Figure E-1. Comparison of daily-average and peak flow rates in the Green River during high-flow conditions (flow greater than 2-year high-flow event).
Figure E-2. Ratio of peak flow to daily-average flow as a function of daily-average flow rate during high-flow conditions (flow greater than 2-year high-flow event).
Figure E-3. Cumulative frequency distribution of ratio of peak flow to daily-average flow during high-flow conditions (flow greater than 2-year high-flow event).
Figure E-4. Time variable river flow rate and tidal elevation used as boundary conditions for 2-year high-flow event.
Figure E-5. Time variable river flow rate and tidal elevation used as boundary conditions for 10-year high-flow event.
Spatial distribution of maximum bed shear stress due to skin friction during 2-year high-flow event.

June 2008
Figure E-7
Spatial distribution of maximum bed shear stress due to skin friction during 10-year high-flow event.

June 2008
Spatial distribution of maximum bed shear stress due to skin friction during 100-year high-flow event.

June 2008
Figure E-9. Spatial distribution of predicted maximum bed scour depth during 2-year high-flow event.

June 2008
Figure E-10. Spatial distribution of predicted maximum bed scour depth during 10-year high-flow event.

June 2008
Figure E-11. Sediment mass balances for 2, 10, and 100-year high-flow events.

Sediment mass in metric tons.
The arrow on the left going into the box represents the total in-coming sediment load. The arrow on the right going out of the box represents the total out-going sediment mass. Inside the box, the upward arrow represents total erosion mass. The downward arrow represents the total deposition mass. The middle downward arrow under the box represents the net deposition mass.
Figure E-12. Sediment mass balances for 2, 10, and 100-year high-flow events for each sediment class.

Sediment mass in metric tons. Labels that next to each arrow from top to bottom are sediment mass for class 1A, 1B, 2 and 3. The arrow on the left going into the box represents the total in-coming sediment load. The arrow on the right going out of the box represents the total out-going sediment mass. Inside the box, the upward arrow represents total erosion mass. The downward arrow represents the total deposition mass. The middle downward arrow under the box represents the net deposition mass.
Total Sediment Mass Balance during 2-Year Event
Overall Trapping Efficiency = 43%

Sediment mass units = metric tons
Mass balance results rounded to nearest 100 MT

Figure E-13. Total sediment mass balances for 2-year high-flow event.
Total Sediment Mass Balance during 10-Year Event
Overall Trapping Efficiency = 39%

Sediment mass units = metric tons
Mass balance results rounded to nearest 100 MT

Figure E-14. Total sediment mass balances for 10-year high-flow event.
Total Sediment Mass Balance during 100-Year Event
Overall Trapping Efficiency = 38%

Sediment mass units = metric tons
Mass balance results rounded to nearest 100 MT

Figure E-15. Total sediment mass balances for 100-year high-flow event.
Figure E-16. Comparison of 2, 10, and 100-year high-flow events: normalized erosion mass. Normalization mass is 69,900 metric tons.
Figure E-17. Comparison of 2, 10, and 100-year high-flow events: normalized net erosional area. Normalization area is 70 acres.
Figure E-18. Numerical grid with highlighted locations for diagnostic analysis in sediment transport modeling study.
Figure E-19. Time histories of selected variables at a specific grid cell during 100-year high-flow event: RM 2.85
Figure E-20. Time histories of selected variables at a specific grid cell during 100-year high-flow event: RM 2.96
Figure E-21. Time histories of selected variables at a specific grid cell during 100-year high-flow event: RM 3.10
Figure E-22. Time histories of selected variables at a specific grid cell during 100-year high-flow event: RM 3.60
Figure E-23. Time histories of selected variables at a specific grid cell during 100-year high-flow event: RM 3.80
Figure E-24. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85
Figure E-25. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96
Figure E-26. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10
Figure E-27. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60
Figure E-28. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80
Figure E-29. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: lower-bound erosion parameters.

Lower-bound erosion parameters:
- Cohesive bed maximum scour depth = 13 cm
- Non-cohesive bed maximum scour depth = 20 cm

LEGEND
- Maximum scour depth (cm)
 - > 10
 - 6 - 10
 - 2 - 6
 - 0 - 2
 - 0
- Navigation channel
- Shore line
- River mile
- Roads
- Neighborhoods
- Outside model domain
- Hard bottom area
Figure E-30. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (lower-bound erosion parameters). Dotted line represents the base case results.
Figure E-31. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (lower-bound erosion parameters). Dotted line represents the base case results.
Figure E-32. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (lower-bound erosion parameters). Dotted line represents the base case results.
Figure E-33. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (lower-bound erosion parameters). Dotted line represents the base case results.
Figure E-34. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (lower-bound erosion parameters). Dotted line represents the base case results.
Cohesive bed maximum scour depth = 36 cm

Non-cohesive bed maximum scour depth = 21 cm

Figure E-35. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: upper-bound erosion parameters.

LOWER DUWAMISH WATERWAY STUDY AREA
SEATTLE, WA

June 2008
Figure E-36. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (upper-bound erosion parameters). Dotted line represents the base case results.
Figure E-37. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (upper-bound erosion parameters). Dotted line represents the base case results.
Figure E-38. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (upper-bound erosion parameters). Dotted line represents the base case results.
Figure E-39. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (upper-bound erosion parameters). Dotted line represents the base case results.
Figure E-40. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (upper-bound erosion parameters). Dotted line represents the base case results.
Figure E-41.
Spatial distribution of predicted net erosion depth during 100-year high-flow event: lower-bound upstream sediment load.

Note: Net erosion is bed elevation change due to scour and deposition process.

Cohesive bed maximum net erosion depth = 23 cm

Non-cohesive bed maximum net erosion depth = 21 cm

LEGEND

- Net erosion depth (cm)
 - > 10
 - 6 - 10
 - 2 - 6
 - 0 - 2
- Net deposition
- Navigation channel
- Shore line
- River miles
- Roads
- Neighborhoods
- Outside model domain
- Hard bottom area

LOWER DUWAMISH WATERWAY STUDY AREA
SEATTLE, WA

June 2008
Figure E-42. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: lower-bound upstream sediment load.
Figure E-43. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (lower-bound upstream sediment load). Dotted line represents the base case results.
Figure E-44. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (lower-bound upstream sediment load). Dotted line represents the base case results.
Figure E-45. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (lower-bound upstream sediment load). Dotted line represents the base case results.
Figure E-46. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (lower-bound upstream sediment load). Dotted line represents the base case results.
Figure E-47. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (lower-bound upstream sediment load). Dotted line represents the base case results.
Figure E-48. Spatial distribution of predicted net erosion depth during 100-year high-flow event: upper-bound upstream sediment load.

Note: Net erosion is bed elevation change due to scour and deposition process.
Figure E-49. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: upper-bound upstream sediment load.

Maximum scour depth (cm)
- > 10
- 6 - 10
- 2 - 6
- 0 - 2
- 0
- Navigation channel
- Shore line
- River mile
- Roads
- Neighborhoods
- Outside model domain
- Hard bottom area
Figure E-50. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (upper-bound upstream sediment load). Dotted line represents the base case results.
Figure E-51. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (upper-bound upstream sediment load). Dotted line represents the base case results.
Figure E-52. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (upper-bound upstream sediment load). Dotted line represents the base case results.
Figure E-53. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (upper-bound upstream sediment load). Dotted line represents the base case results.
Figure E-54. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (upper-bound upstream sediment load). Dotted line represents the base case results.
Figure E-55. Spatial distribution of predicted net erosion depth during 100-year high-flow event: lower-bound effective bed roughness.
Figure E-56. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: lower-bound effective bed roughness.

- **LEGEND**
 - Maximum scour depth (cm)
 - > 10
 - 6 - 10
 - 2 - 6
 - 0 - 2
 - 0
 - Navigation channel
 - Shore line
 - River mile
 - Roads
 - Neighborhoods
 - Outside model domain
 - Hard bottom area

- **LOCATOR MAP**
 - GEORGETOWN
 - SOUTH PARK
 - LOWER DUWAMISH WATERWAY STUDY AREA
 - SEATTLE, WA

- **Non-cohesive bed maximum scour depth = 13 cm**
- **Cohesive bed maximum scour depth = 20 cm**

June 2008
Figure E-57. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (lower-bound effective bed roughness). Dotted line represents the base case results.
Figure E-58. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (lower-bound effective bed roughness). Dotted line represents the base case results.
Figure E-59. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (lower-bound effective bed roughness). Dotted line represents the base case results.
Figure E-60. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (lower-bound effective bed roughness). Dotted line represents the base case results.
Figure E-61. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (lower-bound effective bed roughness). Dotted line represents the base case results.
Figure E-62. Spatial distribution of predicted net erosion depth during 100-year high-flow event: upper-bound effective bed roughness.

Note: Net erosion is bed elevation change due to scour and deposition process.

Cohesive bed maximum net erosion depth = 38 cm

Non-cohesive bed maximum net erosion depth = 12 cm
Figure E-63. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: upper-bound effective bed roughness.

Maximum scour depth (cm)
- > 10
- 6 - 10
- 2 - 6
- 0 - 2
- 0

LEGEND
- Hard bottom area
- Non-cohesive bed maximum scour depth = 27 cm
- Cohesive bed maximum scour depth = 39 cm

LOWER DUWAMISH WATERWAY STUDY AREA
SEATTLE, WA

June 2008
Figure E-64. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (upper-bound effective bed roughness). Dotted line represents the base case results.
Figure E-65. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (upper-bound effective bed roughness). Dotted line represents the base case results.
Figure E-66. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (upper-bound effective bed roughness). Dotted line represents the base case results.
Figure E-67. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (upper-bound effective bed roughness). Dotted line represents the base case results.
Figure E-68. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (upper-bound effective bed roughness). Dotted line represents the base case results.
Figure E-69.
Spatial distribution of predicted net erosion depth during 100-year high-flow event: lower-bound settling speed.

Note: Net erosion is bed elevation change due to scour and deposition process.

Cohesive bed maximum net erosion depth = 21 cm
Non-cohesive bed maximum net erosion depth = 19 cm

LEGEND
Net erosion depth (cm)
- > 10
- 6 - 10
- 2 - 6
- 0 - 2
- Net deposition
- Navigation channel
- Shore line
- River miles
- Roads
- Neighborhoods
- Outside model domain
- Hard bottom area

LOWER DUWAMISH WATERWAY STUDY AREA
SEATTLE, WA

June 2008
Figure E-70. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: lower-bound settling speed.

LEGEND

- Maximum scour depth (cm)
 - 22 cm (Cohesive bed)
 - 20 cm (Non-cohesive bed)

- Navigation channel
- Shore line
- River mile
- Roads
- Neighborhoods
- Outside model domain
- Hard bottom area

LOWER DUWAMISH WATERWAY STUDY AREA
SEATTLE, WA

June 2008
Figure E-71. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (lower-bound settling speed). Dotted line represents the base case results.
Figure E-72. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (lower-bound settling speed). Dotted line represents the base case results.
Figure E-73. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (lower-bound settling speed). Dotted line represents the base case results.
Figure E-74. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (lower-bound settling speed). Dotted line represents the base case results.
Figure E-75. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (lower-bound settling speed). Dotted line represents the base case results.
Figure E-76. Spatial distribution of predicted net erosion depth during 100-year high-flow event: upper-bound settling speed.

Note: Net erosion is bed elevation change due to scour and deposition process.
Figure E-77. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: upper-bound settling speed.

Maximum scour depth (cm)
- > 10
- 6 - 10
- 2 - 6
- 0 - 2
- 0

LEGEND
- Non-cohesive bed maximum scour depth = 24 cm
- Hard bottom area
- Cohesive bed maximum scour depth = 22 cm
- Outside model domain
- Neighborhoods
- Roads
- River mile
- Shore line
- Navigation channel

LOWER DUWAMISH WATERWAY STUDY AREA
SEATTLE, WA

June 2008
Figure E-78. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (upper-bound settling speed). Dotted line represents the base case results.
Figure E-79. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (upper-bound settling speed). Dotted line represents the base case results.
Figure E-80. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (upper-bound settling speed). Dotted line represents the base case results.
Figure E-81. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (upper-bound settling speed). Dotted line represents the base case results.
Figure E-82. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (upper-bound settling speed). Dotted line represents the base case results.
Figure E-83. Spatial distribution of predicted net erosion depth during 100-year high-flow event: effect of particle shielding factor removed.

Note: Net erosion is bed elevation change due to scour and deposition process.

LEGEND

<table>
<thead>
<tr>
<th>Net erosion depth (cm)</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10</td>
<td></td>
</tr>
<tr>
<td>6 - 10</td>
<td></td>
</tr>
<tr>
<td>2 - 6</td>
<td></td>
</tr>
<tr>
<td>0 - 2</td>
<td></td>
</tr>
<tr>
<td>Net deposition</td>
<td></td>
</tr>
<tr>
<td>Navigation channel</td>
<td></td>
</tr>
<tr>
<td>Shore line</td>
<td></td>
</tr>
<tr>
<td>River miles</td>
<td></td>
</tr>
<tr>
<td>Roads</td>
<td></td>
</tr>
<tr>
<td>Neighborhoods</td>
<td></td>
</tr>
<tr>
<td>Outside model domain</td>
<td></td>
</tr>
<tr>
<td>Hard bottom area</td>
<td></td>
</tr>
</tbody>
</table>

LOWER DUWAMISH WATERWAY STUDY AREA
SEATTLE, WA
LOWER DUWAMISH WATERWAY STUDY AREA
SEATTLE, WA

Figure E-84.
Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: effect of particle shielding factor removed.

June 2008
Figure E-85. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-86. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-87. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-88. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-89. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-90. Time variable river flow rate and tidal elevation used as boundary conditions for 100-year high-flow event (neap tide).
Spatial distribution of predicted net erosion depth during 100-year high-flow event: neap tide.

Note: Net erosion is bed elevation change due to scour and deposition process.

Figure E-91.

LEGEND

Net erosion depth (cm)

> 10

6 - 10

2 - 6

0 - 2

Net deposition

Navigation channel

Shore line

River miles

Roads

Neighborhoods

Outside model domain

Hard bottom area

LOWER DUWAMISH WATERWAY STUDY AREA
SEATTLE, WA

June 2008
Figure E-92. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: neap tide.

Lower Duwamish Waterway Study Area
Seattle, WA

LEGEND
- Maximum scour depth (cm)
 - > 10
 - 6 - 10
 - 2 - 6
 - 0 - 2
 - 0
- Navigation channel
- Shore line
- River mile
- Roads
- Neighborhoods
- Outside model domain
- Hard bottom area

Cohesive bed maximum scour depth = 16 cm
Non-cohesive bed maximum scour depth = 17 cm
Figure E-93. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-94. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-95. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-96. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-97. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (particle shielding factor removed). Dotted line represents the base case results.
Figure E-98. Time variable river flow rate and tidal elevation used as boundary conditions for peak-flow-duration sensitivity simulation.
Figure E-99. Spatial distribution of predicted net erosion depth during 100-year high-flow event: peak flow rate lasts 8 days.

Note: Net erosion is bed elevation change due to scour and deposition process.

LEGEND

Net erosion depth (cm)
- > 10
- 6 - 10
- 2 - 6
- 0 - 2
- Net deposition
- Navigation channel
- Shore line
- River miles
- Roads
- Neighborhoods
- Outside model domain
- Hard bottom area
Figure E-100. Spatial distribution of predicted maximum bed scour depth during 100-year high-flow event: peak flow rate lasts 8 days.

June 2008
Figure E-101. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.85 (peak flow duration). Dotted line represents the base case results.
Figure E-102. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 2.96 (peak flow duration). Dotted line represents the base case results.
Figure E-103. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.10 (peak flow duration). Dotted line represents the base case results.
Figure E-104. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.60 (peak flow duration). Dotted line represents the base case results.
Figure E-105. Time histories of bed shear stress, bed elevation, and erosion/deposition fluxes at a specific grid cell during 100-year high-flow event: RM 3.80 (peak flow duration). Dotted line represents the base case results.
Figure E-106. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: lower-bound erosion parameters.
Figure E-107. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: lower-bound erosion parameters.
Figure E-108. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: upper-bound erosion parameters.
Figure E-109. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: upper-bound erosion parameters.
Figure E-110. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: lower-bound upstream sediment load.
Figure E-111. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: lower-bound upstream sediment load.
Figure E-112. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: upper-bound upstream sediment load.
Figure E-113. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: upper-bound upstream sediment load.
Figure E-114. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: lower-bound effective bed roughness.
Figure E-115. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: lower-bound effective bed roughness.
Figure E-116. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: upper-bound effective bed roughness.
Figure E-117. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: upper-bound effective bed roughness.
Figure E-118. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: lower-bound settling speed.
Figure E-119. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: lower-bound settling speed.
Figure E-120. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: upper-bound settling speed.
Figure E-121. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: upper-bound settling speed.
Figure E-122. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: effect of particle-shielding factor removed.
Figure E-123. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: effect of particle-shielding factor removed.
Figure E-124. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: neap tide.
Figure E-125. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: neap tide.
Figure E-126. One-to-one comparison of predicted net erosion during 100-year high-flow event for base case and sensitivity simulations: 8-day peak flow.
Figure E-127. One-to-one comparison of predicted maximum bed scour depth during 100-year high-flow event for base case and sensitivity simulations: 8-day peak flow.
Class 1A Sediment Mass Balance during 100-Year Event
Overall Trapping Efficiency = 0.05%

Figure E-128. Class 1A sediment mass balances for 100-year high-flow events. Trapping efficiency is percentage of incoming sediment load that is deposited within a reach.
Class 1B Sediment Mass Balance during 100-Year Event
Overall Trapping Efficiency = 42%

Sediment mass units = metric tons
Mass balance results rounded to nearest 100 MT

Figure E-129. Class 1B sediment mass balances for 100-year high-flow events. Trapping efficiency is percentage of incoming sediment load that is deposited within a reach.
Class 2 Sediment Mass Balance during 100-Year Event

Overall Trapping Efficiency = 98%

Figure E-130. Class 2 sediment mass balances for 100-year high-flow events. Trapping efficiency is percentage of incoming sediment load that is deposited within a reach.
Class 3 Sediment Mass Balance during 100-Year Event
Overall Trapping Efficiency = 100%

Figure E-131. Class 3 sediment mass balances for 100-year high-flow events. Trapping efficiency is percentage of incoming sediment load that is deposited within a reach.
Figure E-132: Comparison of base-case and sensitivity results for 100-year high-flow event: normalized net erosional area (RM 0 to 4.3).
Figure E-133: Comparison of base-case and sensitivity results for 100-year high-flow event: normalized erosion mass (RM 0 to 4.3).
Figure E-134. Relationship between maximum bed shear stress within cohesive bed area and peak flow rate during high-flow events.
Figure E-135. Relationship between maximum bed scour depth within cohesive bed area and peak flow rate during high-flow events.