle, WA.

Final

Lower Duwamish Waterway Group

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 9

- King County. 2000a. Duwamish/Diagonal CSO/SD site assessment report. Draft. Prepared for Elliott Bay/Duwamish Restoration Program. King County Department of Natural Resources, Seattle, WA.
- King County. 2000b. King County environmental laboratory quality assurance review for estuarine sediment analytical data. Norfolk CSO sediment remediation project five-year monitoring program. February 2000 sampling event. Environmental Laboratory, King County Department of Natural Resources, Seattle, WA.
- King County. 2000c. Norfolk CSO sediment remediation project five-year monitoring program. Annual monitoring report-year one, April 2000. Prepared for Elliott Bay/Duwamish Restoration Program. King County Department of Natural Resources, Seattle, WA.
- King County. 2000d. Norfolk CSO sediment remediation project five-year monitoring program. Six-month post-construction monitoring report, October 1999. Prepared for Elliott Bay/Duwamish Restoration Program. King County Department of Natural Resources, Seattle, WA.
- King County. 2001a. Duwamish/Diagonal CSO/SD cleanup study report. Draft. Prepared for Elliott Bay/Duwamish Restoration Program panel. King County Department of Natural Resources, Seattle, WA.
- King County. 2001b. Norfolk CSO sediment remediation project five-year monitoring program. Annual monitoring report-year two, April 2001. Prepared for Elliott Bay/Duwamish Restoration Program. King County Department of Natural Resources, Seattle, WA.
- King County. 2002. Norfolk CSO sediment remediation project five-year monitoring program: Annual monitoring report - year 3, April 2002. Prepared for the Elliott Bay/Duwamish Restoration Panel. King County Department of Natural Resources and Parks, Seattle, WA.
- King County. 2003. Norfolk CSO sediment remediation project five-year monitoring program: Annual monitoring report - year 4, April 2003 - unpublished data. Prepared for the Elliott Bay/Duwamish Restoration Panel. King County Department of Natural Resources and Parks, Seattle, WA.
- Krausmann JD. 2002. Preliminary exposure assessment of dioxin-like chlorobiphenyls in great blue herons of the lower Duwamish River in Seattle, Washington. US Fish and Wildlife Service, Lacey, WA.

Final

MCS. 2004a. Additional vertical characterization, Duwamish sediment other area, Seattle, Washington. Data report. Prepared for The Boeing Company. MCS Environmental, Inc., Mountlake Terrace, WA.

Lower Duwamish Waterway Group

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 10

- MCS. 2004b. Puget Sound dredged disposal analysis for the Lehigh Northwest Duwamish Waterway Facility, Seattle, Washington. Full PSDDA characterization. Prepared for Lehigh Northwest, Inc. MCS Environmental, Inc., Mountlake Terrace, WA.
- NMFS. 2002. Unpublished data on PCB concentrations in juvenile chinook salmon captured in the Lower Duwamish Waterway during 1993 and 2000. Environmental Conservation Division, National Marine Fisheries Service, Seattle, WA.
- NOAA. 1997. Duwamish River sediment study: sampling and analysis plan, quality assurance plan. Environmental Conservation Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA.
- NOAA. 1998. Duwamish Waterway sediment characterization study report. Damage Assessment Center, National Oceanic and Atmospheric Administration, Seattle, WA.
- Pentec. 2001. Data report, DSOA vertical characterization and Outfall 12 data collection. Duwamish sediment other area, Boeing Plant 2, Seattle/Tukwila, Washington. Pentec Environmental, Edmonds, WA.
- PTI. 1989. Data validation guidance manual for selected sediment variables. Prepared for Washington Department of Ecology. PTI Environmental Services, Inc, Bellevue, WA.
- PTI. 1996. Proposed dredging of slip no. 4, Duwamish River, Seattle, Washington: data report. Prepared for Puget Sound Dredged Disposal Analysis Program. PTI Environmental Services, Bellevue, WA.
- Rhône-Poulenc. 1995. RCRA facility investigation (RFI) report for the Marginal Way facility. Vol 1: RFI results and conclusions. Prepared for US Environmental Protection Agency, Region 10. Rhône-Poulenc, Tukwila, WA.
- Rhône-Poulenc. 1996. RCRA facility investigation (RFI) report for the Marginal Way facility. Round 3 data and sewer sediment technical memorandum. Prepared for US Environmental Protection Agency, Region 10. Rhône-Poulenc, Tukwila, WA.
- SEA. 1996. PSDDA chemical characterization of Duwamish Waterway and upper turning basin. FY97 operations and maintenance dredging. Prepared for US Army Corps of Engineers, Seattle District. Striplin Environmental Associates, Inc., Olympia, WA.
- SEA. 1998. PSDDA sediment characterization of Duwamish River navigation channel: FY99 operations and maintenance dredging data report. Prepared for US Army

Final

Lower Duwamish Waterway Group

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 11

Corps of Engineers, Seattle District. Striplin Environmental Associates, Inc., Olympia, WA.

- SEA. 2000a. PCB congener analysis of three sediment samples collected from the Duwamish River navigation channel. Prepared for US Army Corps of Engineers, Seattle District. Striplin Environmental Associates, Inc., Olympia, WA.
- SEA. 2000b. PSDDA sediment characterization of Duwamish River navigation channel: FY2000 operations and maintenance dredging data report. Prepared for US Army Corps of Engineers, Seattle District. Striplin Environmental Associates, Inc., Olympia, WA.
- Spearman JW. 1991. Sediment sampling and analysis, South Park Marina, Duwamish Waterway, Seattle, Washington. Jay W. Spearman, Consulting Engineer, Kirkland, WA.
- Spearman JW. 1999. Sediment sampling and analysis, James Hardie Gypsum Inc., Duwamish Waterway, Seattle, Washington. Jay W. Spearman, Consulting Engineer, Kirkland, WA.
- Vac T, Snider F. 2000. Supplemental remedial investigation and feasibility study. Agency review draft. Volume 1. Prepared for GW International. Terra Vac, Edmonds, WA, and Floyd & Snider Inc., Seattle, WA.
- Varanasi U, Casillas E, Arkoosh MR, Hom T, Misitano D, Brown DW, Chan S-L, Collier TK, McCain BB, Stein JE. 1993. Contaminant exposure and associated biochemical effects in outmigrant juvenile chinook salmon (*Onchorynchus tschawytscha*) from urban and nonurban estuaries of Puget Sound, Washington. NOAA technical memorandum NMFS-FWFSC-8. Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA.
- West JE, O'Neill SM, Lippert G, Quinnell S. 2001. Toxic contaminants in marine and anadromous fishes from Puget Sound, Washington. Results of the Puget Sound ambient monitoring program fish component 1989-1999. Washington Department of Fish and Wildlife, Olympia, WA.
- Weston. 1993. Harbor Island remedial investigation report (part 2-sediment). Vol 1report. Prepared for US Environmental Protection Agency, Region 10. Roy F. Weston, Inc., Seattle, WA.
- Weston. 1998. Comprehensive RCRA facility investigation report, Boeing Plant 2, Seattle/Tukwila, Washington. Roy F. Weston, Inc., Seattle, WA.
- Weston. 1999. Site inspection report, Lower Duwamish River (RK 2.5-11.5), Seattle, Washington. Vol 1-Report and appendices. Prepared for US Environmental Protection Agency, Region 10. Roy F. Weston, Inc., Seattle, WA.

Final

Lower Duwamish Waterway Group

- Weston. 2000. Outfall and nearshore sediment sampling report, Duwamish facility. Prepared for James Hardie Gypsum, Seattle, Washington. Roy F. Weston, Inc., Seattle, WA.
- Windward. 2001a. Lower Duwamish Waterway remedial investigation. Task 2: Site characterization - Technical memoranda: 1. Criteria for evaluating and accepting data sets, 2. List of reports for historical site characterization, 3. Conceptual design for database. Prepared for Lower Duwamish Waterway Group. Windward Environmental LLC, Seattle, WA.
- Windward. 2001b. Lower Duwamish Waterway remedial investigation. Task 2: Site characterization Technical memoranda: 4. Summary of data in the database, 5. GIS maps of station locations and chemistry. Prepared for Lower Duwamish Waterway Group. Windward Environmental LLC, Seattle, WA.
- Windward. 2002. East Waterway, Harbor Island Superfund site: Technical memorandum: Tissue chemistry results for juvenile chinook salmon collected from Kellogg Island and East Waterway. Prepared for the Port of Seattle. Windward Environmental LLC, Seattle, WA.
- Windward. 2003. Lower Duwamish Waterway remedial investigation. Phase 1 remedial investigation report. Prepared for Lower Duwamish Waterway Group. Windward Environmental LLC, Seattle, WA.
- Windward. 2004a. Lower Duwamish Waterway remedial investigation. Quality assurance project plan: survey and sampling of Lower Duwamish Waterway seeps. Prepared for Lower Duwamish Waterway Group. Windward Environmental LLC, Seattle, WA.
- Windward. 2004b. Lower Duwamish Waterway remedial investigation. Task 8: Phase 2 RI work plan. Prepared for Lower Duwamish Waterway Group. Windward Environmental LLC, Seattle, WA.
- Windward. 2005a. Lower Duwamish Waterway remedial investigation. NOAA juvenile chinook salmon tissue data. Memorandum to EPA prepared on behalf of the Lower Duwamish Waterway Group. Windward Environmental LLC, Seattle, WA.
- Windward. 2005b. Lower Duwamish Waterway remedial investigation. Technical memorandum: Summary of sediment and tissue chemistry data sets to be used in Phase 2. Windward Environmental LLC, Seattle, WA.
- Windward, DOF, Onsite. 2004a. Lower Duwamish Waterway Superfund site, Terminal 117 early action area. Sediment field sampling, cruise and data report. Draft. Prepared for the Port of Seattle. Windward Environmental LLC, Dalton, Olmstead & Fuglevand, Inc., and Onsite Enterprises, Inc., Seattle, WA.

Final

Lower Duwamish Waterway Group

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 13

- Windward, DOF, Onsite. 2004b. Lower Duwamish Waterway Superfund site, Terminal 117 early action area. T-117 sediment and soil supplemental data report. Draft. Prepared for the Port of Seattle. Windward Environmental LLC, Dalton, Olmstead & Fuglevand, Inc., and Onsite Enterprises, Inc., Seattle, WA.
- WR Consulting. 2004. Final sediment characterization report, Boyer Towing, Inc. dock replacement, Seattle, Washington. WR Consulting, Inc., Seattle, WA.

Port of Seattle / City of Seattle / King County / The Boeing Company

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 14

Final

Appendix A. Dataset Summaries

This appendix summarizes chemistry datasets to be used in the Phase 2 RI (Table A-1) and that will not be used in the Phase 2 RI (Table A-2). The tables are divided into subsections for sediment chemistry, tissue chemistry, and other chemistry (i.e., surface and seep water). These tables will be amended, as necessary, when additional datasets are identified and reviewed.

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference			
Sediment chemistry	Sediment chemistry									
Boyer Towing dock replacement	Boyer Towing	2004	RM 2.4 west	metals, SVOCs, PCB Aroclor s, conventionals	<i>4 surface (0-10 cm) and 4 subsurface (30-60 cm) sediment samples collected with push core</i>	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	WR Consulting (2004)			
PSDDA characterization at the Lehigh Northwest Duwamish Waterway Facility	LehighNW	2004	RM 1.1 east	metals, SVOCs, PCB Aroclor s, organochlorine pesticides, conventionals	3 sediment core samples (2 from 0- 120 cm, 1 from 120-150 cm) collected with impact corer	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	MCS (2004b)			
Slip 4 early action area site characterization	Slip4- EarlyAction	2004	Slip 4 (RM 2.8-2.9 east)	PCB Aroclors, mercury	29 grab samples (van Veen) from 0-10 cm; 58 core samples (vibracorer) taken from 11 locations; 4-6 samples taken at each location to a depth of 360 cm	data validation and data quality review consistent with EPA guidelines; data collected under existing LDW RI AOC, so no data quality review is needed in this memorandum	Integral (2004)			
Additional vertical characterization, Duwamish Sediment Other Area	DSOAvert char2	2004	RM 2.8-3.7 east	PCB Aroclors	28 core samples (vibracorer) taken from 15 locations; 1-3 samples from each location from 60-144 cm	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	MCS Environmental (2004a)			
Norfolk CSO sediment remediation project five-year monitoring program: Annual monitoring report - year 5, April 2004.	Norfolk- monit7	2004	RM 4.9-5.0 east	metals, PCB Aroclors, SVOCs	Composites of 3 grab samples (van Veen) at each of 4 locations; 4 samples from 0-2 cm; 4 samples from 0-10 cm	QC consistent with previous King County events approved for all uses by EPA; validation qualifiers added to database	unpublished data from King County			

Final

Table A-1. Chemistry datasets acceptable for all uses in the Phase 2 RI/FS

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 15

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference
Duwamish/Diagonal pre- and post-cleanup monitoring data	DuwDiag- Dredge Monitoring	2003- 2004	RM 0.4-0.6 east	metals, PCB Aroclors, organochlorine pesticides, SVOCs	24 composite samples from 10 grab samples (van Veen) from 0-10 cm at 12 locations, sampled both before dredging and after dredging	QC consistent with previous King County events approved for all uses by EPA; validation qualifiers added to database	unpublished data from King County
Terminal 117 early action area site characterization	T117 Boundary Definition	2003- 2004	RM 3.6-3.7 west	PCB Aroclors; metals, SVOCs on selected samples	46 grab samples (power grab or by hand from intertidal) from 0-10 cm; 101 core samples (vibracorer) from 18 locations, 3-6 samples collected at each core location to a depth of 300 cm $^\circ$	data validation and data quality review consistent with EPA guidelines; data collected under existing LDW RI AOC, so no data quality review is needed in this memorandum	Windward (2004a; 2004b)
Norfolk CSO sediment remediation project five-year monitoring program: Annual monitoring report - year 4, April 2003.	Norfolk- monit6	2003	RM 4.9-5.0 east	metals, PCB Aroclors, SVOCs	Composites of 3 grab samples (van Veen) at each of 4 locations; 4 samples from 0-2 cm; 4 samples from 0-10 cm	QC consistent with previous King County events approved for all uses by EPA; validation qualifiers added to database	King County (2003)
Sediment characterization results for the Duwamish River navigational channel turning basin	Turning- basin	2003	RM 4.2-4.7	metals, PCB Aroclors, organochlorine pesticides, SVOCs	5 core samples (vibracorer) taken down to depths of 144 to 390 cm	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	Anchor (2003)
Boeing Plant 2 transformer investigation – Phase 1	Plant 2- Trans- former Phase1	2003	RM 3.6 east	PCB Aroclors	5 surface grab samples (by hand) taken from 0-5 cm; 46 core samples (vibracorer) taken from 13 locations; 3- 5 samples at each location from 0-240 cm ^b	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	Floyd Snider McCarthy (2004)
Norfolk combined sewer overflow (Duwamish River) sediment cap recontamination. Phase I investigation.	Ecology- Norfolk	2002	RM 4.9-5.0 east	PCB Aroclors	20 grab samples (van Veen) from 0-10 cm	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	Ecology (2003)
Norfolk CSO sediment remediation project five-year monitoring program: Annual monitoring report - year 3, April 2002.	Norfolk- monit5	2002	RM 4.9-5.0 east	metals, PCB Aroclors, SVOCs	Composites of 3 grab samples (van Veen) at each of 4 locations; 4 samples from 0-2 cm; 4 samples from 0-10 cm	QC consistent with previous King County events approved for all uses by EPA; validation qualifiers added to database	King County (2002)
Data report, DSOA vertical characterization and outfall 12 data collection. Duwamish sediment other area, Boeing Plant 2	DSOAvert char	2001	RM 2.8-3.7 east	PCB Aroclors	125 core samples (vibracorer) from 37 locations; 2-6 samples at each location, most locations starting at 60 cm down to depths of 150-280 cm	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	Pentec (2001)

Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

Final

SAMPLING EVENT		Year	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference
Norfolk CSO five-year monitoring program, Year Two, April 2001	Norfolk- monit4	2001	RM 4.9-5.0 east	metals, PCB Aroclors, SVOCs	Composites of 3 grab samples (van Veen) at each of 4 locations; 4 samples from 0-2 cm; 4 samples from 0-10 cm	validation qualifiers added to database	King County (2001b)
Norfolk CSO five-year monitoring program – Twelve-month post construction	Norfolk- monit3	2000	RM 4.9-5.0 east	metals, PCB Aroclors, SVOCs	Composites of 3 grab samples (van Veen) at each of 4 locations; 4 samples from 0-2 cm; 4 samples from 0-10 cm	validation qualifiers added to database	King County (2000c)
Norfolk CSO five-year monitoring program – Supplemental nearshore sampling	Norfolk- monit2b	2000	RM 4.9-5.0 east	PCB Aroclors	Composites of 3 grab samples (van Veen) at each of 3 locations; 3 samples from 0-2 cm; 3 samples from 0-10 cm	validation qualifiers added to database	King County (2000b)
Outfall and nearshore sediment sampling report, Duwamish Facility	James Hardie Outfall	2000	RM 1.5 east	metals, PCB Aroclors, SVOCs	9 grab samples (van Veen or by hand in intertidal) from 0-10 cm	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	Weston (2000)
PSDDA sediment characterization of Duwamish River navigation channel: FY2000 operations and maintenance dredging data report	PSDDA99	1999	RM 1.9-3.4	metals, PCB Aroclors, organochlorine pesticides, SVOCs	20 composite core samples (vibracorer) taken from 18 locations; three borings made at each location; 18 samples from 0 to 120 cm; 2 samples from 120 to 240 cm	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	Striplin (SEA 2000a, b)
Norfolk CSO five-year monitoring program – Six-month post construction	Norfolk- monit2a	1999	RM 4.9-5.0 east	metals, PCB Aroclors, SVOCs	Composites of 3 grab samples (van Veen) at each of 4 locations; 4 samples from 0-2 cm; 4 samples from 0-10 cm	validation qualifiers added to database	King County (2000d)
Norfolk CSO five-year monitoring program – Post backfill	Norfolk- monit1	1999	RM 4.9-5.0 east	metals, PCB Aroclors, SVOCs	Composites of 3 grab samples (van Veen) at each of 4 locations; 4 samples from 0-10 cm	validation qualifiers added to database	King County (1999b)
PSDDA sediment characterization of Duwamish River navigation channel: FY99 operations and maintenance dredging data report.	PSDDA98	1998	RM 3.5-4.6	metals, PCB Aroclors, organochlorine pesticides, SVOCs	10 core samples (vibracorer) taken from 12 locations; 7 samples taken from 0 to 60-90 cm, each from single location; 3 samples taken from 2 or 3 locations (0-60 cm, 0-120 cm, and 120-360 cm)	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	Striplin (1998)

Lower Duwamish Waterway Group

Final

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference
EPA Site Inspection: Lower Duwamish River	EPA SI	1998	entire LDW study area	metals, organochlorine pesticides, PCB Aroclors & selected congeners, dioxins & furans, TBT, SVOCs, VOCs	300 grab samples from 0-10 cm (van Veen); 33 core samples (vibracorer) from 0-60 and 60-120 cm from 17 locations	data collected by EPA for Superfund program; acceptable for all uses	Weston (1999)
King County combined sewer overflow water quality assessment for the Duwamish River and Elliott Bay	KC WQA	1997	Duwamish/Diagonal (RM 0.5-0.6 east); Kellogg Island (RM 0.7 west); Brandon CSO (RM 1.1 east); 8 th Ave CSO (RM 2.8 west); South Park (RM 3.3 east); Hamm Creek (RM 4.4 west)	metals, PCB Aroclors, SVOCs, TBT	0-10 cm grab samples (van Veen) from 14 locations; single samples from 5 Duwamish/Diagonal locations and 4 Kellogg Island locations; weekly samples from Kellogg Island (9 samples), Brandon (13 samples), 8 th Ave (9 samples), South Park (4 samples), Hamm Creek (4 samples)	validation qualifiers added to database	King County (1999a)
Duwamish Waterway Phase 1 site characterization	Boeing SiteChar	1997	RM 1.8-2.0 west; Slip 4 (RM 2.8-2.9 east); RM 3.6-4.0; RM 4.2-5.0 east	metals, PCB Aroclors, SVOCs	88 ^b grab samples (van Veen) from 0- 10 cm	accepted by EPA for all uses	Exponent (1998)
Duwamish Waterway sediment characterization study	NOAA SiteChar	1997	entire LDW study area	total PCBs, selected PCB congeners, total PCTs	328 grab samples (van Veen) from 0- 10 cm	validation qualifiers added to database; congener data not appropriate for use in Phase 2 risk assessments	NOAA (1997; 1998)
Seaboard Lumber site, Phase 2 site investigation	Seaboard- Ph2	1996	RM 0.4-0.7 west	metals, PCB Aroclors, SVOCs	20 grab samples (van Veen) from 0-10 cm	accepted by EPA for all uses	Herrera (1997)
RCRA Facility Investigation Duwamish Waterway sediment investigation, Plant 2 – Phase 2b	Plant 2 RFI-2b	1996	RM 2.8-3.7 east	metals, PCB Aroclors, SVOCs	39 grab samples (van Veen) from 0-10 cm; 44 core samples (vibracorer) from 15 locations – 2 to 4 samples per core, up to 480 cm below mudline	validation qualifiers J+/J- changed to JH/JL; accepted by EPA for all uses	Weston (1998)
Duwamish/Diagonal cleanup Study – Phase 2	Duw/Diag-2	1996	RM 0.4-0.6 east	metals, PCB Aroclors, SVOCs, TPH	36 grab samples (van Veen) from 0-10 cm; 53 core samples (vibracorer) from 15 locations – 1 to 6 samples per core, up to 270 cm below mudline	validation qualifiers added to database	King County (2000a)
Duwamish/Diagonal cleanup Study – Phase 1.5	Duw/ Diag-1.5	1995	RM 0.4-0.6 east	metals, PCB Aroclors, SVOCs, TBT	12 grab samples (van Veen) from 0-10 cm	validation qualifiers added to database	King County (2000a)

Final

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 18

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference
Norfolk CSO sediment cleanup study – Phase 3	Norfolk- cleanup3	1995	RM 4.9-5.0 east	PCB Aroclors	16 grab samples (van Veen) from 0-10 cm	validation qualifiers added to database	King County (1996)
Norfolk CSO sediment cleanup study – Phase 2	Norfolk- cleanup2	1995	RM 4.9-5.0 east	metals, organochlorine pesticides, PCB Aroclors and selected congeners, SVOCs, VOCs, TPH	12 grab samples (van Veen) from 0-10 cm; 27 core samples (vibracorer) from 3 locations at 30 or 60 cm intervals up to 180 cm below mudline	validation qualifiers added to database	King County (1996)
RCRA Facility Investigation Duwamish Waterway sediment investigation, Plant 2 – Phase 2a	Plant 2 RFI-2a	1995	RM 2.8-3.7 east	metals, PCB Aroclors SVOCs	54 grab samples (van Veen) from 0-10 cm	validation qualifiers J+/J- changed to JH/JL; accepted by EPA for all uses	Weston (1998)
RCRA Facility Investigation Duwamish Waterway sediment investigation, Plant 2 – Phase 1	Plant 2 RFI-1	1995	RM 2.8-3.7 east	metals, PCB Aroclors, TPH, SVOCs, VOCs	65 grab samples (van Veen) from 0-10 cm; 22 core samples (vibracorer) from 12 locations at 15-45 cm intervals down to 135 cm below mudline	validation qualifiers J+/J- changed to JH/JL; accepted by EPA for all uses	Weston (1998)
Duwamish/Diagonal cleanup Study – Phase 1	Duw/Diag-1	1994	RM 0.4-0.6 east	metals, organochlorine pesticides, PCB Aroclors, SVOCs, TBT	38 grab samples (van Veen) from 0-10 cm; 2 grab samples (van Veen) from 0- 15 cm; 12 core samples (vibracorer) from 2 locations at 15-30 cm intervals down to 150 cm below mudline	validation qualifiers added to database	King County (2001a)
Norfolk CSO sediment cleanup study – Phase 1	Norfolk- cleanup1	1994	RM 2.8-3.7 east	metals, organochlorine pesticides, SVOCs, PCB Aroclors, VOCs	21 grab samples (van Veen) from 0-10 cm; 3 core samples from 1 location – 15-30, 30-45, and 45-60 cm	validation qualifiers added to database	King County (1996)
Rhône-Poulenc RCRA Facility Investigation for the Marginal Way facility – Round 2	Rhône- Poulenc RFI-2	1994	Slip 6 (RM 4.2 east)	metals, SVOCs, PCB Aroclors 1254 and 1260, organochlorine pesticides	7 grab samples (van Veen) from 0-2 cm	accepted by EPA for all uses	Rhône- Poulenc (1995)
Results of sampling and analysis, sediment monitoring plan, Duwamish Shipyard, Inc.	Duwamish Shipyard	1993	RM 1.4-1.5 west	metals, SVOCs, TBT	5 grab samples (van Veen) from 0-10 cm	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	Hart Crowser (1993)

Final

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference
Harbor Island Remedial Investigation	Harbor Island RI	1991	RM 0.0-0.4	metals, organochlorine pesticides, PCB Aroclors, SVOCs, VOCs, TPH, TBT	34 grab samples (van Veen) from 0-10 cm	data collected by EPA for Superfund program; acceptable for all uses	Weston (1993)
Tissue chemistry							
East Waterway, Harbor Island Superfund site: Technical memorandum: Tissue chemistry results for juvenile chinook salmon collected from Kellogg Island and East Waterway.	EW-Salmon	2002	Kellogg Island (RM 0.8-0.9 west)	PCB Aroclors, mercury	12 composite samples of whole-body juvenile chinook salmon (6 from LDW, 6 from East Waterway) collected by beach seine; each sample consisted of 6-7 fish	data validation consistent with EPA guidelines; laboratory Form 1s present in data report; validation qualifiers added to database	Windward (2002)
NMFS Duwamish injury assessment project	NOAA- salmon2	2000	Kellogg Island (RM 0.8-0.9 west), Slip 4 (RM 2.8 east)	PCB congeners, organochlorine pesticides (salmon); PCB Aroclors (shiner perch)	29 samples of whole-body juvenile chinook salmon collected by beach seine (9 were composites of 3-10 fish, 20 were individual fish); 6 composite samples of chinook salmon stomach contents; 2 composite samples of whole-body shiner perch	neither EPA nor LDWG plan to conduct a review of the salmon portion of this dataset because LDWG's 2003 juvenile chinook salmon sampling results make the effort required for such a review unwarranted, as documented by Windward (2005a); therefore, these data will not be used in Phase 2; the shiner perch portion of the dataset has been previously approved for all uses by EPA (2003)	NMFS (2002)
Preliminary exposure assessment of dioxin-like chlorobiphenyls in great blue herons of the lower Duwamish River	Heron USFWS	1998	heron colony west of RM 0.5 west	PCB congeners	6 samples taken from 5 great blue heron eggs collected by hand from nest (5 egg samples, 1 egg yolk sample)	no formal data validation conducted, laboratory Form 1s not present in data report; EPA plans to conduct additional QA review of this dataset; determination of whether these data will be used in Phase 2 is therefore pending	Krausmann (2002)

Lower Duwamish Waterway Group

Final

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 20

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference
Waterway Sediment Operable Unit Harbor Island Superfund Site	WSOU	1998	RM 0.4-0.9 (crab), RM 2.0-4.4 (English sole), RM 0.0-0.2 (striped perch)	Hg, TBT, PCB Aroclors	3 English sole skinless fillet composite samples (5 fish/composite caught by trawl); 3 red rock crab edible meat composite samples (5 crab/composite caught by crab trap); 1 Dungeness crab edible meat sample (1 individual caught by crab trap); 3 striped perch skinless fillet samples (5 fish/composite for 2 samples, 1 individual fish for 1 sample; caught by diver)	collected under EPA oversight for a previously conducted Superfund risk assessment; previously approved for all uses by EPA (2003)	ESG (1999)
King County Combined Sewer Overflow Water Quality Assessment for the Duwamish River and Elliott Bay	KC WQA	1996- 1997	RM 0.5-0.9	metals, TBT, SVOCs, PCB Aroclors	3 English sole skinless fillet composite samples (20 fish/composite caught by trawl); 3 English sole whole-body composite samples ^d (20 fish/composite caught by trawl); 2 Dungeness crab edible meat composite samples (3 crabs/sample caught by crab trap); 1 Dungeness crab hepatopancreas composite sample (3 crabs caught by crab trap); 4 amphipod composite samples (caught by benthic sledge); 3 shiner surfperch whole-body composite samples (10 fish/sample caught by trawl); 22 mussels edible meat composite samples (20 mussels/sample collected by hand) ^e	add validation qualifiers (Section 3.2.1); English sole whole-body composite samples not acceptable for all uses because they don't truly represent whole bodies	King County (1999a)
		1992	RM 0.4-1.3	SVOCs, organochlorine pesticides, PCB Aroclors, As, Cu, Pb, Hg	3 English sole skinless fillet (10-20 fish/sample collected by trawl)	acceptable for all uses	_
Puget Sound Ambient Monitoring Program – annual sampling	PSAMP-fish	PSAMP-fish 1995	RM 0.4-1.3	organochlorine pesticides, PCB Aroclors, As, Cu, Pb, Hg	3 English sole skinless fillet composite samples (10-20 fish/sample collected by trawl)	acceptable for all uses	West et al. (2001)
		1997	RM 0.4-1.3	Hg, organochlorine pesticides	3 English sole skinless fillet composite samples (10-20 fish/sample collected by trawl)	acceptable for all uses	

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 21

Final

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference
Elliott Bay/Duwamish River Fish Tissue Investigation	EVS 95	1995	RM 1.1-1.4	PCB Aroclors, Hg, MeHg, TBT	3 English sole skinless fillet composite samples (6 fish/sample collected by trawl)	collected under EPA oversight for a previously conducted Superfund risk assessment; previously approved for all uses by EPA (2003)	Battelle (1996); EVS (unpublished); Frontier Geosciences (1996)
Contaminant exposure and associated biochemical effects in outmigrant juvenile chinook salmon from urban and non-urban estuaries of Puget Sound	NOAA- salmon	1989- 1990	RM 0.7	organochlorine pesticides, PCB Aroclors, PAHs	14 composite samples of whole-body juvenile chinook salmon collected by beach seine (2-10 fish/sample); 6 composite samples of stomach contents (10 fish/sample) ^f	neither EPA nor LDWG plan to conduct a review of this dataset because LDWG's 2003 juvenile chinook salmon sampling results make the effort required for such a review unwarranted; therefore, these data will not be used in Phase 2	Varanasi et al. (1993)
Other chemistry				·	·		
RCRA Facility Investigation Duwamish Waterway sediment investigation, Plant 2 – Phase 1	Plant 2 RFI-1	1995	RM 2.8 – 3.7 east	metals, PCB Aroclors, TPH, SVOCs, VOCs	22 seep water	comprehensive data quality review not warranted because EPA has previously approved these data for all uses in the RCRA program	Weston (1998)
Rhône-Poulenc RCRA Facility Investigation for the Marginal Way facility – Round 3	Rhône- Poulenc RFI-3	1995	Slip 6 (RM 4.2 east)	VOCs	7 seep water	comprehensive data quality review not warranted because EPA has previously approved these data for all uses in the RCRA program	Rhône- Poulenc (1996)
Supplemental remedial investigation and feasibility study. Great Western International	Great Western Apr-94	1994	RM 2.2 east	VOCs	6 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Hart Crowser (1994a)
	Great Western Jul-94	1994		VOCs	9 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Hart Crowser (1994b)
	Great Western Nov-94	1994		VOCs	7 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Hart Crowser (1996)

Final

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference
	Great Western May-95	1995		VOCs	7 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Hart Crowser (1996)
	Great Western- 1995 Annual	1995		VOCs	7 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Hart Crowser (1996)
	Great Western- 1996 Annual	1996		VOCs	5 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Hart Crowser (1997)
	Great Western- 1997 Annual	1997		VOCs	4 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Terra Vac, Floyd & Snider (2000)
	Great Western- 1998 Annual	1998		VOCs	9 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Terra Vac, Floyd & Snider (2000)
	Great Western- Embay- ment Study	1998		VOCs	10 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Terra Vac, Floyd & Snider (2000)
	Great Western- 1999 Annual	1999		VOCs, SVOCs	5 seep water	comprehensive data quality review not warranted because Ecology has previously approved these data for all uses in the MTCA program	Terra Vac, Floyd & Snider (2000)

Lower Duwamish Waterway Group

Final

SAMPLING EVENT	Event Code	YEAR	LOCATION		SAMPLE SUMMARY	DATA QUALITY REVIEW ACTIONS/CONCLUSIONS ^a	Reference
King County combined sewer overflow water quality assessment for the Duwamish River and Elliott Bay ^g	KC WQA	1996- 1997	Duwamish/Diagonal CSO (RM 0.5 east), Brandon CSO (RM 1.1 east), SW Michigan CSO (RM 2.0 east), Norfolk CSO (RM 4.9 east) ^h	metals, SVOCs, conventionals, PCB Aroclors	1,249 surface water samples collected using Niskin and van Dorn samplers. Samples were collected from multiple depths (near-surface and near-bottom) and up to 3 locations horizontally across the waterway. Samples were collected weekly and also during storm events. ^h	QC consistent with previous King County events approved for all uses by EPA; validation qualifiers added to database	King County (1999a)

Note: New datasets discussed in this memorandum are shown in italics

^a All events listed on this table are: 1) considered acceptable for all uses in Phase 2, even if not specifically mentioned, 2) acceptable for some uses, but not others, as noted, or 3) undergoing additional review by EPA; acceptability determination is still pending

- ^b Sample total does not include three reference samples that were collected upstream of the study area
- ^c Does not include soil, groundwater, and seep data collected concurrently during this investigation
- ^d Samples are of remnant tissues following the subsampling of fillet tissue. In addition, livers were removed from some fish in the composite samples.
- ^e Sample counts do not include data from cooked crab and English sole samples or data from caged mussel deployments. These data will not be used in the Phase 2 RI
- ^f Six composite samples of juvenile chinook salmon livers were also analyzed, but these data were not used in the Phase 1 RI.
- ^g Water chemistry data only. Sediment and tissue chemistry data from this sampling event were previously reviewed in Windward (2005b).
- ^h Samples collected outside the LDW study area are also included in this sampling event

NOAA – National Oceanic and Atmospheric Administration

- PAH polycyclic aromatic hydrocarbon
- PCB polychlorinated biphenyl
- PCT polychlorinated terphenyl
- RCRA Resource Conservation and Recovery Act
- SVOC semivolatile organic compound
- TBT tributyltin
- TPH total petroleum hydrocarbons
- VOC volatile organic compound
- MeHg methylmercury

Final

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTION/ CONCLUSIONS	Reference
Sediment chemistry				·	·	·	
Dredge material characterization Duwamish Yacht Club	Duwam Yacht Club	1999	RM 4.1 west	metals, organochlorine pesticides, PCB Aroclors, SVOCs, VOCs, TBT	6 core samples (vibracorer), each made from 2 separate cores collected to 50-65 cm	not reviewed by Windward; sediment characterized has been dredged	Hart Crowser (1999)
Sediment sampling and analysis James Hardie Gypsum Inc. – Round 1	Hardie Gypsum-1	1999	RM 1.6-1.7 east	metals, organochlorine pesticides, PCB Aroclors, SVOCs, VOCs	5 core samples (vibracorer) made from single cores down to 120 cm	not reviewed by Windward; sediment characterized has been dredged	Spearman (1999)
Sediment sampling and analysis James Hardie Gypsum Inc. – Round 2	Hardie Gypsum-2	1999	RM 1.6-1.7 east	metals, organochlorine pesticides, PCB Aroclors, SVOCs, VOCs	9 core samples (vibracorer) made from single cores down to 90 cm	not reviewed by Windward; sediment characterized has been dredged	Spearman (1999)
Dredge material characterization Hurlen Construction Company & Boyer Alaska Barge Lines berthing areas	Hurlen- Boyer	1998	RM 2.4-2.7 west	metals, organochlorine pesticides, PCB Aroclors, SVOCs, TBT, TPH	6 core samples (vibracorer), 2 from Boyer, 4 from Hurlen, each made from 2 separate cores collected to 60-120 cm	not reviewed by Windward; sediment characterized has been dredged	Hart Crowser (1998)
Sediment quality in Puget Sound. Year 2 – Central Puget Sound	PSAMP/ NOAA98	1998	RM 0.5, 0.6, 1.8	metals, PCB Aroclors, organochlorine pesticides, SVOCs, TBT	3 grab samples (van Veen) collected from 0-2 cm	LDWG did not conduct a review of this dataset because the QA/QC information was not readily available. The effort that would have been required to obtain this QA/QC information was not justified for the purposes of the Phase 2 RI and risk assessments.	Ecology (2000)
RCRA facility investigation (RFI) report for the Marginal Way facility. Round 3 data and sewer sediment technical memorandum.	Rhône Poulenc RFI3	1996	RM 4.2 east	metals, phenols (4 samples)	16 grab samples collected by hand from 0- 10 cm	data validation consistent with EPA guidelines, but laboratory Form 1s not present in data report; Phase 2 RI DQOs not met, so not acceptable for all uses	Rhône- Poulenc (1996)
Proposed dredging of Slip No. 4, Duwamish River, Seattle, WA	Slip4- Crowley	1996	RM 2.8 east	metals, organochlorine pesticides, PCB Aroclors, SVOCs, VOCs, TBT	4 core samples (vibracorer) composited from sediment at 9 locations collected to a depth of 70-130 cm	not reviewed by Windward; sediment characterized has been dredged	PTI (1996)

Final

Table A-2. Chemistry datasets not acceptable for all uses in the Phase 2 RI/FS

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 25

SAMPLING EVENT	Event Code	YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTION/ CONCLUSIONS	REFERENCE
1996 USACE Duwamish O&M	PSDDA96	1996	RM 4.2-4.6	metals, organochlorine pesticides, PCB Aroclors, SVOCs, VOCs,	4 core samples (vibracorer) collected to a depth of 120 cm	not reviewed by Windward; sediment characterized has been dredged	Striplin (1996)
Lone Star Northwest and James Hardie Gypsum – Kaiser dock upgrade	Lone Star- Hardie Gypsum	1995	RM 1.6 east	metals, organochlorine pesticides, PCB Aroclors, SVOCs, VOCs	5 core samples (vibracorer); 4 collected to a depth of 120-150 cm, 1 at 120-360 cm	not reviewed by Windward; sediment characterized has been dredged	Hartman (1995)
Rhône-Poulenc RCRA Facility Investigation for the Marginal Way facility – Round 1	Rhône- Poulenc RFI-1	1994	RM 4.2 east	metals, SVOCs, PCB Aroclors, organochlorine pesticides	7 grab samples (van Veen) collected from 0- 15 cm	data validation consistent with EPA guidelines, but laboratory Form 1s not present in data report; Phase 2 RI DQOs not met, so not acceptable for all uses	Rhône- Poulenc (1995)
Lone Star Northwest – West Terminal US ACOE – Seattle	Lone Star 92	1992	RM 1.5 east	metals, organochlorine pesticides, PCB Aroclors, SVOCs, VOCs	1 core sample (vibracorer), made from 2 separate cores collected to 120 cm	not reviewed by Windward; sediment characterized has been dredged	Hartman (1992)
Sediment sampling and analysis, South Park Marina, Duwamish Waterway, Seattle, Washington.	South Park Marina	1991	RM 3.5 west	metals, SVOCs, PCB Aroclors, organochlorine pesticides	2 core samples (vibracorer), each made from 2 separate cores collected to 120 cm	data not reviewed because of age of data; sediment characterized has been dredged	Spearman (1991)

Lower Duwamish Waterway Group Port of Seattle / City of Seattle / King County / The Boeing Company

Final

SAMPLING EVENT		YEAR	LOCATION	CHEMICALS	SAMPLE SUMMARY	DATA QUALITY REVIEW ACTION/ CONCLUSIONS	Reference
Tissue chemistry							-
		1992	RM 0.7	SVOCs, organochlorine pesticides, PCB Aroclors, As, Cu, Pb, Hg	6 coho salmon and 6 chinook salmon composite fillet samples (5 fish/composite caught by gill net)	_	
Puget Sound Ambient Monitoring Program – annual sampling	PSAMP- fish	1993 – 1996	RM 0.7	organochlorine pesticides, PCB Aroclors, As, Cu, Pb, Hg	1993: 5 coho salmon and 6 chinook salmon composite fillet samples (5 fish/composite caught by gill net); 1994: 5 coho salmon composite fillet samples and 6 chinook salmon filet samples (5 composite, 1 individual) (5 fish/composite caught by gill net); 1995: 7 coho salmon (6 composite, aught by gill net); 1995: 7 coho salmon (6 composite, 1 individual) and 15 chinook salmon filet samples (13 composite, 2 individual) (5 fish/composite caught by gill net); 1996: 19 coho salmon (5 composite, 14 individual) and 49 chinook salmon fillet samples (all individual) (5 fish/composite caught by gill net)	Adult salmon; data were summarized in the Phase 1 RI, but were not used in the risk assessments because almost all the chemicals in these fish are associated with exposure outside the LDW	West et al. (2001)
		1998	RM 0.7	Hg, organochlorine pesticides	13 coho salmon composite fillet samples (5 fish/composite caught by gill net)		

PCB – polychlorinated biphenyl

SVOC - semivolatile organic compound

Final

TBT – tributyltin

TPH – total petroleum hydrocarbons

VOC – volatile organic compound

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 27

This appendix lists the sample-specific data qualifier changes resulting from the data quality reviews conducted by Windward and summarized in this memorandum.

Port of Seattle / City of Seattle / King County / The Boeing Company

Summary of Chemistry Datasets for Use in Phase 2 – Addendum 1 October 19, 2005 Page 28

Final

	-				Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	DHD	L10039-7	Cobalt (total)			JL	J
KC WQA	DHD	L10937-7	Cobalt (total)			JL	J
KC WQA	DHD	L10871-7	Cobalt (total)			JL	J
KC WQA	DHD	L10846-7	Cobalt (total)			JL	J
KC WQA	DHD	L10736-7	Cobalt (total)			JL	J
KC WQA	DHD	L10643-7	Cobalt (total)			JL	J
KC WQA	DHD	L10646-7	Cobalt (total)			JL	J
KC WQA	DHD	L10591-7	Cobalt (total)			JL	J
KC WQA	DHD	L10478-7	Cobalt (total)			JL	J
KC WQA	CON/W	L11046-10	Cobalt (total)			JL	J
KC WQA	DHD	L10285-7	Cobalt (total)			JL	J
KC WQA	DHD	L11093-7	Cobalt (total)			JL	J
KC WQA	DHD	L9929-7	Cobalt (total)			JL	J
KC WQA	DHD	L9928-7	Cobalt (total)			JL	J
KC WQA	DHD	L9927-7	Cobalt (total)			JL	J
KC WQA	DHD	1 9841-37	Cobalt (total)			JI	L J
KC WQA	DHD	1 9806-37	Cobalt (total)				
KC WOA	CON/W	111240-10	Cobalt (total)				
KC WOA		11238-10	Cobalt (total)			U	U
KC WOA		11164-10	Cobalt (total)			3L	<u> </u>
			Cobalt (total)			JL	J
		110246 7				JL	J
		L 10340-7				JL	J
		L 10039-8				JL	J
KC WQA		L10941-8				JL	J
KC WQA	DHD	L10937-8				JL	J
KC WQA	DHD	L10871-8	Cobalt (total)			JL	J
KC WQA	DHD	L10846-8	Cobalt (total)			JL	J
KC WQA	DHD	L10736-8	Cobalt (total)			JL	J
KC WQA	DHD	L10643-8	Cobalt (total)			JL	J
KC WQA	DHD	L10646-8	Cobalt (total)			JL	J
KC WQA	DHD	L10591-8	Cobalt (total)			JL	J
KC WQA	DHD	L10478-8	Cobalt (total)			JL	J
KC WQA	DHD	L10941-7	Cobalt (total)			JL	J
KC WQA	DHD	L10285-8	Cobalt (total)			JL	J
KC WQA	DHD	L11046-7	Cobalt (total)			JL	J
KC WQA	DHD	L9929-8	Cobalt (total)			JL	J
KC WQA	DHD	L9928-8	Cobalt (total)			JL	J
KC WQA	DHD	L9927-8	Cobalt (total)			JL	J
KC WQA	DHD	L9841-38	Cobalt (total)			JL	J
KC WQA	DHD	L9806-38	Cobalt (total)			JL	J
KC WQA	DHD	L11240-7	Cobalt (total)			JL	J
KC WQA	DHD	L11238-7	Cobalt (total)			JL	J
KC WQA	DHD	L11164-7	Cobalt (total)			JL	J
KC WQA	CON/W	L10991-10	Cobalt (total)			JL	J
KC WQA	DHD	L10346-8	Cobalt (total)			JL	J
KC WQA	CON/W	L10346-9	Cobalt (total)			JL	J
KC WQA	CON/W	L10991-9	Cobalt (total)			JL	J
KC WQA	CON/W	L10941-9	Cobalt (total)			JL	J
KC WQA	CON/W	L10937-9	Cobalt (total)			JL	J
KC WQA	CON/W	L10871-9	Cobalt (total)			JL	J
KC WQA	CON/W	L10846-9	Cobalt (total)			 JI	J
KC WQA	CON/W	L10736-9	Cobalt (total)				.]
KC WQA		10643-9	Cobalt (total)			.	
KCWQA		10646-9	Cobalt (total)			.	.
KC WQA	CON/W	L11093-10	Cobalt (total)				J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	CON/W	L10478-9	Cobalt (total)			JL	J
KC WQA	CON/W	L11164-9	Cobalt (total)			JL	J
KC WQA	CON/W	L10285-9	Cobalt (total)			JL	J
KC WQA	CON/W	L10039-9	Cobalt (total)			JL	J
KC WQA	CON/W	L10037-9	Cobalt (total)			JL	J
KC WQA	CON/W	L9929-9	Cobalt (total)			JL	J
KC WQA	CON/W	L9928-9	Cobalt (total)			JL	J
KC WQA	CON/W	L9927-9	Cobalt (total)			JL	J
KC WQA	CON/W	L9806-32	Cobalt (total)			JL	J
KC WQA	CON/E	L11240-14	Cobalt (total)			JL	J
KC WQA	CHE/E	L11236-21	Cobalt (total)			JL	J
KC WQA	CON/W	L10591-9	Cobalt (total)			JL	J
KC WQA	CON/W	L10039-10	Cobalt (total)			JL	J
KC WQA	CON/W	L10941-10	Cobalt (total)			JL	J
KC WQA	CON/W	L10937-10	Cobalt (total)			JL	J
KC WQA	CON/W	L10871-10	Cobalt (total)			JL	J
KC WQA	CON/W	L10846-10	Cobalt (total)			JL	J
KC WQA	CON/W	10736-10	Cobalt (total)				
KC WQA	CON/W	10643-10	Cobalt (total)				
KC WOA		110646-10	Cobalt (total)			U	U
KC WOA		10591-10	Cobalt (total)			U	U
KC WQA		10478-10	Cobalt (total)			JL	J
KC WOA		11046-9	Cobalt (total)			3L	<u> </u>
KCWQA		1 10295 10	Cobalt (total)			JL	J
KCWQA		110203-10				JL	J
		11093-9				JL	J
		L 10037-10				JL	J
KC WQA		L9929-10				JL	J
		L9928-10				JL	J
KC WQA		L9927-10				JL	J
KCWQA		L9841-33	Cobalt (total)			JL	J
KC WQA		L9806-33				JL	J
KC WQA	CON/W	L11240-9				JL	J
KC WQA	CON/W	L11238-9	Cobalt (total)			JL	J
KC WQA	DHD	L11164-8	Cobalt (total)			JL	J
KC WQA	CON/W	L10346-10	Cobalt (total)			JL	J
KC WQA	DWO	L10591-4	Cobalt (total)			JL	J
KC WQA	DWO	L11164-4	Cobalt (total)			JL	J
KC WQA	DWO	L11093-4	Cobalt (total)			JL	J
KC WQA	DWO	L11046-4	Cobalt (total)			JL	J
KC WQA	DWO	L10941-4	Cobalt (total)			JL	J
KC WQA	DWO	L10937-4	Cobalt (total)			JL	J
KC WQA	DWO	L10871-4	Cobalt (total)			JL	J
KC WQA	DWO	L10846-4	Cobalt (total)			JL	J
KC WQA	DWO	L10736-4	Cobalt (total)			JL	J
KC WQA	DHD	L11046-8	Cobalt (total)			JL	J
KC WQA	DWO	L10646-4	Cobalt (total)			JL	J
KC WQA	HNF/C	L9806-18	Cobalt (total)			JL	J
KC WQA	DWO	L10478-4	Cobalt (total)			JL	J
KC WQA	DWO	L10346-4	Cobalt (total)			JL	J
KC WQA	DWO	L10285-4	Cobalt (total)			JL	J
KC WQA	DWO	L10039-4	Cobalt (total)			JL	J
KC WQA	DWO	L9928-4	Cobalt (total)			JL	J
KC WQA	DWO	L9927-4	Cobalt (total)			JL	J
KC WQA	DWO	L9841-36	Cobalt (total)			JL	J
KC WQA	DWO	L9806-36	Cobalt (total)			JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	DWC	L11240-6	Cobalt (total)			JL	J
KC WQA	DWO	L10643-4	Cobalt (total)			JL	J
KC WQA	HNF/C	L10346-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L10991-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L10941-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L10937-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L10871-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L10846-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L10736-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L10643-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L10646-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L10591-17	Cobalt (total)			JL	J
KC WQA	DWO	L11238-4	Cobalt (total)			JL	J
KC WQA	HNF/C	L10478-17	Cobalt (total)			JL	J
KC WQA	DWO	L11240-4	Cobalt (total)			JL	J
KC WQA	HNF/C	1 10285-17	Cobalt (total)			JI	J
KC WQA	HNF/C	1 10039-17	Cobalt (total)				
KC WOA	HNF/C	1 10037-17	Cobalt (total)				
KC WQA	HNF/C	1 9929-17	Cobalt (total)				U
KC WOA	HNF/C	1 9928-17	Cobalt (total)			U	U
KCWQA			Cobalt (total)			JL	J
KCWQA		1 0995 17				JL	J
						JL	J
		L9041-10				JL	J
		L11093-6				JL	J
	HINF/C	L10519-17				JL	J
KC WQA	DWC	L10285-5				JL	J
KC WQA	DWC	L11238-6	Cobalt (total)			JL	J
KC WQA	DWC	L10941-5	Cobalt (total)			JL	J
KC WQA	DWC	L10937-5	Cobalt (total)			JL	J
KC WQA	DWC	L10871-5	Cobalt (total)			JL	J
KC WQA	DWC	L10846-5	Cobalt (total)			JL	J
KC WQA	DWC	L10736-5	Cobalt (total)			JL	J
KC WQA	DWC	L10643-5	Cobalt (total)			JL	J
KC WQA	DWC	L10646-5	Cobalt (total)			JL	J
KC WQA	DWC	L10591-5	Cobalt (total)			JL	J
KC WQA	DWC	L11093-5	Cobalt (total)			JL	J
KC WQA	DWC	L10346-5	Cobalt (total)			JL	J
KC WQA	DWC	L11164-5	Cobalt (total)			JL	J
KC WQA	DWC	L10039-5	Cobalt (total)			JL	J
KC WQA	DWC	L9929-5	Cobalt (total)			JL	J
KC WQA	DWC	L9928-5	Cobalt (total)			JL	J
KC WQA	DWC	L9927-5	Cobalt (total)			JL	J
KC WQA	DWC	L9841-34	Cobalt (total)			JL	J
KC WQA	DWC	L9806-34	Cobalt (total)			JL	J
KC WQA	DHD	L11240-8	Cobalt (total)			JL	J
KC WQA	DHD	L11238-8	Cobalt (total)			JL	J
KC WQA	CON/E	L11093-14	Cobalt (total)			JL	J
KC WQA	DWC	L10478-5	Cobalt (total)			JL	J
KC WQA	DWC	L10346-6	Cobalt (total)			JL	J
KC WQA	DHD	L11093-8	Cobalt (total)			JL	J
KC WQA	DWC	L11046-6	Cobalt (total)			JL	J
KC WQA	DWC	L10941-6	Cobalt (total)			JL	J
KC WQA	DWC	L10937-6	Cobalt (total)			JL	J
KC WQA	DWC	L10871-6	Cobalt (total)			 JI	J
KC WQA	DWC	L10846-6	Cobalt (total)			JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	DWC	L10736-6	Cobalt (total)			JL	J
KC WQA	DWC	L10643-6	Cobalt (total)			JL	J
KC WQA	DWC	L10646-6	Cobalt (total)			JL	J
KC WQA	DWC	L11046-5	Cobalt (total)			JL	J
KC WQA	DWC	L10478-6	Cobalt (total)			JL	J
KC WQA	DWC	L11164-6	Cobalt (total)			JL	J
KC WQA	DWC	L10285-6	Cobalt (total)			JL	J
KC WQA	DWC	L10039-6	Cobalt (total)			JL	J
KC WQA	DWC	L9929-6	Cobalt (total)			JL	J
KC WQA	DWC	L9928-6	Cobalt (total)			JL	J
KC WQA	DWC	L9927-6	Cobalt (total)			JL	J
KC WQA	DWC	L9841-35	Cobalt (total)			JL	J
KC WQA	DWC	L9806-35	Cobalt (total)			JL	J
KC WQA	DWC	L11240-5	Cobalt (total)			JL	J
KC WQA	DWC	L11238-5	Cobalt (total)			JL	J
KC WQA	DWC	L10591-6	Cobalt (total)			JL	J
KC WQA	CHE/W	1 9841-27	Cobalt (total)			ال	J
KC WQA	CHE/W	10519-26	Cobalt (total)				
KC WQA	CHE/W	1 10478-26	Cobalt (total)				U
KC WOA	CHE/W	1 103/6-26	Cobalt (total)			U	U
KC WOA		1 10285-26	Cobalt (total)			3L	J
KC WQA		110203-20	Cobalt (total)			JL	J
		110039-20				JL	J
		1 0020 26				JL	J
		1 0028 26				JL	J
		L9920-20				JL	J
		L 1087 1-25				JL	J
KCWQA	CHE/W	L9885-26	Cobalt (total)			JL	J
KC WQA		L10643-26				JL	J
KC WQA	CHE/W	L9806-27	Cobalt (total)			JL	J
KC WQA	CHE/W	L11240-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L11238-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L11236-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L11164-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L11046-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10991-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10941-25	Cobalt (total)			JL	J
KC WQA	CON/E	L11238-14	Cobalt (total)			JL	J
KC WQA	CHE/W	L9927-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L11236-26	Cobalt (total)			JL	J
KC WQA	CON/C	L10285-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10039-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10037-11	Cobalt (total)			JL	J
KC WQA	CON/C	L9929-11	Cobalt (total)			JL	J
KC WQA	CON/C	L9928-11	Cobalt (total)			JL	J
KC WQA	CON/C	L9927-11	Cobalt (total)			JL	J
KC WQA	CON/C	L9885-11	Cobalt (total)			JL	J
KC WQA	CON/C	L9841-30	Cobalt (total)			JL	J
KC WQA	CON/C	L9806-30	Cobalt (total)			JL	J
KC WQA	CHE/W	L10591-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L11238-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L10646-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L11164-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L11046-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L10991-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L10941-26	Cobalt (total)			JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	CHE/W	L10937-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L10871-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L10846-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L10736-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L10846-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L11240-26	Cobalt (total)			JL	J
KC WQA	CHE/E	L10039-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L10871-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L10846-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L10736-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L10643-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L10646-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L10591-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L10519-22	Cobalt (total)			JL	J
KC WQA	CHE/E	110478-22	Cobalt (total)				
KC WQA	CHE/W	1 10937-25	Cobalt (total)				
KC WOA	CHE/E	1 10285-22	Cobalt (total)				
KC WOA	CHE/E	11046-22	Cobalt (total)			U	U
	CHE/E	11040-22	Cobalt (total)			JL	J
		1 0020 22				JL	J
		L9929-22				JL	J
		L9928-22				JL	J
		L9927-22				JL	J
KC WQA		L9885-22				JL	J
KC WQA	CHE/E	L9841-23				JL	J
KC WQA	CHE/E	L9806-23	Cobalt (total)			JL	J
KC WQA	CHE/E	L11240-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L10346-22	Cobalt (total)			JL	J
KC WQA	CHE/W	L9928-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10736-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10643-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10646-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10591-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10519-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10478-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10346-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10285-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L10039-25	Cobalt (total)			JL	J
KC WQA	CHE/E	L10941-22	Cobalt (total)			JL	J
KC WQA	CHE/W	L9929-25	Cobalt (total)			JL	J
KC WQA	CHE/E	L10991-22	Cobalt (total)			JL	J
KC WQA	CHE/W	L9927-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L9885-25	Cobalt (total)			JL	J
KC WQA	CHE/W	L9841-26	Cobalt (total)			JL	J
KC WQA	CHE/W	L9806-26	Cobalt (total)			JL	J
KC WQA	CHE/E	L11240-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L11238-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L11236-22	Cobalt (total)			JL	J
KC WQA	CHE/E	L11164-22	Cobalt (total)			JL	J
KC WQA	CON/C	L10519-11	Cobalt (total)			JL	J
KC WQA	CHE/W	L10037-25	Cobalt (total)			 ال	J
KC WQA	CON/F	L10643-13	Cobalt (total)				.]
KC WQA	CON/F	111238-13	Cobalt (total)			.11	.
KC WQA	CON/E	111164-13	Cobalt (total)				.
KCWOA	CON/E	111093-13	Cobalt (total)				.1
KC WQA	CON/F	L11046-13	Cobalt (total)				J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	CON/E	L10991-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10941-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10937-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10871-13	Cobalt (total)			JL	J
KC WQA	CON/C	L10346-11	Cobalt (total)			JL	J
KC WQA	CON/E	L10736-13	Cobalt (total)			JL	J
KC WQA	CON/E	L9841-29	Cobalt (total)			JL	J
KC WQA	CON/E	L10646-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10591-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10519-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10478-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10346-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10285-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10039-13	Cobalt (total)			JL	J
KC WQA	CON/F	1 10037-13	Cobalt (total)			ال	J
KC WQA	CON/F	1 9929-13	Cobalt (total)			JI	L J
KC WQA	CON/F	10846-13	Cobalt (total)				
KC WOA	CON/E	1 10478-14	Cobalt (total)				
KC WOA	CON/E	11046-14	Cobalt (total)			U	
KC WOA	CON/E	110901-14	Cobalt (total)			3L	<u> </u>
KCWQA	CON/E	1 10041 14	Cobalt (total)			JL	J
KCWQA		110941-14				JL	J
		1 1 0 9 7 1 1 4				JL	J
		L10071-14				JL	J
	CON/E	L10846-14				JL	J
		L10736-14				JL	J
KC WQA	CON/E	L10643-14	Cobalt (total)			JL	J
KC WQA	CON/E	L10646-14	Cobalt (total)			JL	J
KC WQA	CON/E	L11240-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10519-14	Cobalt (total)			JL	J
KC WQA	CON/E	L9806-29	Cobalt (total)			JL	J
KC WQA	CON/E	L10346-14	Cobalt (total)			JL	J
KC WQA	CON/E	L10285-14	Cobalt (total)			JL	J
KC WQA	CON/E	L10039-14	Cobalt (total)			JL	J
KC WQA	CON/E	L10037-14	Cobalt (total)			JL	J
KC WQA	CON/E	L9929-14	Cobalt (total)			JL	J
KC WQA	CON/E	L9928-14	Cobalt (total)			JL	J
KC WQA	CON/E	L9927-14	Cobalt (total)			JL	J
KC WQA	CON/E	L9885-14	Cobalt (total)			JL	J
KC WQA	CON/E	L9885-13	Cobalt (total)			JL	J
KC WQA	CON/E	L10591-14	Cobalt (total)			JL	J
KC WQA	CON/C	L10991-11	Cobalt (total)			JL	J
KC WQA	CON/E	L9928-13	Cobalt (total)			JL	J
KC WQA	CON/C	L9928-12	Cobalt (total)			JL	J
KC WQA	CON/C	L9927-12	Cobalt (total)			JL	J
KC WQA	CON/C	L9885-12	Cobalt (total)			JL	J
KC WQA	CON/C	L9841-31	Cobalt (total)			JL	J
KC WQA	CON/C	L9806-31	Cobalt (total)			JL	J
KC WQA	CON/C	L11240-11	Cobalt (total)			JL	J
KC WQA	CON/C	L11238-11	Cobalt (total)			JL	J
KC WQA	CON/C	L11164-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10037-12	Cobalt (total)			JL	J
KC WQA	CON/C	L11046-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10039-12	Cobalt (total)			JL	J
KC WQA	CON/C	L10941-11	Cobalt (total)				.]
KC WQA	CON/C	L10937-11	Cobalt (total)			JL	J

	-				Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	CON/C	L10871-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10846-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10736-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10643-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10646-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10591-11	Cobalt (total)			JL	J
KC WQA	HNF/C	L11164-17	Cobalt (total)			JL	J
KC WQA	CON/C	L11093-11	Cobalt (total)			JL	J
KC WQA	CON/C	L10871-12	Cobalt (total)			JL	J
KC WQA	CON/C	L10478-11	Cobalt (total)			JL	J
KC WQA	CON/E	L9841-28	Cobalt (total)			JL	J
KC WQA	CON/E	L9806-28	Cobalt (total)			JL	J
KC WQA	CON/C	L11240-12	Cobalt (total)			JL	J
KC WQA	CON/C	L11238-12	Cobalt (total)			JL	J
KC WQA	CON/C	L 11164-12	Cobalt (total)				
KC WQA	CON/C	111093-12	Cobalt (total)				
KC WOA	CON/C	11046-12	Cobalt (total)				
KC WOA	CON/C	1 10991-12	Cobalt (total)			U	U
KC WQA		1 0020-12	Cobalt (total)			JL	J
		1 10027 12				JL	J
		L 10937-12				JL	J
		L9927-13				JL	J
		L10840-12				JL	J
KC WQA	CON/C	L10736-12				JL	J
KC WQA	CON/C	L10643-12				JL	J
KC WQA	CON/C	L10646-12				JL	J
KC WQA	CON/C	L10591-12	Cobalt (total)			JL	J
KC WQA	CON/C	L10519-12	Cobalt (total)			JL	J
KC WQA	CON/C	L10478-12	Cobalt (total)			JL	J
KC WQA	CON/C	L10346-12	Cobalt (total)			JL	J
KC WQA	CON/C	L10285-12	Cobalt (total)			JL	J
KC WQA	CON/C	L10941-12	Cobalt (total)			JL	J
KC WQA	SWM/E	L9885-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10591-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10519-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10478-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10346-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10285-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10039-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10037-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L9929-33	Cobalt (total)			JL	J
KC WQA	SWM/C	L10937-36	Cobalt (total)			JL	J
KC WQA	SWM/E	L9927-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10736-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L9841-4	Cobalt (total)			JL	J
KC WQA	SWM/E	L9806-4	Cobalt (total)			JL	J
KC WQA	SWM/C	L11240-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L11238-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L11236-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L11164-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L11046-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10991-36	Cobalt (total)			JL	J
KC WQA	HNF/C	L11046-17	Cobalt (total)			JL	J
KC WQA	SWM/F	L9928-33	Cobalt (total)				.]
KC WQA	SWM/F	11238-33	Cobalt (total)			 اا	
KC WQA	SWM/E	L10346-34	Cobalt (total)			JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	SWM/E	L10285-34	Cobalt (total)			JL	J
KC WQA	SWM/E	L10039-34	Cobalt (total)			JL	J
KC WQA	SWM/E	L10037-34	Cobalt (total)			JL	J
KC WQA	SWM/E	L9929-34	Cobalt (total)			JL	J
KC WQA	SWM/E	L9928-34	Cobalt (total)			JL	J
KC WQA	SWM/E	L9927-34	Cobalt (total)			JL	J
KC WQA	SWM/E	L9885-34	Cobalt (total)			JL	J
KC WQA	SWM/E	L9841-5	Cobalt (total)			JL	J
KC WQA	SWM/E	L10646-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L11240-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10643-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L11236-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L11164-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L11046-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10991-33	Cobalt (total)			JL	J
KC WQA	SWM/E	L10941-33	Cobalt (total)			JL	J
KC WQA	SWM/F	10937-33	Cobalt (total)			JI	J
KC WQA	SWM/F	1 10871-33	Cobalt (total)				
KC WQA	SWM/E	1 10846-33	Cobalt (total)				U
KC WOA	SWM/C	1 10871-36	Cobalt (total)			U	U
KC WOA	SWM/E	1 9806-5	Cobalt (total)			3L	J
KC WQA	SWW/C	110346-35	Cobalt (total)			JL	J
KCWQA	SWW/C	110041 25	Cobalt (total)			JL	J
	SWW/C	110941-55				JL	J
KCWQA	SWW/C	1 10937-33				JL	J
	SVVIVI/C	L 1007 1-33				JL	J
	SVVIVI/C	L 10840-35				JL	J
KCWQA	SVVM/C	L10736-35	Cobalt (total)			JL	J
	SVVIVI/C	L10043-35				JL	J
KC WQA	SVVIVI/C	L10646-35				JL	J
KC WQA	SWM/C	L10591-35				JL	J
KC WQA	SWM/C	L10941-36				JL	J
KC WQA	SWM/C	L10478-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L11164-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L10285-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L10039-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L10037-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L9929-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L9928-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L9927-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L9885-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L9841-6	Cobalt (total)			JL	J
KC WQA	SWM/C	L9806-6	Cobalt (total)			JL	J
KC WQA	SWM/C	L10519-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L9929-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10846-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10736-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10643-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10646-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10591-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10519-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10478-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10346-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10285-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L10991-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L10037-36	Cobalt (total)			JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	SWM/C	L11046-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L9928-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L9927-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L9885-36	Cobalt (total)			JL	J
KC WQA	SWM/C	L9841-7	Cobalt (total)			JL	J
KC WQA	SWM/C	L9806-7	Cobalt (total)			JL	J
KC WQA	SWM/C	L11240-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L11238-35	Cobalt (total)			JL	J
KC WQA	SWM/C	L11236-35	Cobalt (total)			JL	J
KC WQA	SWM/E	L10591-34	Cobalt (total)			JL	J
KC WQA	SWM/C	L10039-36	Cobalt (total)			JL	J
KC WQA	SWM/W	L10736-38	Cobalt (total)			JL	J
KC WQA	TGS	L9806-1	Cobalt (total)			JL	J
KC WQA	SWM/W	L11240-38	Cobalt (total)			JL	J
KC WQA	SWM/W	11238-38	Cobalt (total)			ال	J
KC WQA	SWM/W	L 11236-38	Cobalt (total)				
KC WQA	SWM/W	L 11164-38	Cobalt (total)				
KC WOA	SWM/W	11046-38	Cobalt (total)			U	U
KC WOA	SWM/M	11040-30	Cobalt (total)			3L	J
	SVIN/VV SV/N/A/A/	1 10027 29	Cobalt (total)			JL	J
	SVIVI/VV	10937-30				JL	J
	SWIME	L10478-34				JL	J
KCWQA	50000	L 10840-38				JL	J
KC WQA	IGS	L9928-1				JL	J
KC WQA	SVVM/VV	L10643-38				JL	J
KC WQA	SVVM/VV	L10646-38				JL	J
KC WQA	SWM/W	L10591-38	Cobalt (total)			JL	J
KC WQA	SWM/W	L10519-38	Cobalt (total)			JL	J
KC WQA	SWM/W	L10478-38	Cobalt (total)			JL	J
KC WQA	SWM/W	L10346-38	Cobalt (total)			JL	J
KC WQA	SWM/W	L10285-38	Cobalt (total)			JL	J
KC WQA	SWM/W	L10039-38	Cobalt (total)			JL	J
KC WQA	SWM/W	L10037-38	Cobalt (total)			JL	J
KC WQA	SWM/W	L10871-38	Cobalt (total)			JL	J
KC WQA	TGS	L10646-1	Cobalt (total)			JL	J
KC WQA	TGS	L11238-1	Cobalt (total)			JL	J
KC WQA	TGS	L11164-1	Cobalt (total)			JL	J
KC WQA	TGS	L11093-1	Cobalt (total)			JL	J
KC WQA	TGS	L11046-1	Cobalt (total)			JL	J
KC WQA	TGS	L10991-1	Cobalt (total)			JL	J
KC WQA	TGS	L10937-1	Cobalt (total)			JL	J
KC WQA	TGS	L10871-1	Cobalt (total)			JL	J
KC WQA	TGS	L10846-1	Cobalt (total)			JL	J
KC WQA	TGS	L10736-1	Cobalt (total)			JL	J
KC WQA	TGS	L9841-1	Cobalt (total)			JL	J
KC WQA	TGS	L10643-1	Cobalt (total)			JL	J
KC WQA	TGS	L9927-1	Cobalt (total)			JL	J
KC WQA	TGS	L10591-1	Cobalt (total)			JL	J
KC WQA	TGS	L10519-1	Cobalt (total)			JL	J
KC WQA	TGS	L10478-1	Cobalt (total)			JL	J
KC WQA	TGS	L10346-1	Cobalt (total)			JL	J
KC WQA	TGS	L10285-1	Cobalt (total)			 JI	J
KC WQA	TGS	L10039-1	Cobalt (total)				.]
KC WQA	TGS	1 10037-1	Cobalt (total)			.	
KCWOA	TGS	1 9929-1	Cobalt (total)				.1
KC WQA	SWM/W	1 9927-38	Cobalt (total)				.1
	U V V I V // V V	LUULI 00	Sobult (total)	1		JL	5

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	TGS	L10651-1	Cobalt (total)			JL	J
KC WQA	SWM/E	L11046-34	Cobalt (total)			JL	J
KC WQA	SWM/W	L9929-38	Cobalt (total)			JL	J
KC WQA	SWM/W	L9929-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L9928-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L9927-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L9885-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L9841-8	Cobalt (total)			JL	J
KC WQA	SWM/W	L9806-8	Cobalt (total)			JL	J
KC WQA	SWM/E	L11240-34	Cobalt (total)			JL	J
KC WQA	SWM/E	L11238-34	Cobalt (total)			JL	J
KC WQA	SWM/W	L10039-37	Cobalt (total)			JL	J
KC WQA	SWM/E	L11164-34	Cobalt (total)			JL	J
KC WQA	SWM/W	L10285-37	Cobalt (total)			JL	J
KC WQA	SWM/F	1 10991-34	Cobalt (total)			ال	J
KC WQA	SWM/F	1 10941-34	Cobalt (total)				L J
KC WQA	SWM/F	1 10937-34	Cobalt (total)				
KC WOA	SWM/E	1 10871-34	Cobalt (total)				
KC WOA	SW/M/E	1 108/6-3/	Cobalt (total)			U	U
KC WOA	SW/M/E	1 10736-34	Cobalt (total)			U	U
KCWQA	SWW/L	110642.24	Cobalt (total)			JL	J
KCWQA	SVVIVI/E	110646-24				JL	J
						JL	J
		11104-3				JL	J
	SVVIVI/E	L11230-34				JL	J
	SVVIVI/VV	L 10937-37				JL	J
KC WQA	SVVIVI/E	L10519-34				JL	J
KC WQA	SVVIVI/VV	L9885-38	Cobalt (total)			JL	J
KC WQA	SVVIVI/VV	L9841-9	Cobalt (total)			JL	J
KC WQA	SVVM/VV	L9806-9	Cobalt (total)			JL	J
KC WQA	SWM/W	L11240-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L11238-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L11236-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L11164-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L11046-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10037-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10941-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L9928-38	Cobalt (total)			JL	J
KC WQA	SWM/W	L10871-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10846-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10736-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10643-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10646-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10591-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10519-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10478-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10346-37	Cobalt (total)			JL	J
KC WQA	SWM/W	L10991-37	Cobalt (total)			JL	J
KC WQA	HNF/E	L9806-17	Cobalt (total)			JL	J
KC WQA	HNF/E	L10478-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10346-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10285-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10039-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10037-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L9929-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L9928-16	Cobalt (total)			JL	J

Sampling Event	Location	Sample ID	Analyte	Laboratory Qualifier	Validation Qualifier- original	Validation Qualifier- revised	Interpreted Qualifier
KC WQA	HNF/F	1 9927-16	Cobalt (total)		J	JI	J
KC WQA	HNF/W	1 10285-19	Cobalt (total)				
KC WQA	HNF/F	1 9841-17	Cobalt (total)				
KC WOA	HNF/E	110646-16	Cobalt (total)				
KC WOA	HNF/E	111240-15	Cobalt (total)			U	U
KC WQA	HNF/E	11240-15	Cobalt (total)			JL	J
KC WOA		111164-15	Cobalt (total)			3L	<u> </u>
KC WOA		11109-15	Cobalt (total)			JL	J
KC WOA	HNF/E	11046-15	Cobalt (total)				J
KCWQA		11040-15	Cobalt (total)			JL 11	J
KCWQA						JL	J
		1 10027 15				JL	J
		L10937-15				JL	J
		L10071-13				JL	J
		L9880-10				JL	J
KC WQA		L11093-16				JL	J
		L11240-3				JL	J
KC WQA		L10037-19				JL	J
KC WQA		L9929-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L9928-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L9927-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L9885-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L9841-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L9806-20	Cobalt (total)			JL	J
KC WQA	HNF/E	L11240-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10519-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L11164-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10591-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L11046-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10991-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10941-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10937-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10871-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10846-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10736-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10643-16	Cobalt (total)			JL	J
KC WQA	HNF/E	L10643-15	Cobalt (total)			JL	J
KC WQA	HNF/E	L11238-16	Cobalt (total)			JL	J
KC WQA	HNF/C	L10037-18	Cobalt (total)			JL	J
KC WQA	HNF/E	L10846-15	Cobalt (total)			JL	J
KC WQA	HNF/C	L10846-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10736-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10643-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10646-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10591-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10519-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10478-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10346-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10937-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10039-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10941-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L9929-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L9928-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L9927-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L9885-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L9841-19	Cobalt (total)			JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	HNF/C	L9806-19	Cobalt (total)			JL	J
KC WQA	HNF/C	L11240-17	Cobalt (total)			JL	J
KC WQA	HNF/C	L11238-17	Cobalt (total)			JL	J
KC WQA	CHE/E	L11164-21	Cobalt (total)			JL	J
KC WQA	HNF/C	L10285-18	Cobalt (total)			JL	J
KC WQA	HNF/E	L9927-15	Cobalt (total)			JL	J
KC WQA	HNF/W	L10346-19	Cobalt (total)			JL	J
KC WQA	HNF/E	L10646-15	Cobalt (total)			JL	J
KC WQA	HNF/E	L10591-15	Cobalt (total)			JL	J
KC WQA	HNF/E	L10519-15	Cobalt (total)			JL	J
KC WQA	HNF/E	L10478-15	Cobalt (total)			JL	J
KC WQA	HNF/E	L10346-15	Cobalt (total)			JL	J
KC WQA	HNF/E	L10285-15	Cobalt (total)			JL	J
KC WQA	HNF/E	L10039-15	Cobalt (total)			JL	J
KC WQA	HNF/F	1 10037-15	Cobalt (total)				
KC WQA	HNF/C	1 10871-18	Cobalt (total)				
KC WOA	HNF/F	1 9928-15	Cobalt (total)				
KC WQA	HNF/E	1 10736-15	Cobalt (total)			U	U
KC WQA		1 0885-15	Cobalt (total)			JL	J
KCWQA		1 09/1 16	Cobalt (total)			JL	J
						JL	J
						JL	J
	HINF/C	L11240-18				JL	J
KC WQA	HNF/C	L11238-18				JL	J
KC WQA	HNF/C	L11164-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L11093-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L11046-18	Cobalt (total)			JL	J
KC WQA	HNF/C	L10991-18	Cobalt (total)			JL	J
KC WQA	HNF/E	L9929-15	Cobalt (total)			JL	J
KC WQA	NFK/E	L10643-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L11238-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L11164-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L11093-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L11046-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10991-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10937-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10871-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10846-2	Cobalt (total)			JL	J
KC WQA	HNF/W	L10039-19	Cobalt (total)			JL	J
KC WQA	NFK/E	L10651-2	Cobalt (total)			JL	J
KC WQA	NFK/W	L9841-3	Cobalt (total)			JL	J
KC WQA	NFK/E	L10646-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10591-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10519-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10478-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10346-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10285-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10039-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10037-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L9929-2	Cobalt (total)			JL	J
KC WQA	NFK/E	L10736-2	Cobalt (total)			JL	J
KC WQA	NFK/W	L10591-3	Cobalt (total)			 JI	J
KC WQA	HNF/C	L11093-17	Cobalt (total)				.]
KC WQA	NFK/W	111093-3	Cobalt (total)			.	
KCWQA	NFK/W	11046-3	Cobalt (total)				.
KC WQA	NFK/W	L10991-3	Cobalt (total)				J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	NFK/W	L10937-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L10871-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L10846-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L10736-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L10651-3	Cobalt (total)			JL	J
KC WQA	NFK/E	L11240-2	Cobalt (total)			JL	J
KC WQA	NFK/W	L10646-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L9806-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L10478-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L10346-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L10285-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L10039-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L10037-3	Cobalt (total)			JL	J
KC WQA	NFK/W	L9929-3	Cobalt (total)			JL	J
KC WQA	NFK/W	1 9928-3	Cobalt (total)				
KC WQA	NFK/W	1 9927-3	Cobalt (total)				
KC WOA	NEK/E	1 9841-2	Cobalt (total)				
KC WQA		1106/3-3	Cobalt (total)			U	U
KC WQA		L 10043-3	Cobalt (total)			JL	J
						JL	J
		L9920-2				JL	J
		L9927-20				JL	J
		L9885-20				JL	J
KC WQA		L9841-21				JL	J
KC WQA		L9806-21				JL	J
KC WQA	HNF/W	L11240-19				JL	J
KC WQA	HNF/W	L11238-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L11164-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L11093-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L9929-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10991-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10037-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10937-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10871-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10846-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10736-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10643-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10646-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10591-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10519-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10478-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L11046-19	Cobalt (total)			JL	J
KC WQA	HNF/W	L10846-20	Cobalt (total)			JL	J
KC WQA	NFK/W	L11238-3	Cobalt (total)			JL	J
KC WQA	NFK/E	L9806-2	Cobalt (total)			JL	J
KC WQA	HNF/W	L11240-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L11238-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L11164-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L11093-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L11046-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10991-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10941-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L9928-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10871-20	Cobalt (total)				.]
KC WQA	NFK/F	1 9927-2	Cobalt (total)			 اا	
KC WQA	HNF/W	L10736-20	Cobalt (total)			JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	HNF/W	L10643-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10646-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10591-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10519-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10478-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10346-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10285-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10039-20	Cobalt (total)			JL	J
KC WQA	HNF/W	L10937-20	Cobalt (total)			JL	J
KC WQA	CHE/E	L11238-21	Cobalt (total)			JL	J
KC WQA	TGS	L11240-1	Cobalt (total)			JL	J
KC WQA	BRN/E	L11238-28	Cobalt (total)			JL	J
KC WQA	BRN/W	L10285-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10039-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10037-31	Cobalt (total)			JL	J
KC WQA	BRN/W	1 9929-31	Cobalt (total)			JI	L J
KC WQA	BRN/W	1 9928-31	Cobalt (total)				
KC WOA	BRN/W	1 9927-31	Cobalt (total)				
KC WOA	BRN/W	1 9885-31	Cobalt (total)			U	U
KC WOA		1 08/1-1/	Cobalt (total)			3L	<u> </u>
KCWQA		1 10642 29	Cobalt (total)			JL	J
KCWQA		111240 29				JL	J
		1 10510 21				JL	J
						JL	J
	BRIN/E	L11230-28				JL	J
	BRIN/E	L11104-28				JL	J
KC WQA	BRN/E	L11046-28				JL	J
KC WQA	BRN/E	L10991-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10941-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10937-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10871-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10846-28	Cobalt (total)			JL	J
KC WQA	BRN/W	L9806-14	Cobalt (total)			JL	J
KC WQA	BRN/W	L11046-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10037-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L9929-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L9928-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L9927-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L9885-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L9841-15	Cobalt (total)			JL	J
KC WQA	BRN/W	L9806-15	Cobalt (total)			JL	J
KC WQA	BRN/W	L11240-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L11238-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10346-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L11164-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10478-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10941-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10937-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10871-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10846-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10736-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10643-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10646-31	Cobalt (total)			JL	J
KC WQA	BRN/W	L10591-31	Cobalt (total)				.]
KC WQA	BRN/F	10646-28	Cobalt (total)			 اا	
KC WQA	BRN/W	L11236-31	Cobalt (total)			JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	BRN/E	L9929-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10736-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10643-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10646-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10591-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10519-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10478-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10346-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10285-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10736-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10037-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10937-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L9928-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L9927-27	Cobalt (total)			JL	J
KC WQA	BRN/F	1 9885-27	Cobalt (total)				
KC WQA	BRN/F	1 9841-10	Cobalt (total)				
KC WOA	BRN/E	1 9806-10	Cobalt (total)				
KC WOA	BRN/C	111240-30	Cobalt (total)			U	U
	BRN/C	L11240-30	Cobalt (total)			JL	J
		11230-30				JL	J
		L11230-30				JL	J
	BRIN/C	L11104-30				JL	J
	BRIN/E	L10039-27				JL	J
KC WQA	BRN/E	L9841-11				JL	J
KC WQA	BRN/E	L10591-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10519-28				JL	J
KC WQA	BRN/E	L10478-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10346-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10285-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10039-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10037-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L9929-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L9928-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10846-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L9885-28	Cobalt (total)			JL	J
KC WQA	BRN/E	L10871-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L9806-11	Cobalt (total)			JL	J
KC WQA	BRN/E	L11240-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L11238-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L11236-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L11164-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L11046-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10991-27	Cobalt (total)			JL	J
KC WQA	BRN/E	L10941-27	Cobalt (total)			JL	J
KC WQA	BRN/W	L10346-32	Cobalt (total)			JL	J
KC WQA	BRN/E	L9927-28	Cobalt (total)			JL	J
KC WQA	CHE/C	L10646-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L11236-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L11164-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L11046-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10991-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10941-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10937-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10871-24	Cobalt (total)				.]
KC WQA	CHE/C	10846-24	Cobalt (total)			 ال	
KC WQA	BRN/W	L10039-32	Cobalt (total)			JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	CHE/C	L10643-24	Cobalt (total)			JL	J
KC WQA	CHE/E	L9806-22	Cobalt (total)			JL	J
KC WQA	CHE/C	L10591-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10519-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10478-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10346-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10285-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10039-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10037-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L9929-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L9928-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L10736-24	Cobalt (total)			JL	J
KC WQA	CHE/E	L10346-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L11046-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L 10991-21	Cobalt (total)			ال	J
KC WQA	CHF/F	L 10941-21	Cobalt (total)				L J
KC WQA	CHE/E	1 10871-21	Cobalt (total)				
KC WOA	CHE/E	1 10846-21	Cobalt (total)				
KC WOA	CHE/E	1 10736-21	Cobalt (total)			U	
KC WOA	CHE/E	10643-21	Cobalt (total)			3L	<u> </u>
		1 10646 21	Cobalt (total)			JL	J
						JL	J
		L10091-21				JL	J
KC WQA		L11238-24				JL	J
KC WQA	CHE/E	L10478-21				JL	J
KC WQA	CHE/C	L11240-24				JL	J
KC WQA	CHE/E	L10285-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L10039-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L10037-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L9929-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L9928-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L9927-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L9885-21	Cobalt (total)			JL	J
KC WQA	CHE/E	L9841-22	Cobalt (total)			JL	J
KC WQA	CHE/C	L9841-25	Cobalt (total)			JL	J
KC WQA	CHE/E	L10519-21	Cobalt (total)			JL	J
KC WQA	BRN/W	L10937-32	Cobalt (total)			JL	J
KC WQA	CHE/C	L9927-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L9885-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L9841-24	Cobalt (total)			JL	J
KC WQA	CHE/C	L9806-24	Cobalt (total)			JL	J
KC WQA	BRN/W	L11240-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L11238-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L11236-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L11164-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L11046-32	Cobalt (total)			JL	J
KC WQA	CHE/C	L9928-23	Cobalt (total)			JL	J
KC WQA	BRN/W	L10941-32	Cobalt (total)			JL	J
KC WQA	CHE/C	L9929-23	Cobalt (total)			JL	J
KC WQA	BRN/W	L10871-32	Cobalt (total)			JL	J
KC WQA	BRN/W	L10846-32	Cobalt (total)			 ال	J
KC WQA	BRN/W	10736-32	Cobalt (total)			.	
KCWOA	BRN/M	1 10643-32	Cobalt (total)				
KCWOA	BRN/W	1106/6-32	Cobalt (total)			JL JI	J
		L 10040-32				JL	J
		10510 22				JL	J
		L10013-02		1		JL	J

					Validation	Validation	
				Laboratory	Qualifier-	Qualifier-	Interpreted
Sampling Event	Location	Sample ID	Analyte	Qualifier	original	revised	Qualifier
KC WQA	BRN/W	L10478-32	Cobalt (total)			JL	J
KC WQA	BRN/C	L10941-30	Cobalt (total)			JL	J
KC WQA	BRN/W	L10991-32	Cobalt (total)			JL	J
KC WQA	CHE/C	L10736-23	Cobalt (total)			JL	J
KC WQA	BRN/W	L10285-32	Cobalt (total)			JL	J
KC WQA	CHE/C	L9806-25	Cobalt (total)			JL	J
KC WQA	CHE/C	L11240-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L11238-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L11164-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L11046-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L10991-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L10941-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L10937-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L9927-23	Cobalt (total)			JL	J
KC WQA	CHE/C	10846-23	Cobalt (total)				
KC WQA	CHE/C	1 9885-24	Cobalt (total)				
KC WOA	CHE/C	110643-23	Cobalt (total)				
KC WQA	CHE/C	110646-23	Cobalt (total)			U	U
KC WQA	CHE/C	L 10040-23	Cobalt (total)			JL	J
		10531-25				JL	J
		L 105 19-23				JL	J
		L10478-23				JL	J
		L 10346-23				JL	J
KC WQA		L10285-23				JL	J
KC WQA	CHE/C	L10039-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L10037-23	Cobalt (total)			JL	J
KC WQA	CHE/C	L10871-23	Cobalt (total)			JL	J
KC WQA	BRN/C	L11046-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L10591-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L11164-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L11046-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10991-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10941-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10937-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10871-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10846-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10736-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10646-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L11240-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10519-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10478-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10346-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10285-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10039-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10037-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L9929-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L9928-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L9927-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10643-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10285-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L10937-30	Cobalt (total)			JI	J
KC WQA	BRN/C	L10871-30	Cobalt (total)				.]
KC WQA	BRN/C	10846-30	Cobalt (total)			.	.
KC WQA	BRN/C	10736-30	Cobalt (total)		l	.	.
KCWOA	BRN/C	110643-30	Cobalt (total)				
KCWOA	BRN/C	110646-30	Cobalt (total)				J
				1		니	J

Sampling Event	Location	Sample ID	Analyte	Laboratory Qualifier	Validation Qualifier- original	Validation Qualifier- revised	Interpreted Qualifier
KC WQA	BRN/C	L10591-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L10519-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L11236-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10346-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L11238-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10039-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L10037-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L9929-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L9928-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L9927-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L9885-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L9841-13	Cobalt (total)			JL	J
KC WQA	BRN/C	L9806-13	Cobalt (total)			JL	J
KC WQA	BRN/C	L9806-12	Cobalt (total)			JL	J
KC WQA	BRN/C	L10478-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L9885-29	Cobalt (total)			JL	J
KC WQA	BRN/C	L10991-30	Cobalt (total)			JL	J
KC WQA	BRN/C	L9841-12	Cobalt (total)			JL	J