

Sediment Transport Characterization Data Report

Port of Seattle / City of Seattle / King County / The Boeing Company

Analyses were performed by EPA Method 160.3 for total solids and Plumb, 1981 for total organic carbon (TOC). The QAPP lists EPA Method ASTM D2216 for percent moisture, which was used to supplement Method 160.3 for total solids. The following data requirements were evaluated:

- Quality control analysis frequencies
- Holding times
- Laboratory blank contamination
- Laboratory Control Standard (LCS), Standard Reference Material (SRM), and Matrix Spike (MS) recoveries
- Laboratory triplicate relative standard deviations (RSDs)
- Field duplicate precision
- Reporting limits

Quality control analysis frequencies: For total solids, the QAPP requires the analysis of one matrix replicate per twenty samples. For TOC, the QAPP requires the analysis of one matrix replicate and one matrix spike per twenty samples, as well as one method blank in each batch or sample delivery group (SDG). The following quality control samples were analyzed in each sediment batch:

ANALYSIS	QC SAMPLES
Total solids	Method blank and laboratory triplicate
TOC	Method blank, SRM, MS and triplicate

Holding times: The holding times listed in the QAPP are 28 days for TOC and 7 days for moisture. The moisture analyses were performed past the 7-day QAPP holding time. The Puget Sound Estuary Program (PSEP) holding time for sediment is 14 days from collection. The moisture results were not qualified because they were analyzed within the 14-day PSEP holding time.

The samples were analyzed for TOC within the holding time.

Laboratory blank results: Criteria for method blanks are not discussed in the QAPP. However, the method blank analysis did not detect TOC.

LCS, SRM, and MS recoveries: The data quality indicator (DQI) for accuracy is 75-125% for TOC. All LCS, SRM, and MS recoveries were within these limits.

P 1

Port of Seattle / City of Seattle / King County / The Boeing Company

		TOTAL SOLIDS (%	%)		TOC (%)	
SAMPLE ID	SAMPLE	REPLICATE(S)	RPD/RSD	SAMPLE	REPLICATE(S)	RPD/RSD
LDW-Sg1a-35-37	50.30	50.70, 51.20	0.9	2.02	2.42, 2.39	9.8
LDW-Sg2-60-62	54.60	54.10, 54.40	0.5	2.51	2.50, 2.46	1.1
LDW-Sg3-25-27	52.30	52.40, 52.50	0.2	2.19	2.16, 2.14	1.2
LDW-Sg4-35-37	46.10	45.80, 45.90	0.3	1.14	1.09, 1.07	3.3
LDW-Sg5a-40-42	54.40	54.40, 54.60	0.2	1.80	1.89, 2.01	5.5
LDW-Sg6-25-27	54.90	53.90, 53.50	1.3	2.22	2.24, 2.24	0.5
LDW-Sg7-55-57	67.00	67.10, 66.30	0.7	1.65	1.30, 1.37	12.9
LDW-Sg8-40-42	58.80	58.70, 58.10	0.6	1.77	1.90, 1.99	5.9
LDW-Sg9-60-62	64.20	64.30, 63.60	0.6	1.36	1.37, 1.25	5.0
LDW-Sg10-75-77	53.10	53.20, 53.20	0.1	1.84	1.79, 1.85	1.8
LDW-Sg11b-25-27	65.10	64.80, 64.60	0.4	1.70	1.64, 1.59	3.4
LDW-Sg11c-30-32	60.10	62.50, 57.20	4.4	1.87	1.68, 1.59	8.3
LDW-Sg12-60-62	43.00	43.30, 43.00	0.4	3.97	3.84, 3.60	4.9
LDW-Sg13-0-1	49.20	49.30, 49.20	0.1	3.03	3.02, 2.86	3.2

Laboratory triplicate RSDs: the DQI for precision for TOC is 30% and for moisture is 20%. Duplicate RPDs and triplicate RSDs were below these levels:

Field duplicate precision: The QAPP criterion for field duplicate RPDs is 30% for TOC and 20% for moisture. Sample and field duplicate results and their RPDs are as follows:

		To	TAL SOLIDS (%)		TOC (%)	
SAMPLE ID	DUPLICATE ID	SAMPLE VALUE	DUPLICATE VALUE	RPD	SAMPLE VALUE	DUPLICATE VALUE	RPD
LDW-Sg13-15-17	LDW-Sg13-15-17-FD	47.30	44.50	6.1	2.86	2.71	5.4
LDW-Sg4-10-12	LDW-Sg4-10-12-FD	62.80	64.60	2.8	2.11	2.02	4.4
LDW-Sg7-35-37	LDW-Sg7-35-37-FD	64.20	64.80	0.9	1.73	1.67	3.5
LDW-Sg12-30-32	LDW-Sg12-30-32-FD	44.80	44.40	0.9	3.78	3.93	3.9
LDW-Sg10-10-12	LDW-Sg10-10-12-FD	52.50	52.00	1.0	1.67	1.44	14.8
LDW-Sg9-20-22	LDW-Sg9-20-22-FD	58.30	58.40	0.2	1.21	1.22	0.8
LDW-Sg8-15-17	LDW-Sg8-15-17-FD	60.30	60.70	0.7	1.95	2.04	4.5
LDW-Sg6-5-7	LDW-Sg6-5-7-FD	65.50	64.10	2.2	1.39	1.43	2.8
LDW-Sg3-15-17	LDW-Sg3-15-17-FD	55.20	54.90	0.5	2.11	2.24	6.0
LDW-Sg11b-0-2	LDW-Sg11b-0-2-FD	83.10	84.70	1.9	0.804	0.890	10.2
LDW-Sg11c-10-12	LDW-Sg11c-10-12-FD	68.40	67.10	1.9	1.45	1.43	1.4
LDW-Sg5a-30-32	LDW-Sg5a-30-32-FD	54.30	54.60	0.6	1.74	1.82	4.5
LDW-Sg2-50-52	LDW-Sg2-50-52-FD	50.60	50.50	0.2	2.09	2.25	7.4
LDW-Sg1a-5-7	LDW-Sg1a-5-7-FD	54.50	54.60	0.2	1.85	1.79	3.3

Lower Duwamish Waterway Group

Sediment Transport DR Appendix C, Attachment C.1 July 29, 2005

Port of Seattle / City of Seattle / King County / The Boeing Company

P 2

The RPD values met the QAPP criterion.

Reporting limits: The QAPP-specified method detection limits (MDLs) for sediment are 0.01% for TOC and 0.1% for moisture. TOC was detected and moisture was present in all samples and reporting limit evaluation does not apply.

Overall assessment: Documentation was found to be clear and complete. Quality control results demonstrated acceptable levels of accuracy. The precision of the data are acceptable.

Total solids and TOC data, as qualified, are acceptable for use.

Sediment Transport DR Appendix C, Attachment C.1 July 29, 2005

P 3

Port of Seattle / City of Seattle / King County / The Boeing Company

ENVIRONMENTAL DATA A SERVICES, LTD.

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg1a

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

February 15, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aoi.com

Data Assessment Narrative

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg1a

This sample delivery group consists of the following soil samples:

LDW-Sg1a-0-1	LDW-Sg1a-5-7	LDW-Sg1a-5-7FD	LDW-Sg1a-10-11	LDW-Sg1a-15-16
LDW-Sg1a-20-21	LDW-Sg1a-25-26	LDW-Sg1a-30-31	LDW-Sg1a-35-37	LDW-Sg1a-40-41
LDW-Sg1a-45-46	LDW-Sg1a-50-51	LDW-Sg1a-55-56	LDW-Sg1a-60-61	LDW-Sg1a-65-66
LDW-Sg1a-70-71	LDW-Sg1a-75-76	LDW-Sg1a-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radiioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

uder Any Date: 2.15-05 i Diane Waldschmidt τ

Environmental Scientist/Director

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory-reporting limit in associated method blanks.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

З

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to qualify data.

Sample LDW-Sg1a-35-37 was analyzed as a MS/MSD for Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg1a-5-7 and LDW-Sg1a-5-7FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

Flag	Definition
U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical result was not statistically positive at the 95% confidence level and/or the result was below its MDA). The "U" qualifier flag i also applicable to any result reported as zero (0) (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample
UJ	The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as: significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrumen calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
J	The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc. NOTE: <i>The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.</i>
R	The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

Attn: Tad D MSS No	Tad Dashler	цөх	Report of Analysis	R.O. DUX 103, Olangeoulg, NY 10302 Report of Analysis	νQ	MSS No.: Project:	Pb0070 04-08-06-23 LDW Group
on so	0 0 0		Sediments	ø	Tank	Date Rec'd:	12/30/04
MSS No		Core LDW-Sg1a coll	collected 12/29/04	04	1981 1	I dak aupervisor.	TI. Jeter
MSS No.			Collection	Radiometric R		Dr OSDXN OBeta	Gamma
	Identity	Comment	Tíme	Pb-210	Cs-137	Count	ļ
Pb0070-1 LDW-9 Pb0070-2 LDW-9	LDW-Sg1a-0-1 LDW-Sq1a-0-1 MR	Matrix Replicate	8:26 8:26	0.98 ± 0.12 0.90 ± 0.12	0.120 ± 0.063 0.150 + 0.079	01/08/05	01/05/05 01/06/05
	-DW-Sg1a-5-7	-	8:35	0.60 ± 0.12	0.174 ± 0.056	01/08/05	01/04/05
-	.DW-Sg1a-5-7 FD	Field Duplicate	8:35	0.70 ± 0.12	0.161 ± 0.069	01/08/05	01/06/05
	-DW-Sg1a-10-11		8:45	0.75 ± 0.14	0.272 ± 0.083	01/08/05	01/07/05
_	_DW-Sg1a-15-16		8:55	0.63 ± 0.13	0.201 ± 0.059	01/08/05	01/05/05
	-UW-Sg1a-20-21		9:03 0:46	0.55 ± 0.14	0.191 ± 0.058	01/08/05	01/06/05
	-DVV-3918-20-20 DVV-Se13-30-31		01.9 01.9	0.73 # 0.13	0.300 ± 0.075	20/20/L0	01/0/105
	DW-Sn1a-35-37		8.24 0.32	0.41 ± 0.10	7000 I 7070	CU/00/10	01/0//05
	LDW-Sq1a-35-37 MS	Matrix Spike	9:32	6.55±0.27	58.35 + 0.67	01/08/05	01/06/05
Pb0070-12 LDW-S	LDW-Sg1a-35-37 MSD	Matrix Spike Duplicate	9:32	7.00 ± 0.26	53.48 ± 0.61	01/08/05	01/05/05
	-DW-Sg1a-40-41	_	9.40	0.43 ± 0.10	0.431 ± 0.095	01/08/05	01/08/05
_	_DW-Sg1a-45-46		9:46	0.38 ± 0.09	0.265 ± 0.087	01/08/05	01/08/05
	-DW-Sg1a-50-51		9:52	0,49±0.11	0.093 ± 0.050	01/08/05	01/08/05
	.DW-Sg1a-55-56		10:00	0.37 ± 0.12	0.098 ± 0.057	01/08/05	01/09/05
	.DW-Sg1a-60-61		10:09	0.40 ± 0.08	0.098 ± 0.036	01/08/05	01/09/05
	.DW-Sg1a-65-66		10:43	0.38 ± 0.09	< 0.078 🕖	01/08/05	01/09/05
<u> </u>	DW-Sg1a-70-71		10:50	0.27 ± 0.09	< 0.055 v/	01/08/05	01/07/05
_	.DW-Sg1a-75-76		10:57	0.45 ± 0.11	< 0.093	01/08/05	01/09/05
Pb0070-21 LDW-S	DW-Sg1a-80-81		11:04	0.39 ± 0.14	< 0.065U	01/08/05	01/09/05
Matrix Spike Expected Values:	Values:	Pb-210 6.53 pCi/g spike + (0.51 ± 0.12) from matrix = Cs-137 49.9 pCi/g spike + (0.209 ± 0.094) from matrix =	e + (0.61 ± (e + (0.209 ±	0.12) from mi 0.094) from I	1	7.14 ± 0.12 pCi/g 50.1± 0.1 pCi/g	pCi/g pCi/g
arget Detection Limits.		Pb-210 0.2 pCi/g dry Cs-137 0.2 pCi/g dry		1)	Bismuth Beta Counting Method Gamma Spectral Analysis	unting Method Analysis	
Tolerances are 2 sigma counting uncertainties.	unting uncertainties.					· hat /	4.12

ENVIRONMENTAL

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg2

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

February 15, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg2

This sample delivery group consists of the following soil samples:

LDW-Sg2-0-1	LDW-Sg2-5-6	LDW-Sg2-10-11	LDW-Sg2-15-16	LDW-Sg2-20-21
LDW-Sg2-25-26	LDW-Sg2-30-31	LDW-Sg2-35-36	LDW-Sg2-40-41	LDW-Sg2-45-46
LDW-Sg2-50-52	LDW-Sg2-50-52FD	LDW-Sg2-55-56	LDW-Sg2-60-62	LDW-Sg2-65-66
LDW-Sg2-70-71	LDW-Sg2-75-76	LDW-Sg2-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radiioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Ę ſ AA

Diane Waldschmidt

13

Date: <u>2-15-05</u>

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory-reporting limit in associated method blanks.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to gualify data.

Sample LDW-Sg2-60-62 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg2-50-52 and LDW-Sg2-50-52FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above with one exception. The calculated relative percent difference value for Pb-210 is 41.1%. However, because the mean difference between Pb-210 results for the pair is less than 3, qualification of sample results is not necessary per TPR-80.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

_

Flag	Definition
U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical result was not statistically positive at the 95% confidence level and/or the result was below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0) (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample
ΟJ	The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant biank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
IJ	The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.
R	The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

200 West Me		P.O. Box 16	3, Orangeb	Orangeburg, NY 10962 MSS No		Report Date: MSS No.: Project:	01/20/05 Pb0071 04-08-06-23
Seattle, WA	98119			-			LDW Group
			Sediment	s		Date Rec'd:	12/30/04
Attn:	Tad Dashler				Task	Supervisor:	H. Jeter
		Core LDW-Sg2 col	lected 12/28/0	4			
				Radiometric R	esults in pCi / g o		
MSS No.	Identity	Comment	Collection	2-15-05 Bhu	1 2-15-05.		Gamma
Pb0071-1		Comment	Time	PD-210	Cs-137	Count	Count
Pb0071-1 Pb0071-2	LDW-Sg2-0-1 LDW-Sg2-5-6		14:05	0.59 ± 0.12	0.071 ± 0.028	01/15/05	01/10/05
Pb0071-2 Pb0071-3			14:11	0.48 ± 0.12	0.088 ± 0.046	01/15/05	01/14/05
Pb0071-3 Pb0071-4	LDW-Sg2-10-11		14:17	0.45 ± 0.15	0.153 ± 0.046	01/15/05	01/10/05
Pb0071-4 Pb0071-5	LDW-Sg2-15-16		14:24	0.40 ± 0.10	0.165 ± 0.052	01/15/05	01/12/05
Pb0071-5 Pb0071-6	LDW-Sg2-20-21 LDW-Sg2-25-26		14:40	0.14 ± 0.11	0.169 ± 0.066	01/15/05	01/13/05
Pb0071-0			14:49	0.14 ± 0.06	0.124 ± 0.054	01/15/05	01/11/05
Pb0071-7	LDW-Sg2-30-31	Matrix Dr. K. K	14:58	0.16 ± 0.08	< 0.083 (J	01/15/05	01/11/05
Pb0071-8	LDW-Sg2-30-31 MR	Matrix Replicate	14:58	0.19 ± 0.09	< 0.068 (01/15/05	01/12/05
Pb0071-9	LDW-Sg2-35-36		15:07	0.20 ± 0.08	< 0.055 🦕	01/15/05	01/13/05
Pb0071-10 Pb0071-11	LDW-Sg2-40-41		15:14	0.20 ± 0.08	< 0.045	01/15/05	01/11/05
Pb0071-11 Pb0071-12	LDW-Sg2-45-46		15:25	0.27 ± 0.11	< 0.069 U	01/15/05	01/11/05
Pb0071-12	LDW-Sg2-50-52	-	15:37	0.29 ± 0.09	< 0.075 U	01/15/05	01/19/05
Pb0071-13 Pb0071-14	LDW-Sg2-50-52 FD	Field Duplicate	15:37	0.44 ± 0.09	< 0.072 🗸	01/15/05	01/17/05
Pb0071-14 Pb0071-15	LDW-Sg2-55-56		15:45	0.15 ± 0.10	< 0.054 V	01/15/05	01/12/05
Pb0071-15	LDW-Sg2-60-62 LDW-Sg2-60-62 MS		15:53	0.38 ± 0.13	< 0.054 V	01/15/05	01/12/05
Pb0071-17	LDW-Sg2-60-62 MSD	Matrix Spike	15:53	7.52 ± 0.32	49.10 ± 0.62	01/15/05	01/10/05
Pb0071-18	LDW-Sg2-65-66	Matrix Spike Duplicate	15:53	7.60 ± 0.30	54.79 ± 0.70	01/15/05	01/10/05
Pb0071-19	LDW-Sg2-70-71		16:03	0.32 ± 0.12	< 0.033 🕖	01/17/05	01/14/05
Pb0071-19	LDW-Sg2-70-71 LDW-Sg2-75-76		16:13	0.18 ± 0.12	< 0.032	01/17/05	01/14/05
Pb0071-20			16:25	0.31 ± 0.09	< 0.054 (01/17/05	01/15/05
-00071-21	LDW-Sg2-80-81		16:38	0.19 ± 0.10	< 0.040 (7	01/17/05	01/13/05
Vatrix Spike E	Expected Values:	Pb-210 7.45 pCi/g sp Cs-137 44.7 pCi/g sp	ike + (0.38± ike + (no.con	0.13) from ma tribution from л	atrix = natrix) =	7.83 ± 0.13 44.7	pCi/g pCi/g
Farget Detection	on Limits:	Pb-210 0.2 pCi/g dry Cs-137 0.2 pCi/g dry			Bismuth Beta Cor Gamma Spectral		
	sigma counting uncertainties. are at the 4.66 sigma level.			,	-	Hewitt	Jeter

ENVIRONMENTAL

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg3

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

March 7, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg3

This sample delivery group consists of the following soil samples:

LDW-Sg3-0-1	LDW-Sg3-5-6	LDW-Sg3-10-11	LDW-Sg3-15-17	LDW-Sg3-15-17FD
LDW-Sg3-20-21	LDW-Sg3-25-27	LDW-Sg3-30-31	LDW-Sg3-35-36	LDW-Sg3-40-41
LDW-Sg3-45-46	LDW-Sg3-50-51	LDW-Sg3-55-56	LDW-Sg3-60-61	LDW-Sg3-65-66
LDW-Sg3-70-71	LDW-Sg3-75-76	LDW-Sg3-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radtioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

(dachoro ____

Diane Waldschmidt Environmental Scientist/Director

Date : 3 - 7 - 05

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory-reporting limit.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to qualify data.

Sample LDW-Sg3-25-27 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg3-15-17 and LDW-Sg3-15-17FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

Flag Definition

U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical
	result was not statistically positive at the 95% confidence level and/or the result was
	below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0)
	(+/- an associated uncertainty).
	NOTE: The radionuclide is not considered to be present in the sample

- UJ The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
- J The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc.

NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.

R The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

Windward Envi	ironmental LLC	MASS S P.O. Box 163		RVICES		Report Date: MSS No.:	02/07/05 Pb0072
200 West Merc Seattle, WA 9	cer Street		ort of Ana	•		Project:	04-08-06-23 LDW Group
		9	Sediment	S		Date Rec'd:	12/30/04
Attn:	Tad Dashler				Task	Supervisor:	H. Jeter
		Core LDW-Sg3 colle	cted 12/27/0	4			
					esults in pCi / g di		
			Collection	3-332,	J 3395W	Beta	Gamma
MSS No.	Identity	Comment	Time	Pb-210	Cs-137	Count	Count
Pb0072-1	LDW-Sg3-0-1	low weight 10.71 g dry	8:34	0.90 ± 0.24	0.170 ± 0.102	01/21/05	01/23/05
Pb0072-2	LDW-Sg3-5-6		8:49	1.00 ± 0.13	0.160 ± 0.060	01/21/05	01/29/05
Pb0072-3	LDW-Sg3-10-11		9:03	0.64 ± 0.12	0.198 ± 0.081	01/21/05	01/24/05
Pb0072-4	LDW-Sg3-15-17		9:12	0.69 ± 0.11	0.119 ± 0.053	01/21/05	01/22/05
Pb0072-5	LDW-Sg3-15-17 FD	Field Duplicate	9:12	0.85 ± 0.12	0.160 ± 0.042	01/21/05	01/23/05
РЬ0072-6	LDW-Sg3-20-21		9:23	0.90 ± 0.15	0.147 ± 0.051	01/21/05	01/27/05
Pb0072-7	LDW-Sg3-25-27		9:31	0.78 ± 0.13	0.301 ± 0.105	01/22/05	01/22/05
Pb0072-8	LDW-Sg3-25-27 MS	Matrix Spike	9:31	8.19 ± 0.37	32.23 ± 0.40	01/22/05	01/21/05
Pb0072-9	LDW-Sg3-25-27 MSD	Matrix Spike Duplicate	9:31	8.15 ± 0.35	34.04 ± 0.41	01/22/05	01/21/05
Pb0072-10	LDW-Sg-30-31		9:44	0.80 ± 0.14	0.140 ± 0.069	01/22/05	01/23/05
Рь0072-11	LDW-Sg3-35-36		9:59	0.70 ± 0.13	0.149 ± 0.036	01/22/05	01/22/05
Pb0072-12	LDW-Sg3-40-41		10:11	0.50 ± 0.13	< 0.089 - U	01/22/05	01/20/05
Pb0072-13	LDW-Sg3-45-46		10:26	0.69 ± 0.11	0.100 ± 0.059	01/22/05	01/29/05
Pb0072-14	LDW-Sg3-50-51		10:37	0.66 ± 0.14	< 0.094 - 🕖	01/22/05	01/22/05
Pb0072-15	LDW-Sg3-50-51 MR	Matrix Replicate	10:37	0.91 ± 0.17	0.212 ± 0.109	01/22/05	01/21/05
Pb0072-16	LDW-Sg3-55-56		10:48	0.80 ± 0.11	0.190 ± 0.057	01/22/05	01/23/05
Pb0072-17	LDW-Sg3-60-61		11:00	0.69 ± 0.14	0.167 ± 0.067	01/22/05	01/27/05
Pb0072-18	LDW-Sg3-65-66		11:18	0.77 ± 0.13	< 0.081 🕖	01/22/05	01/24/05
Pb0072-19	LDW-Sg3-70-71		11: 34	0.75 ± 0.13	0.125 ± 0.042	01/22/05	01/23/05
Pb0072-20	LDW-Sg3-75-76		11:38	0.67 ± 0.14	0.331 ± 0.105	01/22/05	01/27/05
Pb0072-21	LDW-Sg3-80-81		11:45	0.67 ± 0.13	0.357 ± 0.108	01/22/05	01/23/05
Matrix Spike f	Expected Values:			± 0.13) from m ± 0.11) from (8.67 ± 0.13 31.73 ± 0.11	pCi/g pCi/g

_

Tolerances are 2 sigma counting uncertain Detection limits are at the 4.66 sigma level ENVIRONMENTAL

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg4

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

March 7, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg4

This sample delivery group consists of the following soil samples:

LDW-Sg4-0-1	LDW-Sg4-5-6	LDW-Sg4-10-12	LDW-Sg4-10-12FD	LDW-Sg4-15-16
LDW-Sg4-20-21	LDW-Sg4-25-26	LDW-Sg4-30-31	LDW-Sg4-35-37	LDW-Sg4-40-41
LDW-Sg4-45-46	LDW-Sg4-50-51	LDW-Sg4-55-56	LDW-Sg4-60-61	LDW-Sg4-65-66
LDW-Sg4-70-71	LDW-Sg4-75-76	LDW-Sg4-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radiioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

de A

Diane Waldschmidt Environmental Scientist/Director

Date : <u>3-7-05</u>

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory-reporting limit.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to qualify data.

Sample LDW-Sg4-35-37 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg4-10-12 and LDW-Sg4-10-12FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above with one exception. The calculated relative percent difference value for Cs-137 is 62.1%. However, because the mean difference between Cs-137 results for the pair is less than 3, qualification of sample results is not necessary per TPR-80.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

З

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

Flag Definition

U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical
	result was not statistically positive at the 95% confidence level and/or the result was
	below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0)
	(+/- an associated uncertainty).
	NOTE: The radionuclide is not considered to be present in the sample

- UJ The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
- J The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide is considered to be present in the sample, but the result may not

NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.

R The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

		MAS	SS SPEC SERVICES	Report Date:	02/10/05
Windward	Environmental LLC	P.O. Bo	x 163, Orangeburg, NY 10962	MSS No.:	Pb0073
200 West Mercer Street			Report of Analysis		04-08-06-23
Seattle, W/	A 98119				LDW Group
			Sediments	Date Rec'd:	12/30/04
Attn:	Tad Dashler			Task Supervisor:	H. Jeter
		Core LDW-Sg4	collected 12/22/04	_	

Comment	Collection	3-3-6 %		Beta	
Lomment	Times	DI- 040		26.16	Gamma
	Time	Pb-210	Cs-137	Count	Count 02/02/05
					02/02/05
					02/03/05
Field Duplicate					02/03/05
					02/03/05
					02/01/05
					02/03/05
					02/02/05
					01/28/05
					01/20/05
Matrix Spike Duplicate					01/20/05
					02/01/05
					02/03/05
					02/02/05
	13:50	0.42 ± 0.12	0.219 ± 0.061		01/31/05
	13:55	0.53 ± 0.14	0.250 ± 0.106		02/02/05
	14:01	0.52 ± 0.11	0.203 ± 0.040		02/02/05
	14:05	0.43 ± 0.10	0.145 ± 0.044		01/29/05
	14:11	0.32 ± 0.12	0.481 ± 0.161	01/29/05	01/28/05
Matrix Replicate	14:11	0.43 ± 0.11	0.429 ± 0.138	01/29/05	02/01/05
	14:17	0.26 ± 0.11	0.265 ± 0.068	01/29/05	01/31/05
Pb-210 15.36 pCi/g s	pike + (0.60	± 0.12) from r	matrix =	15.96 ± 0.12	pCi/g
Cs-137 59.09 pCi/g s	pike + (0.23	± 0.10) from r	matrix =	59.32 ± 0.10	pCi/g
Ph-210 0.2 pGi/n dry			Bismuth Beta Co	ounting Method	
				[]	the
				Hewitt	Jeter
	Pb-210 15.36 pCi/g s	12:16 12:25 12:33 13:15 13:23 Matrix Spike 13:23 Matrix Spike Duplicate 13:23 13:32 13:32 13:39 13:43 13:55 14:01 14:05 14:11 14:17 Pb-210 15.36 pCi/g spike + (0.60 Cs-137 59.09 pCi/g spike + (0.23 Pb-210 0.2 pCi/g dry Pb-210 0.2 pCi/g dry	12:04 0.75 ± 0.14 12:11 0.49 ± 0.11 Field Duplicate 12:11 0.46 ± 0.10 12:16 0.58 ± 0.12 12:25 0.54 ± 0.11 12:25 0.54 ± 0.11 12:33 0.49 ± 0.11 12:33 0.49 ± 0.11 13:23 0.60 ± 0.12 Matrix Spike 13:23 16.97 ± 0.61 13:23 15.54 ± 0.69 Matrix Spike Duplicate 13:23 15.54 ± 0.69 13:32 0.58 ± 0.10 13:39 0.44 ± 0.12 13:43 0.40 ± 0.13 13:55 0.53 ± 0.10 13:39 0.44 ± 0.12 13:65 0.53 ± 0.10 14:01 0.52 ± 0.12 13:55 0.53 ± 0.10 14:10 0.52 ± 0.12 13:55 0.53 ± 0.10 14:01 0.52 ± 0.11 14:05 0.43 ± 0.10 14:11 0.32 ± 0.12 Matrix Replicate 14:11 0.43 ± 0.11 14:17 0.26 ± 0.11 Pb-210 15.36 pCi/g spike + (0.60 ± 0.12) from r r r r Pb-210 0.2 pCi/g dry r	12:04 0.75 ± 0.14 0.171 ± 0.083 12:11 0.49 ± 0.11 0.135 ± 0.057 Field Duplicate 12:11 0.46 ± 0.10 0.071 ± 0.047 12:16 0.58 ± 0.12 0.122 ± 0.040 12:25 0.54 ± 0.11 0.165 ± 0.059 12:33 0.49 ± 0.11 0.158 ± 0.046 13:23 0.49 ± 0.11 0.158 ± 0.045 13:23 0.60 ± 0.12 0.231 ± 0.099 Matrix Spike 13:23 15.54 ± 0.69 67.31 ± 0.79 13:23 0.58 ± 0.10 0.254 ± 0.059 13:39 13:39 0.44 ± 0.12 0.162 ± 0.075 13:43 0.40 ± 0.13 0.338 ± 0.086 13:50 0.42 ± 0.12 0.219 ± 0.061 13:55 0.53 ± 0.14 0.250 ± 0.106 14:01 0.52 ± 0.11 0.205 ± 0.064 14:01 0.328 ± 0.024 14:01 14:05 0.43 ± 0.11 0.242 ± 0.12 0.481 ± 0.161 14:01 0.250 ± 0.040 14:05 14:17 0.26 ± 0.11 0.265 ± 0.068 14:17 0.265 ± 0.106 14:17 <td< td=""><td>12:04$0.75 \pm 0.14$$0.171 \pm 0.083$$01/28/05$Field Duplicate12:11$0.49 \pm 0.11$$0.135 \pm 0.067$$01/28/05$12:16$0.58 \pm 0.12$$0.071 \pm 0.047$$01/28/05$12:17$0.46 \pm 0.10$$0.071 \pm 0.047$$01/28/05$12:18$0.58 \pm 0.12$$0.122 \pm 0.040$$01/28/05$12:25$0.54 \pm 0.11$$0.165 \pm 0.059$$01/28/05$12:33$0.49 \pm 0.11$$0.165 \pm 0.045$$01/28/05$13:15$0.53 \pm 0.10$$0.185 \pm 0.045$$01/28/05$Matrix Spike$13:23$$14.97 \pm 0.61$$68.05 \pm 0.82$$01/28/05$Matrix Spike Duplicate$13:23$$15.54 \pm 0.69$$67.31 \pm 0.79$$01/29/05$13:32$0.56 \pm 0.10$$0.254 \pm 0.059$$01/29/05$13:39$0.44 \pm 0.12$$0.162 \pm 0.075$$01/29/05$13:43$0.40 \pm 0.13$$0.338 \pm 0.086$$01/29/05$14:01$0.52 \pm 0.11$$0.203 \pm 0.040$$01/29/05$14:05$0.43 \pm 0.10$$0.145 \pm 0.044$$01/29/05$14:11$0.32 \pm 0.12$$0.481 \pm 0.161$$01/29/05$14:11$0.32 \pm 0.12$$0.481 \pm 0.161$$01/29/05$14:17$0.26 \pm 0.111$$0.265 \pm 0.068$$01/29/05$14:17$0.26 \pm 0.111$$0.265 \pm 0.068$$01/29/05$14:17$0.26 \pm 0.12$$0.99 \text{ Ci/g}$ spike + (0.60 ± 0.12) from matrix =15.96 ± 0.12Cs-13759.09 pCi/g spike + (0.23 ± 0.10)Bismuth Beta Counting Method0.2 pCi/g dry<</td></td<>	12:04 0.75 ± 0.14 0.171 ± 0.083 $01/28/05$ Field Duplicate12:11 0.49 ± 0.11 0.135 ± 0.067 $01/28/05$ 12:16 0.58 ± 0.12 0.071 ± 0.047 $01/28/05$ 12:17 0.46 ± 0.10 0.071 ± 0.047 $01/28/05$ 12:18 0.58 ± 0.12 0.122 ± 0.040 $01/28/05$ 12:25 0.54 ± 0.11 0.165 ± 0.059 $01/28/05$ 12:33 0.49 ± 0.11 0.165 ± 0.045 $01/28/05$ 13:15 0.53 ± 0.10 0.185 ± 0.045 $01/28/05$ Matrix Spike $13:23$ 14.97 ± 0.61 68.05 ± 0.82 $01/28/05$ Matrix Spike Duplicate $13:23$ 15.54 ± 0.69 67.31 ± 0.79 $01/29/05$ 13:32 0.56 ± 0.10 0.254 ± 0.059 $01/29/05$ 13:39 0.44 ± 0.12 0.162 ± 0.075 $01/29/05$ 13:43 0.40 ± 0.13 0.338 ± 0.086 $01/29/05$ 14:01 0.52 ± 0.11 0.203 ± 0.040 $01/29/05$ 14:05 0.43 ± 0.10 0.145 ± 0.044 $01/29/05$ 14:11 0.32 ± 0.12 0.481 ± 0.161 $01/29/05$ 14:11 0.32 ± 0.12 0.481 ± 0.161 $01/29/05$ 14:17 0.26 ± 0.111 0.265 ± 0.068 $01/29/05$ 14:17 0.26 ± 0.111 0.265 ± 0.068 $01/29/05$ 14:17 0.26 ± 0.12 0.99 Ci/g spike + (0.60 ± 0.12) from matrix = 15.96 ± 0.12 Cs-13759.09 pCi/g spike + (0.23 ± 0.10)Bismuth Beta Counting Method 0.2 pCi/g dry<

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg5a

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

March 14, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg5a

This sample delivery group consists of the following soil samples:

LDW-Sg5a-0-1	LDW-Sg5a-5-6	LDW-Sg5a-10-11	LDW-Sg5a-15-16	LDW-Sg5a-20-21
LDW-Sg5a-25-26	LDW-Sg5a-30-32	LDW-Sg5a-30-32FD	LDW-Sg5a-35-36	LDW-Sg5a-40-42
LDW-Sg5a-45-46	LDW-Sg5a-50-51	LDW-Sg5a-55-56	LDW-Sg5a-60-61	LDW-Sg5a-65-66
LDW-Sg5a-70-71	LDW-Sg5a-75-76	LDW-Sg5a-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radtioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Waldachun A Date: 3-14-05 lus Diane Waldschmidt

Environmental Scientist/Director

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory reporting limit in associated method blanks.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be $\pm 10\%$ of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to gualify data.

Sample LDW-Sg5a-40-42 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg5a-30-32 and LDW-Sg5a-30-32FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above with one exception. The calculated relative percent difference value for Pb-210 is 33.6%. However, because the mean difference between Pb-210 results for the pair is less than 3, qualification of sample results is not necessary per TPR-80.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

Flag Definition

U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical result was not statistically positive at the 95% confidence level and/or the result was below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0) (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample
ΟJ	The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
J	The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.

R The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

Seattle, WA 9	8119	:	Sediment	S		Date Rec'd:	LDW Group 12/30/04
Attn:	Tad Dashler	Core LDW-Sg5a col	lected 12/28/	04	Task	Supervisor:	H. Jeter
					esults in pCi / g d		
	1.1 414 -	Comment	Collection Time	3.11-05 St Pb-210		Count	Gamma Count
MSS No.	Identity	Comment	8:45	1.04 ± 0.16	0.140 ± 0.078	02/04/05	02/10/05
Pb0074-1	LDW-Sg5a-0-1	Matrix Replicate	8:45	0.96 ± 0.14	< 0.091 U	02/04/05	02/14/05
Pb0074-2	LDW-Sg5a-0-1 MR	maulk richlicate	8:54	1.08 ± 0.16	0.125 ± 0.067	02/04/05	02/11/05
Pb0074-3	LDW-Sg5a-5-6 LDW-Sg5a-10-11		9:07	1.07 ± 0.18	0.132 ± 0.043	02/04/05	02/12/05
Pb0074-4 Pb0074-5	LDW-Sg5a-10-11 LDW-Sg5a-15-16		9:15	0.89 ± 0.14	0.203 ± 0.076	02/04/05	02/09/05
Pb0074-5 Pb0074-6	LDW-Sg5a-20-21		10:00	1.02 ± 0.15	0.160 ± 0.066	02/04/05	02/13/05
Pb0074-6 Pb0074-7	LDW-Sq5a-25-26		10:09	0.75 ± 0.13	0.140 ± 0.048	02/04/05	02/14/05
Pb0074-7 Pb0074-8	LDW-Sg5a-30-32		10:18	0.57 ± 0.13	0.108 ± 0.049	02/04/05	02/11/05
Pb0074-8 Pb0074-9	LDW-Sg5a-30-32 FD	Field Duplicate	10:18	0.80 ± 0.14	0.115 ± 0.047	02/05/05	02/10/05
Pb0074-9 Pb0074-10	LDW-Sg5a-35-36	Tield Duplicate	10:32	0.96 ± 0.15	0.125 ± 0.058	02/05/05	02/11/05
Pb0074-10 Pb0074-11	LDW-Sg5a-40-42		10:37	0.75 ± 0.14	0.128 ± 0.064	02/05/05	02/09/05
Pb0074-11	LDW-Sg5a-40-42 MS	Matrix Spike	10:37	9.95 ± 0.39	32.05 ± 0.35	02/05/05	02/11/05
Pb0074-12	LDW-Sg5a-40-42 MSD	Matrix Spike Duplicate	10:37	9.20 ± 0.40	31.70 ± 0.34	02/05/05	02/13/05
Pb0074-13	LDW-Sg5a-45-46		10:46	0.62 ± 0.16	0.118 ± 0.049	02/05/05	02/13/05
Pb0074-15	LDW-Sg5a-50-51		10:57	0.56 ± 0.18	0.132 ± 0.048	02/05/05	02/10/05
Pb0074-16	LDW-Sg5a-55-56		11:06	0.38 ± 0.17	0.141 ± 0.054	02/05/05	02/13/05
Pb0074-17	LDW-Sg5a-60-61		11:13	0.87 ± 0.22	0.302 ± 0.099	02/05/05	02/10/05
Pb0074-18	LDW-Sg5a-65-66		11:23	0.58 ± 0.17	0.110 ± 0.046	02/05/05	02/12/05
Pb0074-19	LDW-Sg5a-70-71		11:31	0.58 ± 0.17	< 0.071 U	02/05/05	02/14/05
Pb0074-20	LDW-Sq5a-75-76		11:39	0.79 ± 0.17	0.115 ± 0.038	02/05/05	02/10/05
Pb0074-21	LDW-Sg5a-80-81		11:46	0.61 ± 0.16	0.158 ± 0.079	02/05/05	02/14/05
Matrix Spike Expected Values:		Pb-210 9.40 pCi/g sp	pike + (0.75:	± 0.14) from r	natrix =	10.15 ± 0.14	pCi/g
•	-	Cs-137 29.55 pCl/g :	spike + (0.13	± 0.06) from	matrix =	29.68 ± 0.06	pCi/g
Target Detect	ion Limits:	Pb-210 0.2 pCi/g dry			Bismuth Beta C Gamma Spectra		d

Tolerances are 2 sigma counting uncertainties. Detection limits are at the 4.66 sigma level.

Hewitt W. Jeter

 $\ell < j$

ENVIRONMENTAL

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg6

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

March 14, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg6

This sample delivery group consists of the following soil samples:

LDW-Sg6-0-1	LDW-Sg6-5-7	LDW-Sg6-5-7FD	LDW-Sg6-10-11	LDW-Sg6-15-16
LDW-Sg6-20-21	LDW-Sg6-25-27	LDW-Sg6-30-31	LDW-Sg6-35-36	LDW-Sg6-40-41
LDW-Sg6-45-46	LDW-Sg6-50-51	LDW-Sg6-55-56	LDW-Sg6-60-61	LDW-Sg6-65-66
LDW-Sg6-70-71	LDW-Sg6-75-76	LDW-Sg6-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radiioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Diane Waldschmidt

Environmental Scientist/Director

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory reporting limit in associated method blanks.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to qualify data.

Sample LDW-Sg6-25-27 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg6-5-7 and LDW-Sg6-5-7FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above with one exception. The calculated relative percent difference value for Cs-137 is 34.7%. However, because the mean difference between Cs-137 results for the pair is less than 3, qualification of sample results is not necessary per TPR-80.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

Flag	Definition
U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical result was not statistically positive at the 95% confidence level and/or the result was below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0) (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample
UJ	The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
J	The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.
R	The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

A fire alterna de C						Report Date:	02/24/05
	vironmental LLC	P.O. Box 16		•	202	MSS No.:	Pb0075
200 West Mercer Street		Re	port of Ana	lysis		Project:	04-08-06-23
Seattle, WA 9	8119						LDW Group
			Sedimen	ts		Date Rec'd:	12/30/04
Aftn:	Tad Deshler				Task	Supervisor:	H. Jeter
		Core LDW-Sg6 coll	lected 12/22/(DUNIA	25	_	
				Radiometric R	tesults in pCi / g o	iry 5_	
		_			Dung-14		Gamma
MSS No.	Identity	Comment	Time	Pb-210	Cs-137	Count	Count
Pb0075-1	LDW-Sg6-0-1		8:40	1.02 ± 0.17	0.083 ± 0.041	02/12/05	02/17/05
Pb0075-2	LDW-Sg6-5-7		8:52	0.63 ± 0.16	0.069 ± 0.028	02/12/05	02/19/05
Pb0075-3	LDW-Sg6-5-7 FD	Field Duplicate	8:52	0.72 ± 0.17	0.098 ± 0.050	02/12/05	02/16/05
Pb0075-4	LDW-Sg6-10-11		8:59	0.79 ± 0.16	0.201 ± 0.060	02/12/05	02/19/05
Pb0075-5	LDW-Sg6-15-16		9:05	0.69 ± 0.20	•0.072 ± 0.054	02/12/05	02/20/05
Pb0075-6	LDW-Sg6-20-21		9:12	0.33 ± 0.14	0.114 ± 0.059	02/12/05	02/17/05
РЬОО75-7	LDW-Sg6-25-27		9:21	0.58 ± 0.23	0.196 ± 0.072	02/12/05	02/20/05
Pb0075-8	LDW-Sg6-25-27 MS	Matrix Spike	9:21	11.10 ± 0.51	28.17 ± 0.40	02/12/05	02/21/05
Pb0075-9	LDW-Sg6-25-27 MSD	Matrix Spike Duplicate	9:21	11.03 ± 0.49	28.90 ± 0.34	02/16/05	02/17/05
260075-10	LDW-Sg6-30-31		9:28	0.78 ± 0.19	0.224 ± 0.080	02/16/05	02/21/05
Pb0075-11	LDW-Sg6-35-36		9:34	0.50 ± 0.19	0.133 ± 0.070	02/16/05	02/16/05
Pb0075-12	LDW-Sg6-40-41		9:40	0.66 ± 0.15	0.188 ± 0.071	02/12/05	02/18/05
Pb0075-13	LDW-Sg6-45-46		9:47	0.85 ± 0.13	0.160 ± 0.056	02/12/05	02/16/05
Pb0075-14	LDW-Sg6-50-51		10:01	0.62 ± 0.15	0.159 ± 0.056	02/12/05	02/15/05
РЬОО75-15	LDW-Sg6-55-56		10:07	0.36 ± 0.15	0.160 ± 0.078	02/12/05	02/16/05
b0075-16	LDW-Sg6-60-61		10:11	•0.22 ± 0.17	0.113 ± 0.053	02/16/05	02/19/05
Pb0075-17	LDW-Sg6-65-66		10:18	0.48 ± 0.17	0.119 ± 0.052	02/16/05	02/21/05
Pb0075-18	LDW-Sg6-70-71		10:25	0.30 ± 0.15	0.083 ± 0.046	02/16/05	02/15/05
Pb0075-19	LDW-Sg6-75-76		10:34	0.50 ± 0.14	0.174 ± 0.064	02/12/05	02/19/05
Pb0075-20	LDW-Sg6-80-81		10:45	0.48 ± 0.16	0.133 ± 0.074	02/12/05	02/15/05
Pb0075-21	LDW-Sg6-80-81 MR	Matrix Replicate	10:45	0.37 ± 0.14	0.156 ± 0.081	02/12/05	02/17/05
Matrix Spike I	Expected Values:	· · · ·		± 0.23) from		11.52 ± 0.23	pCi/g
		Cs-137 27.46 pCi/g s	spike + (0.20	± 0.07) from	matrix =	27.66 ± 0.07	pCi/g
Farget Detection	on Limits:	Pb-210 0.2 pCi/g dry			Bismuth Beta Co	ounting Method	
		Cs-137 0.2 pCi/g dry			Gamma Spectra	I Analysis	
olerances are 2	sigma counting uncertainties.						FAT

 \sim

ENVIRONMENTAL

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg7

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

May 18, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg7

This sample delivery group consists of the following soil samples:

LDW-Sg7-0-1	LDW-Sg7-5-6	LDW-Sg7-10-11	LDW-Sg7-15-16	LDW-Sg7-20-21
LDW-Sg7-25-26	LDW-Sg7-30-31	LDW-Sg7-35-37	LDW-Sg7-35-37FD	LDW-Sg7-40-41
LDW-Sg7-45-46	LDW-Sg7-50-51	LDW-Sg7-55-57	LDW-Sg7-60-61	LDW-Sg7-65-66
LDW-Sg7-70-71	LDW-Sg7-75-76	LDW-Sg7-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radiioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Matitado Date: 5-18-05

Diane Waldschmidt Environmental Scientist/Director

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory-reporting limit.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to qualify data.

Sample LDW-Sg7-55-57 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg7-35-37 and LDW-Sg7-35-37FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

З

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

Flag Definition υ The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical result was not statistically positive at the 95% confidence level and/or the result was below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0) (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample UJ The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable. The analysis was performed and radioactivity was detected (i.e., the radioanalytical result J is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide is considered to be present in the sample, but the result may not

NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.

R The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

		MASS S	PEC SE	RVICES		Report Date:	03/10/05
		P.O. Box 163,				MSS No.:	Pb0076
•••••	vironmental LLC		ort of Anal	•	02	Project:	04-08-06-23
200 West Mer		кер		Floject.	LDW Group		
Seattle, WA 9	8119			_		Data Davida	
		5	ediment	5	 .	Date Rec'd:	12/30/04
Attn:	Tad Deshler			. /	lask	Supervisor:	H. Jeter
		Core LDW-Sg7 collect	cted 12/16/04		A	. /	
			i	Dediamotric P	esults in pCi/g d	K.	
			Collection	5 703	$\frac{5}{5}$	Beta	Gamma
MSS No.	Identity	Comment	Time	Pb-210	Cs-137	Count	Count
Pb0076-1	LDW-Sg7-0-1	oonment	13:00	0.80 ± 0.13	0.115 ± 0.049	02/18/05	03/05/05
-b0076-2	LDW-Sg7-5-6		13:18	0.53 ± 0.12	0.134 ± 0.058	02/18/05	03/03/05
Pb0076-3	LDW-Sg7-10-11		13:35	0.56 ± 0.11	0.119 ± 0.041	02/18/05	03/05/05
Pb0076-4	LDW-Sg7-15-16		13:57	0.60 ± 0.11	0.198 ± 0.085	02/18/05	03/05/05
Pb0076-5	LDW-Sg7-20-21		14:25	0.45 ± 0.10	0.096 ± 0.038	02/18/05	03/05/05
Pb0076-6	LDW-Sq7-25-26		14:41	0.42 ± 0.09	0.085 ± 0.041	02/18/05	03/06/05
Pb0076-7	LDW-Sg7-30-31		14:55	0.39 ± 0.11	0.125 ± 0.041	02/18/05	02/27/05
Pb0076-8	LDW-Sg7-35-37		15:12	0.41 ± 0.09	0.118 ± 0.030	02/18/05	03/06/05
b0076-9	LDW-Sg7-35-37 FD	Field Duplicate	15:12	0.37 ± 0.08	0.120 ± 0.031	02/18/05	03/06/05
ъ0076-10	LDW-Sg7-40-41		15:32	0.40 ± 0.11	0.155 ± 0.042	02/19/05	03/08/05
b0076-11	LDW-Sg7-45-46		16:00	0.32 ± 0.09	0.110 ± 0.041	02/19/05	02/27/05
b0076-12	LDW-Sg7-50-51		16:12	0.26 ± 0.08	0.099 ± 0.041	02/19/05	03/07/05
Pb0076-13	LDW-Sg7-55-57		16:24	0.25 ± 0.11	0.080 ± 0.044	02/19/05	03/06/05 03/04/05
Pb0076-14	LDW-Sg7-55-57 MS	Matrix Spike	16:24	12.16 ± 0.48	25.72 ± 0.31	02/19/05 02/19/05	03/04/05
Pb0076-15	LDW-Sg7-55-57 MSD	Matrix Spike Duplicate	16:24	12.97 ± 0.57	23.26 ± 0.33 0.105 ± 0.032	02/19/05	03/02/05
Pb0076-16	LDW-Sg7-60-61		16:43	0.28 ± 0.10 0.36 ± 0.13	0.105 ± 0.032 0.218 ± 0.054	02/19/05	02/28/05
Pb0076-17	LDW-Sg7-65-66	Matrix Declinate	17:00 17:00	0.30 ± 0.13 0.41 ± 0.14	0.218 ± 0.054 0.303 ± 0.073	02/19/05	03/06/05
Pb0076-18	LDW-Sg7-65-66 MR	Matrix Replicate	17:00	0.41 ± 0.14 0.29 ± 0.13	0.326 ± 0.040	02/19/05	03/08/05
Pb0076-19	LDW-Sg7-70-71		17:13	0.23 ± 0.13 0.24 ± 0.10	0.307 ± 0.055	02/19/05	03/07/05
Pb0076-20	LDW-Sg7-75-76		17:37	0.24 ± 0.10 0.33 ± 0.11	0.382 ± 0.053	02/19/05	03/06/05
Pb0076-21	LDW-Sg7-80-81		17.57	0.00 ± 0.11	0.002 1 0.000	02110700	•••••••
Matrix Snike	Expected Values:	Pb-210 12.35 pCi/g sp	oike + (0,25	± 0.11) from	matrix =	12.60 ± 0.11	pCi/g
Maulx Spike	Expected values.	Cs-137 23.67 pCi/g sp				23.75 ± 0.04	pCi/g
			,	,			
Target Detecti	on Limite	Pb-210 0.2 pCi/g dry			Bismuth Beta C	ounting Method	1
raiget Delecti	on Linats.	Cs-137 0.2 pCi/g dry			Gamma Spectra		
		co los eleptinguis				. (1-10
Tolerances are :	2 sigma counting uncertainties.						- pap 1./
	are at the 4.66 sigma level.					Hewitt \	V Jeter

SERVICES, LTD. DATA VALIDATION • TECHNICAL WRITING • CONSULTING • DATA INTERPRETATION

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg8

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

May 18, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg8

This sample delivery group consists of the following soil samples:

LDW-Sg8-0-1	LDW-Sg8-5-6	LDW-Sg8-10-11	LDW-Sg8-15-17	LDW-Sg8-15-17FD
LDW-Sg8-20-21	LDW-Sg8-25-26	LDW-Sg8-30-31	LDW-Sg8-35-36	LDW-Sg8-40-42
LDW-Sg8-45-46	LDW-Sg8-50-51	LDW-Sg8-55-56	LDW-Sg8-60-61	LDW-Sg8-65-66
LDW-Sg8-70-71	LDW-Sg8-75-76	LDW-Sg8-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radiioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Qiane Waldschmidt

Environmental Scientist/Director

Date: 5-18-05

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory reporting limit in associated method blanks.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to qualify data.

Sample LDW-Sg8-40-42 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg8-15-17 and LDW-Sg8-15-17FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

Sample LDW-Sg8-60-61 was analyzed as a laboratory duplicate. Generally speaking, precision demonstrated between each of the duplicate analyses is acceptable.

However, the Pb-210 result is a non-detection (<0.26 pCi/g) in the sample which is slightly higher than the target detection limit of 0.2 pCi/g, caused by relatively low sample weight and chemical yield. The matrix replicate at this depth exhibits a positive result of comparable magnitude. When counting near the detection limit, tolerances of the measurements become large and there is a 5% probability of false detection.

DEFI	NITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT
Flag	Definition
U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical result was not statistically positive at the 95% confidence level and/or the result was below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0) (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample
IJ	The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
J	The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc.
R	The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

Windward Environmental LLC 200 West Mercer Street Seattle, WA 98119		MASS SPEC SERVICES P.O. Box 163, Orangeburg, NY 10962 Report of Analysis			52	Report Date: MSS No.: Project:	03/15/05 Pb0077 04-08-06-23 LDW Group
	Tad Deshler	Sediments			T	Date Rec'd:	12/30/04 H. Jeter
Attn:		Core LDW-Sg8 coll	Rediometric Results		lasi	Task Supervisor:	
					1.1-13	in pCi/g dry いたちょう Beta Gamma	
MSS No.	Identity	Comment	Time	Pb-210 5	Cs-137	Count	Count
⁵ b0077-1	LDW-Sg8-0-1		10:53	0.51 ± 0.14	< 0.050	02/26/05	03/09/05
Pb0077-2	LDW-Sg8-5-6		11:00	0.31 ± 0.10	< 0.044	02/26/05	03/10/05
РЬОО77-3	LDW-Sg8-10-11		11:05	0.22 ± 0.08	< 0.048	02/26/05	03/11/05
Pb0077-4	LDW-Sg8-15-17		11:13	0.22 ± 0.09	< 0.058	02/26/05	03/11/05
Pb0077-5	LDW-Sg8-15-17 FD	Field Duplicate	11:13	0.29 ± 0.09	< 0.044	02/26/05	03/07/05
РЬОО77-6	LDW-Sg8-20-21		11:19	0.30 ± 0.11	< 0.041	02/26/05	03/10/05
Pb0077-7	LDW-Sg8-25-26		11:27	0.31 ± 0.10	< 0.047	02/26/05	03/10/05
b0077-8	LDW-Sg8-30-31		11:34	0.23 ± 0.09	< 0.036	02/26/05	03/10/05
Pb0077-9	LDW-Sg8-35-36		11:40	0.50 ± 0.12	< 0.048	02/26/05	03/04/05
РЬОО77-10	LDW-Sg8-40-42		11:46	0.35 ± 0.14	< 0.065	02/26/05	03/06/05
рьоо77-11	LDW-Sg8-40-42 MS	Matrix Spike	11:46	12.08 ± 0.50	24.03 ± 0.29	02/26/05	02/24/05
Pb0077-12	LDW-Sg8-40-42 MSD	Matrix Spike Duplicate		10.80 ± 0.45	23.40 ± 0.35 < 0.043	02/26/05 02/26/05	03/02/05 03/03/05
Pb0077-13	LDW-Sg8-45-46		11:53	0.32 ± 0.11		02/26/05	03/03/05
Pb0077-14	LDW-Sg8-50-51		12:50	0.25 ± 0.08	< 0.038	02/26/05	
Pb0077-15	LDW-Sg8-55-56		12:56	0.36 ± 0.13 < 0.26	< 0.0 4 9 < 0.045	02/26/05	03/09/05 02/24/05
Pb0077-16	LDW-Sg8-60-61	Matrix Daulianta	13:02	< 0.26 0.29 ± 0.14	< 0.045 < 0.064	02/26/05	02/24/05
Pb0077-17	LDW-Sg8-60-61 MR	Matrix Replicate	13:02 13:08	0.29 ± 0.14 0.40 ± 0.14	< 0.064	02/26/05	03/09/05
Pb0077-18	LDW-Sg8-65-66		13:14	0.40 ± 0.14 0.23 ± 0.11	< 0.042	02/26/05	03/08/05
РЬОО77-19 РЬОО77-20	LDW-Sg8-70-71 LDW-Sg8-75-76		13:20	0.23 ± 0.14	< 0.028	02/26/05	03/12/05
Pb0077-20 Pb0077-21	LDW-Sg8-80-81		13:26	0.28 ± 0.11	< 0.036	02/26/05	03/03/05
Mately College	-	Pb-210 11.20 pCi/g	enika + (0.35	+0.14) from r	natrix =	11.55 ± 0.14	pCi/g
Matrix Spike Expected Values:		Pb-21011.20 pCi/g spike + (0.35 ± 0.14) from maCs-13723.00 pCi/g spike + $(no contribution from master)$				23.00	pCi/g
							<u>.</u>
Target Detection Limits:					Bismuth Beta Counting Method Bamma Spectral Analysis		
	2 sigma counting uncertainties are at the 4.66 sigma level.	ι.				Hewitt W	-19

SERVICES, LTD. DATA VALIDATION • TECHNICAL WRITING • CONSULTING • DATA INTERPRETATION

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg9

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

May 18, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg9

This sample delivery group consists of the following soil samples:

LDW-Sg9-0-1	LDW-Sg9-5-6	LDW-Sg9-10-11	LDW-Sg9-15-16	LDW-Sg9-20-22
LDW-Sg9-20-22FD	LDW-Sg9-25-26	LDW-Sg9-30-31	LDW-Sg9-35-36	LDW-Sg9-40-41
LDW-Sg9-45-46	LDW-Sg9-50-51	LDW-Sg9-55-56	LDW-Sg9-60-62	LDW-Sg9-65-66
LDW-Sg9-70-71	LDW-Sg9-75-76	LDW-Sg9-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radiioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

leter

Diane Waldszfimidt Environmental Scientist/Director

Date : _______5-18---05

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory-reporting limit.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to qualify data.

Sample LDW-Sg9-60-62 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg9-20-22 and LDW-Sg9-20-22FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above with one exception. The calculated relative percent difference value for Pb-210 is 34.5%. However, because the mean difference between Pb-210 results for the pair is less than 3, qualification of sample results is not necessary per TPR-80.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

Flag Definition

U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical
	result was not statistically positive at the 95% confidence level and/or the result was
	below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0)
	(+/- an associated uncertainty).
	NOTE: The radionuclide is not considered to be present in the sample

- UJ The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
- J The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc.

NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.

R The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

		MASS SF	PEC SE	MASS SPEC SERVICES		Report Date:	03/25/05	
Windward Environmental LLC	o	P.O. Box 163, Orangeburg, NY 10962	Orangebi	urg, NY 1096	32	MSS No.:	Pb0078	
200 West Mercer Street Seattle, WA 98119		Repo	Report of Analysis	lysis		Project:	04-08-06-23 LDW Group	
		ŭ	Sediments	S		Date Rec'd:	12/30/04	
Attn: Tad Deshler	i				Task	Task Supervisor:	H. Jeter	
		Core LDW-Sg9 collec	collected 12/21/04	4				
			Collection		ults in pCi /	gidiy 22 July Bots	Gamma	
MSS No. Ide	ldentity	Comment	Time		Cs-137	Count	Count	
Pb0078-1 LDW-Sg9-0-1	-		8:15	0.65 ± 0.20		03/11/05	03/12/05	
Pb0078-2 LDW-Sg9-5-6	9		8:29	0.29 ± 0.14	< 0.046	03/11/05	03/16/05	
Pb0078-3 LDW-Sg9-10-11	0-11		8:42	0.39 ± 0.17	0.201 ± 0.046	03/11/05	03/13/05	
_	5-16		8:49	0.33 ± 0.17	0.355 ± 0.070	03/11/05	03/13/05	
_	0-22		8:55	0.34 ± 0.21	0.174 ± 0.094	03/11/05	03/14/05	
_	0-22 FD	Field Duplicate	8:55	0.24 ± 0.13	0.145 ± 0.057	03/11/05	03/18/05	
	5-26		9:05	0.31 ± 0.11	0.091 ± 0.049	03/11/05	03/12/05	
Pb0078-8 LDW-Sg9-30-31	0-31		9:11	0.37 ± 0.13	0.083 ± 0.051	03/11/05	03/15/05	
	5-36		9:15 	< 0.24	0.089 ± 0.043	03/11/05	03/17/05	
	0-41		9:20	< 0.21	0.141 ± 0.046	03/11/05	03/15/05	
	5-46		9:26	0.20 ± 0.10	< 0.048	03/11/05	03/16/05	
	0-51		9:32	0.32 ± 0.10	< 0.064	03/11/05	03/15/05	
	5-56		9:38	0.29 ± 0.13	< 0.111	03/11/05	03/13/05	
Pb0078-14 LDW-Sg9-60-62	0-62		9:44	0.26 ± 0.09	< 0.066	03/11/05	03/11/05	
Pb0078-15 LDW-Sg9-60-62 MS	0-62 MS	Matrix Spike	9:44	10.83 ± 0.46	25.95 ± 0.31	03/11/05	03/13/05	
Pb0078-16 LDW-Sg9-60-62 MSD	0-62 MSD	Matrix Spike Duplicate	9:44	11.57 ± 0.50	23.87 ± 0.31	03/11/05	03/15/05	
Pb0078-17 LDW-Sg9-65-66	5-66		9:52	0.32 ± 0.14	< 0.061	03/11/05	03/10/05	
Pb0078-18 LDW-Sg9-70-71	0-71		10:00	0.35 ± 0.13	< 0.041	03/11/05	03/14/05	
Pb0078-19 LDW-Sg9-75-76	5-76		10:05	0.29 ± 0.12	< 0.040	03/11/05	03/13/05	
Pb0078-20 LDW-Sg9-80-81	0-81		10:11	0.21 ± 0.10	< 0.036	03/11/05	03/16/05	
			1		:		i	
Matrix Spike Expected Values:	les:	Pb-210 11.39 pCi/g spil	ke + (0.26 va - (p2.26	11.39 pCi/g spike + (0.26 ± 0.09) from matrix =	natrix = motory =	11.65 ± 0.09	pCi/g	
			Ye + (110 00			07.07	- Biod	
Target Detection Limits:		Pb-210 0.2 pCi/g dry			Bismuth Beta Counting Method	ounting Method	\ \ \	~
		Cs-137 0.2 pCi/g dry			Gamma Spectral Analysis	I Analysis	5	K
Tolerances are 2 sigma counting uncertainties.	l uncertainties.							ر ار
Detection limits are at the 4.66 sigma level	igma level.					Hewritt W. Jeter	/ Jeter	

C

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg10

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

May 18, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com

Data Assessment Narrative

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg10

This sample delivery group consists of the following soil samples:

LDW-Sg10-0-1	LDW-Sg10-5-6	LDW-Sg10-10-12	LDW-Sg10-10-12FD	LDW-Sg10-15-16
LDW-Sg10-20-21	LDW-Sg10-25-26	LDW-Sg10-30-31	LDW-Sg10-35-36	LDW-Sg10-40-41
LDW-Sg10-45-46	LDW-Sg10-50-51	LDW-Sg10-55-56	LDW-Sg10-60-61	LDW-Sg10-65-66
LDW-Sg10-70-71	LDW-Sg10-75-77	LDW-Sg10-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radtioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Date: 5-18-05 Diane Waldschmidt

Environmental Scientist/Director

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory-reporting limit.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to qualify data.

Sample LDW-Sg10-75-77 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg10-10-12 and LDW-Sg10-10-12FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

Flag Definition

result was not statistically positive at the 95% confidence level and/or the res below its MDA). The "U" qualifier flag is also applicable to any result reported (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample	

- UJ The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
- J The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc.

NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.

R The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

		MASS	SPEC SE	RVICES		Report Date:	03/30/05
Windward Env	/ironmental LLC	P.O. Box 16	3, Orangebu	irg, NY 109	62	MSS No.:	Pb0079
200 West Mer	cer Street	R	eport of Anal	lysis		Project:	04-08-06-23
Seattle, WA	8119		•	•		-	LDW Group
			Sediment	s		Date Rec'd:	12/30/04
Attn:	Tad Deshler				Task	Supervisor:	H. Jeter
		Core LDW-Sg10 c	ollected 12/20/	04			
				Radiometric Re	esults in pCi / g ç		
			Collection	5-18-05	5-18-07	∟v√ Beta	Gamma
MSS No.	Identity	Comment	Time	Pb-210	Cs-137	Count	Count
Pb0079-1	LDW-Sg10-0-1		12:55	1.04 ± 0.16	0.107 ± 0.048	03/19/05	03/23/05
Pb0079-2	LDW-Sg10-5-6		13:02	0.93 ± 0.20	0.125 ± 0.045	03/19/05	03/24/05
Pb0079-3	LDW-Sg10-10-12		13:08	0.71 ± 0.17	0.107 ± 0.043	03/19/05	03/19/05
Pb0079-4	LDW-Sg10-10-12 FD	Field Duplicate	13:08	0.64 ± 0.16	0.096 ± 0.057	03/19/05	03/23/05
Pb0079-5	LDW-Sg10-15-16		13:17	0.54 ± 0.13	0.116 ± 0.047	03/19/05	03/22/05
Pb0079-6	LDW-Sg10-20-21		13:23	0.38 ± 0.17	0.154 ± 0.034	03/19/05	03/20/05
РЬ0079-7	LDW-Sg10-25-26		13:31	0.55 ± 0.11	0.168 ± 0.047	03/19/05	03/23/05
Pb0079-8	LDW-Sg10-30-31		13:38	0.47 ± 0.14	0.212 ± 0.099	03/19/05	03/23/05
Pb0079-9	LDW-Sg10-35-36		13:47	0.59 ± 0.15	0.194 ± 0.065	03/19/05	03/22/05
Pb0079-10	LDW-Sg10-40-41		13:54	0.35 ± 0.10	0.203 ± 0.039	03/19/05	03/21/05
Pb0079-11	LDW-Sg10-45-46		14:00	0.57 ± 0.14	0.223 ± 0.059	03/19/05	03/24/05
Pb0079-12	LDW-Sg10-50-51		14:10	0.21 ± 0.12	0.184 ± 0.054	03/19/05	03/19/05
Pb0079-13	LDW-Sg10-55-56		14:17	0.47 ± 0.16	0.145 ± 0.072	03/19/05	03/19/05
РЬ0079-14	LDW-Sg10-60-61		14:27	0.51 ± 0.12	0.156 ± 0.068	03/19/05	03/20/05
Pb0079-15	LDW-Sg10-60-61 MR	Matrix replicate	14:27	0.46 ± 0.14	0.196 ± 0.106	03/19/05	03/18/05
Pb0079-16	LDW-Sg10-65-66		14:35	0.39 ± 0.13	0.167 ± 0.031	03/19/05	03/24/05
Pb0079-17	LDW-Sg10-70-71		14:43	0.61 ± 0.15	0.290 ± 0.123	03/19/05	03/24/05
Pb0079-18	LDW-Sg10-75-77		14:50	0.51 ± 0.16	0.213 ± 0.039	03/19/05	03/21/05
Pb0079-19	LDW-Sg10-75-77 MS	Matrix Spike	14:50	10.37 ± 0.46	26.43 ± 0.33	03/19/05	03/14/05
Pb0079-20	LDW-Sg10-75-77 MSD	Matrix Spike Duplicate		11.40 ± 0.51	26.53 ± 0.36	03/19/05	03/14/05
Pb0079-21	LDW-Sg10-80-81		14:58	0.51 ± 0.14	0.206 ± 0.040	03/19/05	03/20/05
Matrix Spike	Expected Values:		spike + (0.51			11.07 ± 0.16	pCi/g
		Cs-137 24.96 pCi/g	j spike + (0.21	± 0.04) from i	matrix =	25.17 ± 0.04	pCi/g
Target Detecti	on Limits:	Pb-210 0.2 pCi/g dry			Bismuth Beta C	ounting Method	
<u>.</u>		Cs-137 0.2 pCi/g dry			Gamma Spectra	al Analysis	C.
Tolerances are	2 sigma counting uncertainties.						<u>/ 7(" - / 7</u> 7. Jeter

۲۵.

ENVIRONMENTAL

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg11b &11c

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

May 24, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg11b and c

This sample delivery group consists of the following soil samples:

LDW-Sg11b-0-2	LDW-Sg11b-0-2FD	LDW-Sg11b-5-6	LDW-Sg11b-10-11	LDW-Sg11b-15-16
LDW-Sg11b-20-21	LDW-Sg11b-25-27	LDW-Sg11b-30-31	LDW-Sg11b-35-36	LDW-Sg11b-40-41
LDW-Sg11c-0-1	LDW-Sg11c-5-6	LDW-Sg11c-10-12	LDW-Sg11c-10-12FD	LDW-Sg11c-15-16
LDW-Sg11c-20-21	LDW-Sg11c-25-26	LDW-Sg110-30-32		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Raditoanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Valletter Date: 5-24-05 1 Anc Diane Waldschmidt

Environmental Scientist/Director

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory-reporting limit.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be $\pm 10\%$ of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to qualify data.

Samples LDW-Sg11b-25-27 and LDW-11c-30-32 were analyzed as MS/MSD pairs for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg11b-0-2 and LDW-Sg11b-0-2FD comprise one of the field duplicate pairs associated with this SDG. All field duplicate precision values associated with the samples described above were well within the specifications defined in the Sediment Transport Project QAPP and listed above.

Samples LDW-Sg11c-10-12 and LDW-Sg11c-10-12FD comprise one of the field duplicate pairs associated with this SDG. All field duplicate precision values associated with the samples described above were well within the specifications defined in the Sediment Transport Project QAPP and listed above with one exception. The calculated relative percent difference value for Pb-210 is 34%. However, because the mean difference between Pb-210 results for the pair is less than 3, qualification of sample results is not necessary per TPR-80.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

Flag	Definition
U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical result was not statistically positive at the 95% confidence level and/or the result was below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0) (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample
UJ	The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
J	The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.
-	
R	The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

Windward I	Environmental LLC	MASS SPEC SERVICES P.O. Box 163, Orangeburg, NY 10962	Report Date: MSS No.:	04/04/05 Pb0080
200 West M Seattle, WA	Nercer Street	Report of Analysis	Project:	04-08-06-23 LDW Group
Attn:	Tad Deshler	Sediments	Date Rec'd: Task Supervisor:	

				Radiometric	Results in pCi / g d	iry	
			Collection	5.23.55	5:23-15	🗸 Beta	Gamma
MSS No.	Identity	Comment	Time	Pb-210	Cs-137	Count	Count
Pb0080-1	LDW-Sg11b-0-2		14:15	0.23 ± 0.08	3 < 0.043	03/25/05	03/29/05
Pb0080-2	LDW-Sg11b-0-2 FD	Field Duplicate	14:15	0.23 ± 0.09	9 < 0.032	03/25/05	03/31/05
Pb0080-3	LDW-Sg11b-5-6		14:22	0.26 ± 0.10	0.138 ± 0.057	03/25/05	03/30/05
Pb0080-4	LDW-Sg11b-10-11		14:28	0.29 ± 0.11	1 0.152 ± 0.037	03/25/05	03/29/05
Pb0080-5	LDW-Sg11b-15-16		14:35	0.28 ± 0.10) 0.137 ± 0.061	03/25/05	03/31/05
Pb0080-6	LDW-Sg11b-20-21		14:42	0.43 ± 0.13	0.128 ± 0.037	03/25/05	03/31/05
Pb0080-7	LDW-Sg11b-25-27		14:50	0.26 ± 0.09	0.161 ± 0.045	03/25/05	03/26/05
Pb0080-8	LDW-Sg11b-25-27 MS	Matrix Spike	14:50	12.16 ± 0.4	7 33.56 ± 0.44	03/25/05	03/26/05
Pb0080-9	LDW-Sg11b-25-27 MSD	Matrix Spike Duplicate	14:50	13.89 ± 0.5	2 31.88 ± 0.44	03/25/05	03/27/05
Pb0080-10	LDW-Sg11b-30-31		14:58	0.36 ± 0.09	0.096 ± 0.038	03/25/05	04/01/05
Pb0080-11	LDW-Sg11b-35-36		15:06	0.37 ± 0.11	< 0.054	03/25/05	03/26/05
Pb0080-12	LDW-Sg11b-40-41		15:19	0.18 ± 0.08	3 < 0.057	03/25/05	04/02/05
Pb0080-13	LDW-Sg11c-0-1		15:45	0.32 ± 0.09	< 0.034	03/25/05	03/26/05
Pb0080-14	LDW-Sg11c-5-6		15:54	0.19 ± 0.08	3 < 0.050	03/25/05	03/29/05
Pb0080-15	LDW-Sg11c-10-12		16:00	0.22 ± 0.09	0.099 ± 0.020	03/25/05	03/26/05
Pb0080-16	LDW-Sg11c-10-12 FD	Field Duplicate	16:00	0.31 ± 0.11	l 0.113 ± 0.041	03/25/05	03/29/05
Pb0080-17	LDW-Sg11c-15-16		16:08	0.31 ± 0.09	0.206 ± 0.038	03/25/05	03/26/05
Pb0080-18	LDW-Sg11c-20-21		16:14	0.36 ± 0.10	0.188 ± 0.035	03/25/05	03/28/05
Pb0080-19	LDW-Sg11c-25-26		16:19	0.24 ± 0.07	7 0.097 ± 0.051	03/25/05	03/31/05
Pb0080-20	LDW-Sg11c-30-32		16:27	0.33 ± 0.11	l 0.241 ± 0.092	03/25/05	03/31/05
Pb0080-21	LDW-Sg11c-30-32 MS	Matrix Spike	16:27	12.75 ± 0.4	7 27.52 ± 0.24	03/25/05	03/26/05
Pb0080-22	LDW-Sg11c-30-32 MSD	Matrix Spike Duplicate	16:27	13.07 ± 0.4	8 27.02 ± 0.29	03/25/05	03/25/05
	25-27 cm:	Pb-210 12.68 pCi/g s	oike + (0.26	± 0.09) from	m matrix =	12.94 ± 0.09	pCi/g
Matrix Spike I	Expected	Cs-137 30.23 pCi/g s	oike + (0.16	± 0.05) from	m matrix =	30.39 ± 0.05	pCi/g
Values	<u>30-32 cm:</u>	Pb-210 12.53 pCi/g s	oike + (0.33	± 0.11) from	m matrix =	12.86 ± 0.11	pCi/g
		Cs-137 25.23 pCi/g s	oike + (0.24	± 0.09) from	m matrix =	25.47 ± 0.09	pCi/g

Target Detection Limits:

Tolerances are 2 sigma counting uncertainties. Detection limits are at the 4.66 sigma level.

Pb-210 0.2 pCi/g dry Cs-137 0.2 pCi/g dry

Bismuth Beta Counting Method Gamma Spectral Analysis

 \sim Hewitt W. Jeter

 \sim

SERVICES, LTD. ENVIRONMENTAL DATA DATA VALIDATION • TECHNICAL WRITING • CONSULTING • DATA INTERPRETATION

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg12

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

May 24, 2005

2690 Oak Hill Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg12

This sample delivery group consists of the following soil samples:

LDW-Sg12-0-1	LDW-Sg12-5-6	LDW-Sg12-10-11	LDW-Sg12-15-16	LDW-Sg12-20-21
LDW-Sg12-25-26	LDW-Sg12-30-32	LDW-Sg12-30-32FD	LDW-Sg12-35-36	LDW-Sg12-40-41
LDW-Sg12-45-46	LDW-Sg12-50-51	LDW-Sg12-55-56	LDW-Sg12-60-62	LDW-Sg12-65-66
LDW-Sg12-70-71	LDW-Sg12-75-76	LDW-Sg12-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Radtioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been qualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

lan Diane Waldschmidt

Environmental Scientist/Director

Date: 5-24-05

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory-reporting limit.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to gualify data.

Sample LDW-Sg12-30-32 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg12-30-32 and LDW-Sg12-30-32FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above with one exception. The calculated relative percent difference value for Cs-137 is 58.3%. However, because the mean difference between Cs-137 results for the pair is less than 3, qualification of sample results is not necessary per TPR-80.

OTHER QC DATA OUT OF SPECIFICATION

None.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

0
0

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

Flag	Definition
U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical result was not statistically positive at the 95% confidence level and/or the result was below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0) (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample
UJ	The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
J	The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc.
R	The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

Identity 12-0-1 12-5-6 12-10-11 12-15-16 12-20-21 12-25-26 12-25-26 12-30-32 12-30-32 FD	Core LD	W-Sg12 co	Sediment illected 12/20/ Collection Time 7:47 7:58 8:09		sults in pCi / g c ج ج ع Cs-137 0.131 ± 0.039	Date Rec'd: Supervisor:	12/30/04 H. Jeter Gamma Count 04/06/05
12-0-1 12-5-6 12-10-11 12-15-16 12-20-21 12-25-26 12-30-32 12-30-32 FD		U	Collection Time 7:47 7:58	Radiometric Re: 5-23-25 w Pb-210 1.07 ± 0.15	ح ج ع کر The second se 0.131 ± 0.039	Ś√∠ Beta Count	Count
12-0-1 12-5-6 12-10-11 12-15-16 12-20-21 12-25-26 12-30-32 12-30-32 FD	Comm	nent	Collection Time 7:47 7:58	5-73-8, w Pb-210 1.07 ± 0.15	ح ج ع کر The second se 0.131 ± 0.039	Ś√∠ Beta Count	Count
12-0-1 12-5-6 12-10-11 12-15-16 12-20-21 12-25-26 12-30-32 12-30-32 FD	Comm	nent	Time 7:47 7:58	Pb-210 1.07 ± 0.15	Cs-137 0.131 ± 0.039	Count	Count
12-0-1 12-5-6 12-10-11 12-15-16 12-20-21 12-25-26 12-30-32 12-30-32 FD	Comm	nent	7:47 7:58	1.07 ± 0.15	Cs-137 0.131 ± 0.039	Count	
12-5-6 12-10-11 12-15-16 12-20-21 12-25-26 12-30-32 12-30-32 FD			7:58			04/01/05	04/06/05
12-10-11 12-15-16 12-20-21 12-25-26 12-30-32 12-30-32 FD				0.50 ± 0.11			
12-15-16 12-20-21 12-25-26 12-30-32 12-30-32 FD			8:09		0.074 ± 0.041	04/01/05	04/05/05
12-20-21 12-25-26 12-30-32 12-30-32 FD			v. v v	0.77 ± 0.13	< 0.091	04/01/05	04/06/05
12-25-26 12-30-32 12-30-32 FD			8:20	0.76 ± 0.13	0.079 ± 0.044	04/01/05	04/05/05
12-30-32 12-30-32 FD			8:28	0.98 ± 0.14	< 0.072	04/01/05	04/05/05
12-30-32 FD			8:39	1.11 ± 0.12	< 0.094	04/01/05	04/05/05
			8:47	0.96 ± 0.13	0.135 ± 0.064	04/01/05	04/06/05
	Field Dup	olicate	8:47	0.81 ± 0.12	0.246 ± 0.076	04/01/05	04/05/05
12-35-36			8:55	0.43 ± 0.10	< 0.052	04/01/05	04/05/05
12-40-41			9:07	0.87 ± 0.13	0.121 ± 0.071	04/01/05	04/05/05
12-45-46			9:16	1.04 ± 0.14	< 0.106	04/01/05	04/07/05
12-50-51			9:26	1.03 ± 0.14	< 0.102	04/01/05	04/09/05
12-55-56			9:39	1.40 ± 0.16	< 0.096	04/01/05	04/10/05
12-60-62			9:46	1.22 ± 0.15	0.120 ± 0.051	04/01/05	04/09/05
2-60-62 MS	Matrix Sp		9:46	11.46 ± 0.47	48.09 ± 0.47	04/01/05	04/09/05
2-60-62 MSD	Matrix Sp	oike Duplicate	9:46	12.77 ± 0.49	49.68 ± 0.50	04/01/05	04/09/05
12-65-66			10:04	1.13 ± 0.15	0.145 ± 0.067	04/01/05	04/09/05
							04/07/05
						04/01/05	04/10/05
2-80-81			10:30	1.00 ± 0.13	0.156 ± 0.073	04/01/05	04/09/05
Matrix Spike Expected Values:						11.88 ± 0.15	pCi/g
	Cs-137					44.47 ± 0.05	pCi/g
						5	
	2-70-71 2-75-76 2-80-81	2-70-71 2-75-76 2-80-81 alues: Pb-210 Cs-137 Pb-210 Cs-137 (ing uncertainties.	2-70-71 2-75-76 2-80-81 alues: Pb-210 10.66 pCi/g s Cs-137 44.35 pCi/g s Pb-210 0.2 pCi/g dry Cs-137 0.2 pCi/g dry ing uncertainties.	2-70-71 10:12 2-75-76 10:19 2-80-81 10:66 pCi/g spike + (1.22 Cs-137 44.35 pCi/g spike + (0.12 Pb-210 0.2 pCi/g dry Cs-137 0.2 pCi/g dry ing uncertainties.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-70-71 10:12 0.85 ± 0.14 0.113 ± 0.055 2-75-76 10:19 0.96 ± 0.14 0.105 ± 0.062 2-80-81 10:30 1.00 ± 0.13 0.156 ± 0.073 alues: Pb-210 10.66 pCi/g spike + (1.22 ± 0.15) from matrix = Cs-137 44.35 pCi/g spike + (0.12 ± 0.05) from matrix = Pb-210 0.2 pCi/g dry Bismuth Beta Co Gamma Spectra Ing uncertainties. 0.2 pCi/g dry Bismuth Beta Co Gamma Spectra	2-70-71 10:12 0.85 ± 0.14 0.113 ± 0.055 04/01/05 2-75-76 10:19 0.96 ± 0.14 0.105 ± 0.062 04/01/05 2-80-81 10:30 1.00 ± 0.13 0.156 ± 0.073 04/01/05 alues: Pb-210 10.66 pCi/g spike + (1.22 ± 0.15) from matrix = 11.88 ± 0.15 Cs-137 44.35 pCi/g spike + (0.12 ± 0.05) from matrix = 44.47 ± 0.05 Pb-210 0.2 pCi/g dry Cs-137 0.2 pCi/g dry Bismuth Beta Counting Method Gamma Spectral Analysis ing uncertainties.

N

ENVIRONMENTAL DATA SERVICES, LTD.

DATA VALIDATION REPORT

LDW RI Sediment Transport

SDG #Sg13

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

For

WINDWARD ENVIRONMENTAL

May 24, 2005

2690 Oak Hili Drive, Allison Park, PA 15101 FAX/PHONE • 412-486-6989 E-MAIL • edatas@aol.com **Data Assessment Narrative**

RADIOLOGICAL DATA ASSESSMENT NARRATIVE

SITE: LDW RI Sediment Transport

LABORATORY: Mass Spec Services

SAMPLE DELIVERY GROUP: Sg13

This sample delivery group consists of the following soil samples:

LDW-Sg13-0-1	LDW-Sg13-5-6	LDW-Sg13-10-11	LDW-Sg13-15-17	LDW-Sg13-15-17FD
LDW-Sg13-20-21	LDW-Sg13-25-26	LDW-Sg13-30-31	LDW-Sg13-35-36	LDW-Sg13-40-41
LDW-Sg13-45-46	LDW-Sg13-50-52	LDW-Sg13-55-56	LDW-Sg13-60-61	LDW-Sg13-65-66
LDW-Sg13-70-71	LDW-Sg13-75-76	LDW-Sg13-80-81		

Samples described above were analyzed via Beta and Gamma Spectrometry to determine the concentrations of Lead 210 and Cesium 137 respectively in sediment.

Project specific QA objectives, as well as TPR80 (Idaho National Engineering and Environmental Laboratory Sample Management Office Technical Procedure for Raditioanalytical Data validation, TPR-80, Rc V.2, May, 1997.

All data are valid and acceptable except those analytes which have been gualified as described in the attached glossary. All data qualification related to this group of samples is detailed on the attached sheets.

Major Data Quality Issues

None.

Minor Data Quality Issues

None.

All data users should note two facts. First, the "R" flag means that the associated value is unusable due to significant QC problems, the data is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on any data tables even as a last resort.

Lastly, no analyte concentration, even if it passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

aldertand Date: 5-24-05

Diane Waleschmidt Environmental Scientist/Director

HOLDING TIME

The amount of an analyte can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded the data may not be valid.

The analyses performed on samples in this sample delivery group were all done within the holding time defined within the Sediment Transport Quality Assurance Project Plan and TPR-80 documents.

BLANK CONTAMINATION

Quality assurance blanks, method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation or field activity. Method blanks measure lab contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

Trip, field, or rinsate blanks are not required for radiochemical analyses during the Sediment Transport Project, per QAPP.

Method Blank

No positive identifications of radiological target analytes were observed in corresponding method blanks for Pb-210 or Cs-137 above the laboratory reporting limit in associated method blanks.

CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration efficiency demonstrates that the instrument is capable of giving acceptable performance. The continuing calibration verifies that the instrument is giving satisfactory weekly performance.

Calibration Gamma Spectrometry

- Efficiency of selected energies must be within three standard deviations of the mean. (Continuing Calibration)
- The resolution of each peak must not exceed 5Kev. (Continuing Calibration)

Calibration Beta Spectrometry

- Check source count rates must be within three standard deviations of the mean. (Continuing Calibration)
- The calibration efficiency must be ±10% of the previous calibration. (Initial Calibration)
- Calculated efficiency for each detector used must be greater than 15%. (Initial Calibration)

All Associated instrument calibrations for both beta and gamma spectrometry were well within acceptance limits at all times.

BETA SPECTROMETRY RECOVERY STANDARD

A recovery standard (Lead-210) is evaluated to check chemical recovery or yield. Recovery of this standard must be between 40 and 100 percent to demonstrate that the system was operating in a controlled manner. All associated data is rejected if the allowable recovery limit is not met.

All recovery standards observed for samples and method blanks were well within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given matrix. This information may be used to gualify data.

Sample LDW-Sg13-50-52 was analyzed as a MS/MSD for both Pb-210 and Cs-137. Precision and accuracy indicators were favorable and found to be within the guidelines established in the project QAPP in all cases.

MATRIX REPLICATE

Sample LDW-Sg13-60-61 was analyzed as a matrix replicate. Precision observed for each set of analyses (both Pb-210 and Cs-137) was found to meet all data quality objectives as defined in the Sediment Transport Project QAPP.

LABORATORY CONTROL SAMPLE

A laboratory control sample (LCS) was processed at the frequency specified in the Project QAPP (one for each group of twenty samples processed). Observed recoveries of LCSs for both Pb-210 and Cs-137 were well within the acceptance range (85-115%) per the TPR-80.

FIELD DUPLICATE

Field duplicates are collected at a frequency of one per twenty field samples or a minimum of one per sample delivery group. Acceptable precision for results obtained for the field duplicate pair is +/- 30% relative percent difference.

Samples LDW-Sg13-15-17 and LDW-Sg13-15-17FD comprise the field duplicate pair associated with this SDG. All field duplicate precision values associated with the samples contained in this report were well within the specifications defined in the Sediment Transport Project QAPP and described above.

OTHER QC DATA OUT OF SPECIFICATION

The field chain of custody documents contain numerous changes to sample identifications, however these changes have not been initialed or dated by the individual who made the changes. Therefore it is impossible to distinctly verify the identity of sample locations sent to the laboratory for analysis.

SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall the laboratory data generated met the project goals and QC criteria as defined in the Sediment Transport Project QAPP.

PROBLEMS WITH ANALYSIS NOTED IN CASE NARRATIVES

None.

DEFINITIONS OF DATA QUALIFIER (VALIDATION) FLAGS USED IN THIS REPORT

Flag	Definition
U	The analysis was performed, but no radioactivity was detected (i.e., the radioanalytical result was not statistically positive at the 95% confidence level and/or the result was below its MDA). The "U" qualifier flag is also applicable to any result reported as zero (0) (+/- an associated uncertainty). NOTE: The radionuclide is not considered to be present in the sample
UJ	The analysis was performed and a statistically positive result was reported at the 95% confidence interval. However, the result is highly questionable (false positive) due to analytical and/or laboratory quality control anomalies. The use of such a result is strongly discouraged. Analytical and quality control anomalies include such items as; significant blank contamination, known photopeak interferences and/or photopeak resolution problems, known matrix interferences, unacceptable laboratory control sample recoveries, serious instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide may or may not be present in the sample and the result is considered highly questionable.
J	The analysis was performed and radioactivity was detected (i.e., the radioanalytical result is statistically positive at the 95% confidence level and is above its MDA). However, the result is questionable due to analytical and/or laboratory quality control anomalies and should, therefore, be used only as an estimated (approximated) quantity. Analytical and/or quality control anomalies include such items such as; laboratory duplicate imprecision, unsatisfactory analytical yields, insufficient laboratory control sample recoveries, unacceptable PE sample results, instrument calibration problems, improper sample preservation, etc. NOTE: The radionuclide is considered to be present in the sample, but the result may not be an accurate representation of the amount of activity actually present in the sample.
R	The analysis result is unusable and was rejected due to severe analytical and/or quality control problems. NOTE: The radionuclide may or may not be present and the result is known to be inaccurate or imprecise.

Laboratory Data With Qualifiers Added

		MAS	S SPEC SERVICES	Report Date:	04/16/05
	F			MSS No.:	Pb0082
Windward	Environmental LLC	P.U. DUX	163, Orangeburg, NY 10962	M35 NO.:	P00002
200 West I	Mercer Street		Report of Analysis	Project:	04-08-06-23
Seattle, W	A 98119				LDW Group
			Sediments	Date Rec'd:	12/30/04
Attn:	Tad Deshler			Task Supervisor:	H. Jeter
		Core LDW-Sg13	collected 12/17/04		

		Radiometric Results in pCi / g dry							
				Collection	5.3	4 652	Jrv 5-24-05	Er Beta	Gamma
MSS No.	Identity	Comm	ient	Time	Pb-2	10	Cs-137	Count	Count
Pb0082-1	LDW-Sg13-0-1			9:51	0.87 ± 0	0.14	0.111 ± 0.044	04/08/05	04/09/05
Pb0082-2	LDW-Sg13-5-6			10:05	0.94 ± 0	0.14	< 0.083	04/08/05	04/11/05
Pb0082-3	LDW-Sg13-10-11			10:22	0.69 ± 1	0.13	0.098 ± 0.056	04/08/05	04/11/05
Pb0082-4	LDW-Sg13-15-17			10:34	1.05 ± (0.14	< 0.083	04/08/05	04/10/05
Pb0082-5	LDW-Sq13-15-17 FD	Field Dup	olicate	10:34	1.03 ± 1	0.15	< 0.067	04/08/05	04/10/05
Pb0082-6	LDW-Sg13-20-21			10:46	0.82 ± (0.14	< 0.068	04/08/05	04/07/05
Pb0082-7	LDW-Sg13-25-26			11:00	0.55 ±	0.10	< 0.053	04/08/05	04/14/05
Pb0082-8	LDW-Sg13-30-31			11:14	0.64 ± 1	0.14	< 0.122	04/08/05	04/12/05
Pb0082-9	LDW-Sg13-35-36			11:26	0.78 ± (0.13	0.129 ± 0.068	04/08/05	04/13/05
Pb0082-10	LDW-Sg13-40-41			11:40	0.72 ±	0.12	0.093 ± 0.048	04/08/05	04/13/05
Pb0082-11	LDW-Sg13-45-46			11:51	0.46 ± (0.11	0.113 ± 0.053	04/08/05	04/12/05
Pb0082-12	LDW-Sg13-50-52			13:20	0.51 ± 0	0.10	0.082 ± 0.035	04/08/05	04/12/05
Pb0082-13	LDW-Sg13-50-52 MS	Matrix Sp	vike	13:20	8.70 ±	0.30	25.55 ± 0.32	04/08/05	04/10/05
Pb0082-14	LDW-Sg13-50-52 MSD	Matrix Sp	ike Duplicate	13:20	8.89 ±	0.34	19.94 ± 0.25	04/08/05	04/12/05
Pb0082-15	LDW-Sq13-55-56	•		13:28	0.37 ±	0.11	< 0.049	04/08/05	04/11/05
Pb0082-16	LDW-Sg13-60-61			13:43	0.54 ±	0.11	< 0.071	04/08/05	04/14/05
Pb0082-17	LDW-Sq13-60-61 MR	Matrix Re	eplicate	13:43	0.50 ± (0.11	< 0.100	04/08/05	04/11/05
Pb0082-18	LDW-Sg13-65-66		•	13:51	0.54 ±	0.12	0.116 ± 0.037	04/08/05	04/13/05
Pb0082-19	LDW-Sg13-70-71			14:11	0.57 ±	0.12	0.070 ± 0.040	04/08/05	04/11/05
Pb0082-20	LDW-Sg13-75-76			14:19	0.56 ±	0.10	0.107 ± 0.059	04/08/05	04/14/05
Pb0082-21	LDW-Sg13-80-81			14:25	0.46 ±	0.09	0.119 ± 0.061	04/08/05	04/12/05
Matrix Spike Expected Values:		Pb-210	8.22 pCi/g spil	ke + (0.51 1	: 0.10)	from	matrix =	8.73 ± 0.10	pCi/g
		Cs-137	19.59 pCi/g sp	oike + (0.08	± 0.04)	from	matrix =	19.67 ± 0.04	pCi/g
Town of Data at		Db 210	0.2 pCi/g dry				Bismuth Beta Co	unting Mothod	
Target Detection Limits:).2 pCi/g dry				Gamma Spectra		/ /
	• · · · · · · · · · · · · · · · · · · ·	00 107 (5.2 porg ary					/	[tt./z
	2 sigma counting uncertainties. are at the 4.66 sigma level.							Hewitt	Jeter

 \sim