APPENDIX D-3 ROUND 3 DATA VALIDATION REPORT

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

LDC #15332/15405 September 26, 2006

Windward Environmental, LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 ATTN: Ms. Marina Mitchell

SUBJECT: Lower Duwamish Waterway Group Sediment Sample Data Validation

Dear Ms. Mitchell,

Enclosed is our final EPA Level III and Level IV data validation of analytical chemistry results generated in support of the Lower Duwamish Waterway Group project. The analyses were performed by Analytical Resources, Inc. and AXYS Analytical Services Ltd. Samples were analyzed for GC/MS Semivolatiles by EPA SW 846 Methods 8270D and 8270D-SIM, GC Polychlorinated Biphenyls by EPA SW 846 Method 8082, Butyltins by EPA SW 846 Methods 8270D-SIM/Krone Method, Metals by EPA SW 846 Methods 6010B/7471A, Total Organic Carbon by Plumb Method, Total Solids by EPA Method 160.3 and HRGC/HRMS Dioxins/Dibenzofurans by EPA Method 1613B. Samples are referenced under the following Sample Delivery Groups: JO76, JQ01 and DPWG19875/WG19595. See the Sample Analysis Table (Attachment 1) for the number of samples reviewed.

Please feel free to contact us if you have any questions.

Sincerely,

Stella S. Cuenco

Project Manager/Senior Chemist

Attachment 1

		LDC :	#15332	2 (W	Vinc	swt	ırd	Enν	/iro	nm	ent	al,	LLC	; - 5	Sea	ttle	WA	A / L	_OW	/er	Du	war	nis	h W	/ate	rw	ay (Gro	up))					
LDC	SDG#	DATE REC'D	(3) DATE DUE	SV (827	OA 70D)	(82	OA 70D IM)		Bs 82)	&	tals Hg (846)	H (747	lg 71A)	Bu -ti (Kro	ns	TC (Plu	C mb)	To Sol (160	ids																
Matrix	c: Water/Sediment			w	s	w	s	w	s	w	s	W	s	W	s	W	s	W	s	w	s	W	s	w	s	W	s	W	s	w	s	W	s	w	s
Α	JO76/JQ01		08/28/06	edical bearing to the de-	A Charle Shirt was a shirt	0		0	15	0	2	0	3	0	1	0	15	0	15														igsqcut	igwdown	_
Α	JO76/JQ01	08/07/06	08/28/06	0	1	0	1	0	4	0	1	0	0	0	1	0	4	0	4														\sqcup	\sqcup	\parallel
\vdash							<u> </u>																										 	 	\parallel
		-			-		_				_																							$\vdash\vdash$	$-\parallel$
		-			_		-				_										_			_						_				$\vdash\vdash$	$-\parallel$
-		 					\vdash							-																				\vdash	$-\parallel$
		-			\vdash		\vdash																										\vdash	$\vdash\vdash\vdash$	
		 	-		\vdash	\vdash	\vdash			\vdash	\vdash		\vdash																	\vdash			$\vdash \vdash$	$\vdash \vdash$	$-\parallel$
																														\vdash					\dashv
					\vdash																														\dashv
		1																																П	
			·																															Ш	\parallel
										$ldsymbol{ld}}}}}}$																									
		1																																\sqcup	_
					_	_				_	_													<u> </u>			_						igwdow	igwdown	_
		-		_	_								_								ļ		ļ										<u> </u>	\sqcup	_
		-		_	-		_															ļ													
																		_			_	\vdash	_	_			_		_	_			$\vdash\vdash$	$\vdash \vdash$	$-\parallel$
		+	-																														$\vdash\vdash$	$\vdash\vdash\vdash$	$-\parallel$
\vdash		+	-	\vdash																	┝	\vdash							\vdash	_			$\vdash\vdash$	$\vdash\vdash$	$-\parallel$
			-	\vdash	\vdash	\vdash	\vdash																			\vdash							$\vdash\vdash$	$\vdash \vdash$	$-\parallel$
		+		\vdash	\vdash	\vdash	\vdash			\vdash	\vdash	\vdash	\vdash		\vdash			\vdash	_	 	ļ	-											$\vdash\vdash$	$\vdash \vdash$	$-\parallel$
		+		+	-	\vdash	-															H													$-\parallel$
				\vdash																	\vdash								\vdash	\vdash			\square	$\vdash \vdash$	$-\parallel$
		1		T			\vdash																										Н	\vdash	$-\parallel$
Fotal	B/SC	1		0	4	0	4	0	19	0	3	0	3	0	2	0	19	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73
-		·	·			•			-																							•	_		

			_										Α	ttach	mer	nt 1																			
		LDC #	#15405	5 (W	/inc	lwa	rd l	Env	iro	nm	ent	al, l	LLC	- 5	Sea	ttle	W/	4 / L	_OW	/er	Du	war	nis	h W	ate	rwa	ay (Gro	up)						
LDC	SDG#	DATE REC'D	(3) DATE DUE	Dio (16	xins 13B)																														
	x: Water/Sediment			W		W	s	W	s	W	s	W	S	W	S	W	S	w	s	W	s	W	S	w	S	W	s	W	S	W	S	W	S	w	S
A	DPWG19875/WG19595	08/23/06	09/14/06	0	1			_	_		_	_	_	<u> </u>						_	_	_	_				ļ						$\vdash \vdash$	$\vdash \vdash$	_
$\vdash\vdash\vdash$				\vdash	╀	-		<u> </u>	_			-	_	<u> </u>							_	\vdash					\vdash						$\vdash\vdash$	$\vdash \vdash$	_
		-	_	\vdash	├	-	\vdash	\vdash	<u> </u>			\vdash			_		_	\vdash			\vdash	-				-	⊢		_			$\vdash\vdash$	$\vdash\vdash$	$\vdash \vdash$	_
$\vdash\vdash\vdash$																																			
\vdash																																			
Н																																			
$\vdash \vdash$		-		\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash	\vdash					\vdash		<u> </u>												H		$\vdash \vdash$	_
				 	\vdash		\vdash	<u> </u>				_	\vdash																_			М		\Box	_
					\vdash				Г																								П		_
																																		\Box	
																																			_
Щ				_	╙					<u> </u>																							\square	\sqcup	_
<u> </u>				_	<u> </u>				_		_		L																				\bigsqcup	\sqcup	
Ш				<u> </u>	┡				_		_	_		_							_	_					_					\sqcup	\sqcup	$\vdash \vdash$	_
		_		_		_	_		_			<u> </u>	_										_				_						\sqcup	\vdash	_
		ļ	 	-	-	_	ļ	_	_			_	_	_						_					· ·		_					\vdash	$\vdash \vdash$	\vdash	
				\vdash	-	-	-	_	_					-										<u> </u>			-					igwdap	$\vdash\vdash$	$\vdash \vdash$	_
				\vdash	\vdash						_	-			<u> </u>			<u> </u>								_			-			\vdash		$\vdash \vdash$	_
$\vdash\vdash$			 	 	┢				\vdash	┢	⊢	├		\vdash		\vdash		-		\vdash	⊢			\vdash	\vdash	-	⊢		_		\vdash	$\vdash\vdash$		$\vdash \vdash$	_
$\vdash\vdash\vdash$		ļ	-	\vdash	\vdash		-	 	-		\vdash										\vdash	-			-						\vdash	\vdash		$\vdash \vdash$	
\vdash				╁	\vdash	\vdash			\vdash		\vdash	-				\vdash		\vdash			\vdash					├─	\vdash		_		\vdash	\vdash		$\vdash \vdash$	_
\vdash				+	\vdash	-	┢			-																						Н	$\vdash \vdash$	$\vdash \vdash$	_
			 	+	+			\vdash			-													\vdash	\vdash	\vdash	\vdash				\vdash	H		$\vdash \vdash$	_
		†		\vdash					\vdash																							H			_
				T	T				\vdash		 				_						_	\vdash						 				Н	Н	\vdash	_
				1								—																	_					\Box	_
																																		\Box	
Total	B/SC			0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Fotal	B/SC		<u> </u>	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_	0	0	0	0	0	0_	0	0	0	0	0	0	()

CHEMICAL DATA QUALITY REVIEW FOR SUBSURFACE SEDIMENT SAMPLES (ROUND 3)

Lower Duwamish Waterway Group LDC# 15332 & 15405

This report details the findings of an EPA Level III and EPA Level IV data validation of analytical chemistry results generated in support of the Lower Duwamish Waterway Group project. The analyses were performed by Analytical Resources, Inc. and AXYS Analytical Services Ltd. Samples were analyzed for GC/MS Semivolatiles by EPA SW 846 Methods 8270D and 8270D-SIM, GC Polychlorinated Biphenyls by EPA SW 846 Method 8082, Butyltins by EPA SW 846 Methods 8270D-SIM/Krone Method, Metals by EPA SW 846 Methods 6010B/7471A, Total Organic Carbon by Plumb Method, Total Solids by EPA Method 160.3 and HRGC/HRMS Dioxins/Dibenzofurans by EPA Method 1613B. Samples are referenced under the following Sample Delivery Groups: JO76, JQ01 and DPWG19875/WG19595. See the Sample Analysis Table (Attachment 1) for the number of samples reviewed and the Sample Validation Table (Attachment 2) for the sample identifications and analyses. Sample IDs ending in "**" underwent Level IV review.

The QC guidelines used for data qualification are those specified in the National Functional Guidelines for Organic Data Review (October 1999), National Functional Guidelines for Inorganic Data Review (July 2002) and the EPA Region 10 SOP for the Validation of Polychlorinated Dibenzodioxin (PCDD) and Polychlorinated Dibenzofuran (PCDF) Data (Revision 2.0 January 31, 1996). Specific QC criteria used follow the Lower Duwamish Waterway Group Final Subsurface Sediment Sampling for Chemical Analyses Quality Assurance Project Plan (February 3, 2006). Where specific guidance is not available, the data has been evaluated in a conservative manner using professional experience.

The following items were evaluated during the review:

- Holding Times
- Sample Preservation
- Cooler Temperatures
- Instrument Calibration
- Blanks
- Surrogates
- Matrix Spike/Matrix Spike Duplicates
- Internal Standards
- Laboratory Control Samples
- Target Compound Identifications*
- Compound Quantitation and CRQLs*
- System Performance
- Field Replicates

^{*}Data were not reviewed for Level III.

Attachment 1

	THE CAT CASE	LDC	#15332	2 (V	Vinc	swi	ırd	Eην	viro	nm	ent	al,	LLC) - (Sea	ttle	W	4/1	Lov	ver	Du	war	nis	h V	/ate	rw	ay (Gro	up)					1/8	100
LDC	SDG#	DATE REC'D	(3) DATE DUE		/OA 70D)	(82	OA 70D IM)	PC (80	CBs (82)	&	tals Hg /846)	(74°	lg 71A)	-ti	ityl ns one)	T(OC mb)	Sol	tal ids 0.3)																
Matrix	: Water/Sediment		e tourse in the	W	s	W	s	W	S	W	S	W	s	W	s	W	S	W	s	W	s	W	s	W	S	W	S	W	S	W	s	W	S	W	S
Α	JO76/JQ01	08/07/06	08/28/06	0	3	0	3	0	15	0	2	0	3	0	1	0	15	0	15																
А	JO76/JQ01	08/07/06	08/28/06	0	1	0	9 1	0	4	0	1	Q-	0	0	j	0	4	0	A																
\perp				_	_		<u> </u>		ļ			_										<u> </u>													
_		ļ <u> </u>																																	
_											_																								
_																																			
		_							<u> </u>					_																					
\dashv								_					<u> </u>																						
1																																			
+					-										_																				
+						-						-										_													
_					\vdash	-																													
\dashv					\vdash				-	_		-		_	_																				
Γotal	B/SC			0	4	0	4	0	19	0	3	0	3	0	2	0	19	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73

													A	ttach	mer	nt 1																		
		LDC #	#15405	(W	/inc	lwa	rd	Enν	riro	nm	ent	al, i	LLC	; - §	Sea	ttle	WA	1/1	_OW	/er	Du	war	nis	h W	ate	rwa	ay (3ro	up)		7		3//	W
.DC	SDG#	DATE REC'D	(3) DATE DUE	Dio:	xins 13B)																													
	: Water/Sediment	7 × 2 =		W	The second second	W	s	w	s	W	s	W	s	W	s	W	S	W	s	w	s	W	s	W	S	W	s	W	s	W	S	W	s	w
A Þ	PWG19875/WG1959	5 08/23/06	09/14/06	0	1.						ļ										Ь.													_
_		ļ			₩	<u> </u>																	_										\dashv	\rightarrow
-		-	ļ	_	ļ	_	ļ		_		_	_									<u> </u>													
-			<u> </u>	_	ļ	_		_			<u> </u>	_																			-	-	\dashv	
-+					\vdash	-					_											<u> </u>									-		\dashv	\rightarrow
\dashv		-	-		-	\vdash				<u> </u>											-										\dashv		\dashv	+
+		 	-		\vdash	-		-							\vdash	$\vdash\vdash$																		+
\dashv		 	-	-	\vdash	-		-	_													_											\dashv	+
\dashv			 	-	\vdash	-		-	\vdash		\vdash	\vdash				$\vdash\vdash$					\vdash											-	\dashv	+
\dashv		<u> </u>	-	-	\vdash	-	\vdash														\vdash												\dashv	\dashv
\dashv		+		\vdash		╁		-			\vdash										\vdash										\dashv			$\overline{}$
+		1	-	\vdash		\vdash	-	╁─								-				-	-												\dashv	\dashv
\dashv					 		<u> </u>	-	-		┢																						\dashv	\dashv
\dashv		 		\vdash		 		┤													\vdash												\neg	\dashv
\top			 				_				\vdash					\neg					\vdash			-										\dashv
\top		 				<u> </u>		_				<u> </u>										<u> </u>												\neg
\top					\vdash	-		 		_											\vdash	_					_				\neg		$\neg \uparrow$	$\neg \uparrow$
_						<u> </u>				_						П						-												
						\vdash																												
																			ļ															
\Box																																		
																																		$\perp \perp$
_					_			_			_					Ш															Щ			
otal	B/SC			0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_	0	0

Δ	tts	20	h	m	Δ	nt	-

SDG#: JO76/JQ01	VALIDATION SAMPLE TABLE	LDC#: 15332A
ODO - OO OO QO		LDO #. 10002/

Project Name: Lower D	Duwamish Waterway (Group		Paran	neters/Ar	nalytical	Method					 Proje	ct #04-08	3-06-24
Client ID #	Lab ID#	Matrix	Date Collected	SVOA (8270D)	SVOA (8270D -SIM)	PCBs (8082)	Metals (SW846)	Hg (7174A)	Butyltins (Krone)	TOC (Plumb)	Total Solids (160.3)			
LDW-SC8-8-10	J076A	sediment	02/10/06	Х	Х	Х	Х			Х	×			
LDW-SC8-8-10DL	JO76ADL	sediment	02/10/06			Х								
LDW-SC10-6-8	JO76B	sediment	02/10/06			Х				×	X			
LDW-SC12-6.7-8.7	JO76C	sediment	02/16/06			Х		Х		X	×			
LDW-SC14-6-8.7	JO76D	sediment	02/13/06			Х		Х		Х	х			
LDW-SC14-6-8.7DL	JO76DDL	sediment	02/13/06			Х								
LDW-SC14-10-11	JO76E	sediment	02/13/06			Х		Х		Х	Х			
LDW-SC15-8-10	JO76F	sediment	02/17/06			Х				Х	×			
LDW-SC19-6-7	JO76G	sediment	02/24/06			х				Х	x			
LDW-SC19-6-7DL	JO76GDL	sediment	02/24/06			Х								
LDW-SC19-9-11.9	J076H	sediment	02/24/06			Х				×	Х			
LDW-SC49-8-10	JO76I	sediment	02/06/06			Х				Х	х			
LDW-SC21-10-11.3	JO76J	sediment	02/15/06			Х				Х	х			
LDW-SC23-6-8	JO76K	sediment	02/17/06			Х				Х	х			
LDW-SC23-8-10.2	JO76L	sediment	02/17/06			Х				Х	x			
LDW-SC25-8-9.1	JO76M	sediment	02/18/06			Х	Х		<u> X</u>	×	X			
LDW-SC25-8-9.1DL	JO76MDL	sediment	02/18/06					<u> </u>	×					
LDW-SC28-12-12.6	JO76N	sediment	02/25/06	X	X.	Х	X		X	Х	X	 		
LDW-SC28-12-12.6DL	JO76NDL	sediment	02/25/06						х			 		
LDW-SC33-8-10	JO76O	sediment	02/11/06	X	Х	Х				х	X	 		
LDW-SC201-8-10	JO76P	sediment	02/11/06	Х	Х	Х				X	X			
LDW-SC41-6-7.9	JO76Q	sediment	02/21/06			х				Х	X			
LDW-SC49-5-8	JO76R	sediment	02/06/06			Х				Х	х			
LDW-SC20-8-10	JQ01A	sediment	02/15/06			Х				Х	x			
LDW-SC20-8-10DL	JQ01ADL	sediment	02/15/06			Х								

SDG# : JO76/JQ01				VALID	ATION S	SAMPLE	TABLE				15		LDC#:	5332A
Project Name: Lower	Duwamish Waterway	Group		Paran	eters/A	nalytical	Method					Proje	ct #04-0	8-06-24
Client ID#	Lab ID #	Matrix	Date Collected	SVOA (8270D)	SVOA (8270D -SIM)	PCBs (8082)	Metals (SW846)	Hg (7174A)	Butyltins (Krone)	TOC (Plumb)	Total Solids (160.3)			
LDW-SC8-8-10MS	JO76AMS	sediment	02/10/06				Х			×				
LDW-SC8-8-10DUP	JO76ADUP	sediment	02/10/06				Х			×	×			
LDW-SC8-8-10TRP	JO76ATRP	sediment	02/10/06							×	×			
LDW-SC19-9-11.9MS	JO76HMS	sediment	02/24/06			Х								
LDW-SC19-9-11.9MSD	JO76HMSD	sediment	02/24/06			Х								
LDW-SC25-8-9.1MS	JO76MMS	sediment	02/18/06						X					
LDW-SC25-8-9.1MSD	JO76MMSD	sediment	02/18/06						X					
LDW-SC33-8-10MS	JO76OMS	sediment	02/11/06	Х	Х									
LDW-SC33-8-10MSD	JO76OMSD	sediment	02/11/06	Х	Х									
LDW-SC20-8-10MS	JQ01AMS	sediment	02/15/06							Х				
LDW-SC20-8-10DUP	JQ01ADUP	sediment	02/15/06							X	Х			
LDW-SC20-8-10TRP	JO01ATRP	sediment	02/15/06							×	×			

Attachment 2

SDG#: DPWG19875/	WG19595			VALID	ATION S	SAMPLE	TABLE					LDC#: 1	5405A
Project Name: Lower	Duwamish Waterway	Group		Paran	neters/Ar	nalytical	Method		 		Proje	ct #04-0	8-06-24
Client ID #	Lab ID#	Matrix_	Date Collected	Dioxins (1613B)									
LDW-SC20-8-10	L9073-1	sediment	02/15/06	X					 				
LDW-SC20-8-10DUP	L9073-1DUP	sediment	02/15/06	Х									
										_			
						_							
											_		
							-	 	 				
					_			 					
								 	 				<u> </u>
								 	 		<u> </u>	<u></u>	

Only issues which require comment or action are discussed in this report. Data deficiencies are arranged by method. Potential effects of data anomalies have been described where possible.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.

The following qualifiers are for the dioxin/dibenzofuran analysis only:

- J1 Blank Contamination: Indicates possible high bias and/or false positives.
- J2 Calibration Range exceeded: Indicates possible low bias.
- J3 Holding times not met: Indicates low bias for most analytes.
- J4 Other QC parameters outside control limits: bias not readily determined.
- Other QC parameters outside control limits. The reported results appear to be biased high. The actual value of target compound in the sample may be lower than the value reported by the laboratory.
- Other QC parameters outside control limits. The reported results appear to be biased low. The actual value of target compound in the sample may be higher than the value reported by the laboratory.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

Overall Data Assessment

I. Usability

- A. Instrument calibration, method blank contamination, compound quantitation and various QC exceedance problems warranted the qualification of a portion of the data set.
 - Due to initial calibration %RSD and continuing calibration %D problems, results for several compounds were qualified as estimated (J/UJ) in the semivolatile and semivolatile-SIM analyses.
 - Due to compound quantitation %RPD problems, one detected result was qualified as estimated (J) for Aroclor-1260 in the PCB analyses.
 - Due to various QC accuracy and precision problems, results were qualified as estimated (J/UJ) in the semivolatile, semivolatile-SIM, PCB, butyltin and metal analyses.
- B. No action was taken when the SRM results were outside the limit of Mean ± Standard Deviation for the organic analyses since the SRM standards were outdated and there were no certified QC limits established.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J/UJ) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

GC/MS Semivolatiles by EPA SW 846 Method 8270D

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals. All ion abundance requirements were met.

All ion abundance requirements were met.

III. Initial Calibration

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r²) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

SDG	Date	Compound	%RSD	Associated Samples	Flag	A or P
JO76	7/5/06	2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol	73.4 34.6	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А

Average relative response factors (RRF) for all semivolatile target compounds and system performance check compounds (SPCCs) were greater than or equal to 0.05 as required.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

SDG	Date	Compound	%D	Associated Samples	Flag	A or P
JO76	7/26/06	2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol	99.9 31.0	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds with the following exceptions:

SDG	Date	Compound	%D	Associated Samples	Flag	A or P
J076	7/5/06	Hexachlorocyclopentadiene	28.2	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	J (all detects) UJ (all non-detects)	A

All of the continuing calibration RRF values were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks with the following exceptions:

SDG	Method Blank ID	Extraction Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
JO76	MB-072206	7/22/06	Phenol	42 ug/Kg	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

SDG	Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
JO76	LDW-SC33-8-10MS/MSD (LDW-SC33-8-10)	Benzo(g,h,i)perylene	-		67.4 (≤50)	J (all detects) UJ (all non-detects)	А

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Replicates

Samples LDW-SC33-8-10 and LDW-SC201-8-10 were identified as field replicates. No semivolatiles were detected in any of the samples with the following exceptions:

		Concentrat	ion (ug/Kg)	
SDG	Compound	LDW-SC33-8-10	LDW-SC201-8-10	RPD (Limits)
JO76	Fluorene	38	61U	Not calculable
JO76	Phenanthrene	150	150	0 (≤50)
JO76	Anthracene	48	40	18 (≤50)
JO76	Fluoranthene	350	300	15 (≤50)
JO76	Pyrene	210	150	33 (≤50)
JO76	Benzo (a) anthracene	95	84	12 (≤50)
JO76	Chrysene	120	94	24 (≤50)
JO76	Benzo (b) fluoranthene	56	45	22 (≤50)
JO76	Benzo (k) fluoranthene	90	72	22 (≤50)
JO76	Benzo (a) pyrene	82	61	29 (≤50)
JO76	Indeno (1,2,3-cd) pyrene	48	34	34 (≤50)
JO76	Benzo (g,h,i)perylene	50	35	35 (≤50)

XVII. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Semivolatiles - Data Qualification Summary - SDG JO76

SDG	Sample	Compound	Flag	A or P	Reason
JO76	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Initial calibration (%RSD)
JO76	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
JO76	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	Hexachlorocyclopentadiene	J (all detects) UJ (all non-detects)	А	Continuing calibration (ICV %D)
JO76	LDW-SC33-8-10	Benzo(g,h,i)perylene	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (RPD)

Lower Duwamish Waterway Group Semivolatiles - Laboratory Blank Data Qualification Summary - SDG JO76

No Sample Data Qualified in this SDG

GC/MS Semivolatiles by EPA SW 846 Method 8270D using Selected Ion Monitoring (SIM).

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals. All ion abundance requirements were met.

All ion abundance requirements were met.

III. Initial Calibration

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all semivolatile target compounds and system performance check compounds (SPCCs) were greater than or equal to 0.05 as required.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/26/06	N-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene	29.9 37.6	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A
_		7/26/06 N-Nitroso-di-n-propylamine	7/26/06 N-Nitroso-di-n-propylamine 29.9	7/26/06 N-Nitroso-di-n-propylamine 29.9 LDW-SC8-8-10**	7/26/06 N-Nitroso-di-n-propylamine 29.9 LDW-SC8-8-10** J (all detects)

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds with the following exceptions:

SDG	Date	Compound	%D	Associated Samples	Flag	A or P
JO76	7/21/06	1,2,4-Trichlorobenzene	36.4	LDW-SC8-8-10** LDW-SC28-12-12.6	J (all detects) UJ (all non-detects)	A
		N-Nitrosodiphenylamine	44.36	LDW-SC33-8-10 LDW-SC201-8-10	J (all detects) UJ (all non-detects)	

All of the continuing calibration RRF values were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

SDG	LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
JO76	LCS-072206	1,2,4-Trichlorobenzene	32.8 (40-130)	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	J (all detects) UJ (all non-detects)	Ф

Standard reference material was performed at the required frequencies.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Replicates

Samples LDW-SC33-8-10 and LDW-SC201-8-10 were identified as field replicates. No semivolatiles were detected in any of the samples with the following exceptions:

		Concentration (ug/Kg)		
SDG	Compound	LDW-SC33-8-10	LDW-SC201-8-10	RPD (Limits)
JO76	Dibenz(a,h)anthracene	23	19	19 (≤50)
JO76	2,4-Dimethylphenol	5.5	3.7	39 (≤50)

XVII. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Semivolatiles(SIM) - Data Qualification Summary - SDG JO76

SDG	Sample	Compound	Flag	A or P	Reason
JO76	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	N-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
JO76	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	1,2,4-Trichlorobenzene N-Nitrosodiphenylamine	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Continuing calibration (ICV %D)
JO76	LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10	1,2,4-Trichlorobenzene	J (all detects) UJ (all non-detects)	Р	Laboratory control samples (%R)

Lower Duwamish Waterway Group Semivolatiles(SIM) - Laboratory Blank Data Qualification Summary - SDG JO76

No Sample Data Qualified in this SDG

Polychlorinated Biphenyls by EPA SW 846 Method 8082

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of multicomponent compounds was performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Retention time windows were evaluated and considered technically acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 15.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

Retention times (RT) of all compounds in the calibration standards were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

VI. Surrogate Spikes and Internal Standards

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

SDG	Sample	Column	Surrogate	%R (Limits)	Compound	Flag	A or P
JO76	LDW-SC33-8-10	Not specified	Tetrachloro-m-xylene	31.8 (50-150)	All TCL compounds	J (all detects) UJ (all non-detects)	Р
JQ01	LDW-SC20-8-10	Not specified	Tetrachloro-m-xylene	36.4 (50-150)	All TCL compounds	J (all detects) UJ (all non-detects)	Р

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

SDG	LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
JQ01	LCS-072106	Aroclor-1016	49.1 (50-150)	LDW-SC20-8-10 LDW-SC20-8-10DL	J (all detects) UJ (all non-detects)	P

Standard reference material was performed at the required frequencies.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Although sulfur and acid cleanup was not required by the method, it was performed by the laboratory.

Florisil cleanup was not required and therefore not performed.

b. GPC Calibration

GPC cleanup was not required and therefore not performed.

XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

SDG	Sample	Compound	Finding	Criteria	Flag	A or P
JO76	LDW-SC8-8-10**	Aroclor-1254 Aroclor-1260	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A N/A	-
JO76 JQ01	LDW-SC14-6-8.7 LDW-SC20-8-10	Aroclor-1260	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A	-
JO76	LDW-SC19-6-7	Aroclor-1254 Aroclor-1260 Aroclor-1248	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A N/A N/A	-

N/A = Not applicable

For the results above flagged "Not applicable", the affected compound results in the associated samples were deemed unusable and did not warrant qualification of the data.

The sample results for detected compounds from the two columns were within 40.0% relative percent differences (RPD) with the following exceptions:

SDG	Sample	Compound	%RPD	Flag	A or P
JO76	LDW-SC8-8-10**	Aroclor-1260	49	J (all detects)	А

Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

SDG	Sample	Compound	Flag	A or P
JO76	LDW-SC8-8-10**	Aroclor-1254 Aroclor-1260	R R	А
JO76	LDW-SC8-8-10DL**	All TCL compounds except Aroclor-1254 Aroclor-1260	R	А
JO76 JQ01	LDW-SC14-6-8.7 LDW-SC20-8-10	Aroclor-1260	R	А
JO76 JQ01	LDW-SC14-6-8.7DL LDW-SC20-8-10DL	All TCL compounds except Aroclor-1260	R	А
JO76	LDW-SC19-6-7	Aroclor-1254 Aroclor-1260 Aroclor-1248	R R R	Α
JO76	LDW-SC19-6-7DL	All TCL compounds except Aroclor-1254 Aroclor-1260 Aroclor-1248	R	. А

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Replicates

Samples LDW-SC33-8-10 and LDW-SC201-8-10 were identified as field replicates. No polychlorinated biphenyls were detected in any of the samples.

XV. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Polychlorinated Biphenyls - Data Qualification Summary - SDGs JO76 and JQ01

			T		
SDG	Sample	Compound	Flag	A or P	Reason
JO76 JQ01	LDW-SC33-8-10 LDW-SC20-8-10	All TCL compounds	J (all detects) UJ (all non-detects)	Р	Surrogate recovery (%R)
JQ01	LDW-SC20-8-10 LDW-SC20-8-10DL	Aroclor-1016	J (all detects) UJ (all non-detects)	P	Laboratory control samples (%R)
JO76	LDW-SC8-8-10**	Aroclor-1260	J (all detects)	А	Compound quantitation and CRQLs (RPD)
JO76	LDW-SC8-8-10**	Aroclor-1254 Aroclor-1260	R R	А	Overall assessment of data
JO76	LDW-SC8-8-10DL**	All TCL compounds except Aroclor-1254 Aroclor-1260	R	А	Overall assessment of data
JO76 JQ01	LDW-SC14-6-8.7 LDW-SC20-8-10	Aroclor-1260	R	А	Overall assessment of data
JO76 JQ01	LDW-SC14-6-8.7DL LDW-SC20-8-10DL	All TCL compounds except Aroclor-1260	R	А	Overall assessment of data
JO76	LDW-SC19-6-7	Aroclor-1254 Aroclor-1260 Aroclor-1248	R R R	А	Overall assessment of data
JO76	LDW-SC19-6-7DL	All TCL compounds except Aroctor-1254 Aroctor-1260 Aroctor-1248	R	А	Overall assessment of data

Lower Duwamish Waterway Group Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDGs JO76 and JQ01

No Sample Data Qualified in this SDG

Butyltins By EPA SW 846 Method 8270D using Selected Ion Monitoring (SIM) & Krone Method

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals. All ion abundance requirements were met.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No butyltin contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples with the following exceptions:

SDG	Sample	Internal Standard	%R (Limits)	Analyte	Flag	A or P
JO76	LDW-SC25-8-9.1**	p-Terphenyl-d14	395838 (91680-366722)	Dibutyl-tin ion Butyl-tin ion	J (all detects) J (all detects)	A
JO76	LDW-SC28-12-12.6	p-Terphenyl-d14	371428 (91680-366722)	Dibutyl-tin ion Butyl-tin ion	J (all detects) J (all detects)	А

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

SDG	Sample	Compound	Flag	A or P
JO76	LDW-SC25-8-9.1DL** LDW-SC28-12-12.6DL	All TCL compounds	R R	A

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Replicates

No field replicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Butyltins - Data Qualification Summary - SDG JO76

SDG	Sample	Compound	Flag	A or P	Reason
JO76	LDW-SC25-8-9.1** LDW-SC28-12-12.6	Dibutyl-tin ion Butyl-tin ion	J (all detects) J (all detects)	А	Internal standards (area)
JO76	LDW-SC25-8-9.1DL** LDW-SC28-12-12.6DL	All TCL compounds	R	А	Overall assessment of data

Lower Duwamish Waterway Group Butyltins - Laboratory Blank Data Qualification Summary - SDG JO76

No Sample Data Qualified in this SDG

Metals by EPA SW 846 Methods 6010B/7471A

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

SDG	Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
JO76	LDW-SC8-8-10MS (LDW-SC8-8-10** LDW-SC25-8-9.1 LDW-SC28-12-12.6 LDW-SC8-8-10DUP)	Antimony	16.8 (70-130)	J (all detects) UJ (all non-detects)	А

Although the percent recovery of antimony was severely low (<30%) in the MS sample above, the results in all the associated samples were qualified as estimated (J/UJ) since the post spike recoveries for antimony were greater then 75%.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

VIII. Internal Standards

ICP-MS was not utilized in this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Replicates

No field replicates were identified in this SDG.

XIV. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Metals - Data Qualification Summary - SDG JO76

SDG	Sample	Analyte	Flag	A or P	Reason
JO76	LDW-SC8-8-10** LDW-SC25-8-9.1 LDW-SC28-12-12.6 LDW-SC8-8-10DUP	Antimony	J (all detects) UJ (all non-detects)	А	Matrix spike analysis (%R)

Lower Duwamish Waterway Group Metals - Laboratory Blank Data Qualification Summary - SDG JO76

No Sample Data Qualified in this SDG

Total Organic Carbon by Plumb Method and Total Solids by EPA Method 160.3

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration of each method were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Duplicates

Duplicate (DUP) and Triplicate (TRP) sample analyses were reviewed for each matrix as applicable. Relative percent differences (RPD) and relative standard deviation (RSD) were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Replicates

Samples LDW-SC33-8-10 and LDW-SC201-8-10 were identified as field replicates. No concentrations were detected in any of the samples with the following exceptions:

		Concentra		
SDG	Compound	LDW-SC33-8-10	LDW-SC201-8-10	RPD (Limits)
J076	Total solids	65.3	65.1	0 (≤20)
J076	Total organic carbon	1.53	1.55	1 (≤30)

X. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Wet Chemistry - Data Qualification Summary - SDGs JO76 and JQ01

No Sample Data Qualified in this SDG

Lower Duwamish Waterway Group Wet Chemistry - Laboratory Blank Data Qualification Summary - SDGs JO76 and JQ01

No Sample Data Qualified in this SDG

LDC Report# 15405A21

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Lower Duwamish Waterway Group

Collection Date: February 15, 2006

LDC Report Date: December 19, 2006

Matrix: Sediment

Parameters: Dioxins/Dibenzofurans

Validation Level: EPA Level IV

Laboratory: AXYS Analytical Services Ltd.

Sample Delivery Group (SDG): DPWG19875/WG19595

Sample Identification

LDW-SC20-8-10 LDW-SC20-8-10DUP

Introduction

This data review covers 2 sediment samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1613B for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Lower Duwamish Waterway Group Final Subsurface Sediment Sampling for Chemical Analyses Quality Assurance Project Plan (February 3, 2006) and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (August 2002).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between ¹³C-2,3,7,8-TCDD and ¹³C-1,2,3,4-TCDD was less than or equal to 25%.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all native compounds and less than or equal to 30.0% for all labelled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was technically acceptable.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration concentrations were within the QC limits.

The ion abundance ratios for all PCDDs and PCDFs were within method criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
WG19595-101	7/11/06	1,2,3,4,6,7,8-HpCDD OCDD 2,3,4,7,8-PeCDF OCDF Total HpCDD	0.089 ng/Kg 0.376 ng/Kg 0.052 ng/Kg 0.086 ng/Kg 0.052 ng/Kg	All samples in SDG DPWG19875/WG19595

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits.

X. Target Compound Identifications

All target compound identifications were within validation criteria.

*XI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG DPWG19875/WG19595	All compounds reported by the lab as estimated (K) maximum possible concentration (EMPC)	U	A

XII. System Performance

The system performance was acceptable.

XIII. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
All samples in SDG DPWG19875/WG19595	2,3,7,8-TCDF on DB-5	R	А

Data flags have been summarized at the end of the report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

XV. Field Blanks

No field blanks were identified in this SDG.

*Lower Duwamish Waterway Group Dioxins/Dibenzofurans - Data Qualification Summary - SDG DPWG19875/WG19595

SDG	Sample	Compound	Flag	A or P	Reason
*DPWG19875/ WG19595	LDW-SC20-8-10 LDW-SC20-8-10DUP	All compounds reported by the lab as estimated (K) maximum possible concentration (EMPC)	U	А	Compound quantitation and CRQLs (EMPC)
DPWG19875/ WG19595	LDW-SC20-8-10 LDW-SC20-8-10DUP	2,3,7,8-TCDF on DB-5	R	А	Overall assessment of data

^{*}Added CRQL (EMPC) finding.

Lower Duwamish Waterway Group Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG DPWG19875/WG19595

No Sample Data Qualified in this SDG

LDC #: 15332A2a	VALIDATION COMPLETENESS WORKSHEET	Date: 8/9/06
SDG #: JOØ76/JQ91	Level III/IV	Page: <u>/</u> of <u>/</u>
Laboratory: Analytical Resou	rces, Inc.	Reviewer:
METHOD: GC/MS Semivola	tiles (EPA SW 846 Method 8270D)	2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 2 10 -P 2 27 06
II.	GC/MS Instrument performance check	A	
111.	Initial calibration	SW	
IV.	Continuing calibration	ςw	100 E 25
V.	Blanks	SW	
VI.	Surrogate spikes	5W	
VII.	Matrix spike/Matrix spike duplicates	SW	
VIII.	Laboratory control samples /SRM	SKIA	LCS
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	Δ	Not reviewed for Level III validation.
XIII.	Tentitatively identified compounds (TICs)	2	Not reviewed for Level III validation. Not reported
XIV.	System performance	A	Not reviewed for Level III validation.
XV.	Overall assessment of data	Δ	GPE clean up performed
XVI.	Field duplicates	SW	QPE clean up performed D = 34 4
XVII.	Field blanks	N	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

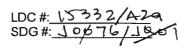
ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank
EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation

	Sidiment				
1	LDW-SC8-8-10**	11	MB-072206	21	31
2	LDW-SC28-12-12.6	12		22	32
3	LDW-SC33-8-10	13		23	33
4	LDW-SC201-8-10	14		24	34
5	LDW-SC33-8-10MS	15		25	35
6	LDW-SC33-8-10MSD	16		26	36
7		17		27	37
8		18		28	38
9		19		29	39
10		20		30	40


LDC#: 15332/A2a SDG#: 16976/1061

VALIDATION FINDINGS CHECKLIST

Page:_	_of	2
Reviewer:		
2nd Reviewer:	h	

Method: Semivolatiles (EPA SW 846 Method 8270¢)

Validation Area	Yes	No	NA	Findings/Comments
(Tiechaltel, potellae nitres				
All technical holding times were met.				
Cooler temperature criteria was met. (I) SOM STARTINE II SOME MARKET COOLER.				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	_	A STATE OF THE STA		
Were all samples analyzed within the 12 hour clock criteria?				
III. Unitainealistailisti.				
Did the laboratory perform a 5 point calibration prior to sample analysis?	~		<u> </u>	
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?	<u> </u>	~		:1
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?			~	3 "
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?		_		
IIV. Conflicting calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	_			
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?			}	
X. Bailus V				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/	-		
WILEUmente sukes		a : 20.0		
Were all surrogate %R within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?	N 177 TH (NO	KLEST CONTRACT		
MI Matrix spike/Matrix spike/popicares				Link The Control of the Control of t
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		_		
All Paparatory Completes the Second S				
Was an LCS analyzed for this SDG?				

VALIDATION FINDINGS CHECKLIST

Page: Zof Zof Reviewer: F7
2nd Reviewer: V

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				,
IK-Régional-Quality Associance and Quality extens				
Were performance evaluation (PE) samples performed?			_	·
Were the performance evaluation (PE) samples within the acceptance limits?	च्यारकार्या (१)		ionasie i	
Z. júli-na stardads				
Were internal standard area counts within -50% or +100% of the associated calibration standard?		_		1.3 2
Were retention times within + 30 seconds from the associated calibration standard?		·		
Χ(: Paroja) απήροτικά kelentificatio				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/	_		Mass ys
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			Service Service
Were chromatogram peaks verified and accounted for?			Q7/8/75	
Mireampourd avenue in a commence of the commen				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Mil gangliyek deadijed dangangs adea				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?		3	/	
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?				
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
XIV Statem (perioritativa				
System performance was found to be acceptable.		-		
VLC (graji case amenica cara			77.5	
Overall assessment of data was found to be acceptable.	/	COMPANIES DE	2312222	
XVI feligi vigologies				
Field duplicate pairs were identified in this SDG.		/		a y construir de Company and C
Target compounds were detected in the field duplicates.				
XVII vriedrojanis			?**\ }	
Field blanks were identified in this SDG.	240		-	
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Pheno!**	P. Bls(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenoi**	ill. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	G. 2,4-Dichlorophenoi**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthrecene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH 2,4-Dinitrophenol*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chioroaniline	II. 4-Nitrophenoi*	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyi)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Anlline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenoi**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	OOO. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chioropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP. Benzolc Acid
I. 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ, Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenoi**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	OO. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bls(2-ethylhexyl)phthalate	тт.
M. Isophorone	BB. 2-Nitroaniline	QQ, N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	uuu.
N. 2-Nitrophenoi**	CC. Dimethylphthálate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	w.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	www.

LDC #:15332/429
SDG #: 10076/3001

VALIDATION FINDINGS WORKSHEET Initial Calibration

	Page:	1	<u> </u>	of_	1
	Reviewer:		1	5	
2nd	Reviewer:	, .	A		

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A

Did the laboratory conduct an acceptable 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? W N, N/A

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation? YGN N/A \times N \times N/A

Did the initial calibration meet the acceptance criteria?

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

#	Date	Standard ID	Compound	Finding %RSD (Limit: <u><</u> 30.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	7/5/06	ICAL	# 14	73,4		1-24	JIW/A
<u> </u>			PP	34.4		<u> </u>	1
-							
						· · · · · · · · · · · · · · · · · · ·	
			I				
			_				
							,
							-
ļ							
-							
_					Mac No.		
-			1				
			-				
				· · · · · · · · · · · · · · · · · · ·			

SDG #: 10676/100+

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

	Page:_	of	1
	Reviewer:	15	
2nd	Reviewer:	, , , , , , , , , , , , , , , , , , ,	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A

Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Y N N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF? Y/N~N/A

#	Date	Standard ID	Compound	Finding %D (Limit: <25.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	7506	1cV	×	28.2		1-04	JW/A
	-1127-						
<u> </u>							
	7/26/06	cev	44	99.9			
	, ,		PP	31.0		V	
	ļ						
<u> </u>							
-			<u> </u>		l		+
 							
 						<u> </u>	
<u> </u>	 						<u> </u>
			······································				
 							
<u> </u>							
				: - t.i : 20 4 27), to	and the Control of Medical		
					, -, -		
					· · · · · · · · · · · · · · · · · · ·	. 3	
-		:		20 00 00 00 00 00 00 00 00 00 00 00 00 0	12 14 14 14 14 14 14 14 14 14 14 14 14 14		
			<u> </u>	a amala small	See also to the second	The transit of the same to the	
L					A TORON OF STANFORD AND A SAME	A Committee of the Comm	
L							1

LDC #:_	15	332	AZa
SDG #:	70	976	1001

VALIDATION FINDINGS WORKSHEET Blanks

Page:_		1
Reviewer:	19	ī
2nd Reviewer:	K	

					_			* .	2nd Paview	/er:
METHOD: GC/MS BNA (EPA SW	/ 846 Method	1 8270)							ZIIU I (CVICW	
Please see qualifications below for	r all question	s answered "N	N". Not applic	able question	s are identifie	ed as "N/A".				
M N N/A Was a method bla	ank analyzed	for each mati	rix?						-	
Y N N/A Was a method bit				paration leve	 ?	1				
Y N N/A Was a method bla										
Y N N/A Was the blank co	ntaminated?	If yes, please	see qualifica	tion below.			$\overline{}$			
Blank extraction date: 7 22 06	Blank analy	rsis date: <u>५</u> 2				IN CN	ر ش			
Conc. units: ug kg		·	Associat	ed Samples:		+11 C 10	<u>v</u> /			
Compound	Blank ID				 	ample identificat	ion			
	MB- 072206									
	42									
Blank extraction date:	Blank analy	ysis date:	Associa	ted Samples:						
Compound	Blank ID				s	ample Identifica	tion			
						,				
	ļ									
					,					
	ļ			·				-		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LUU #: 1597615

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:	
Reviewer:	75
2nd Reviewer:	K

SDG #: <u>J 9976</u> / 3 80 | METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Date	Sample ID	Surrogate	%R (Limits)	Qualifications
		MB- 072206	DCB	33.3 (40-130)	no outr
				[· · · · · · · · · · · · · · · · · ·	
				(.)	
				()	
				()	
				()	
				()	
				().	
				()	
				()	
 			l	()	
				, ,	
				()	
I					
				()	
				()	
-				()	
ļ			, ,	read Landon (Constitution)	
			`	()	
				· · · · · · · · · · · · · · · · · · ·	<u> </u>
				, ,	
				. ()	

* QC limits are advisory	QC Limits (Soil)	QC Limits (Water)		QC Limits (Soil)	QC Limits (Water)
S1 (NBZ) = Nitrobenzene-d5	23-120	35-114	S5 (2FP)= 2-Fluorophenol	25-121	21-100
S2 (FBP) = 2-Fluorobiphenyl	30-115	43-116	S6 (TBP) = 2,4,6-Tribromophenol	19-122	10-123
S3 (TPH) = Terphenyl-d14	18-137	33-141	S7 (2CP) = 2-Chlorophenol-d4	20-130*	33-110*
S4 (PHL) = Phenol-d5	24-113	10-94	S8 (DCB) = 1,2-Dichlorobenzene-d4	20-130*	16-110*

LDC #: 15332A2A SDG #: 10076 1500

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

YN N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		5+6	LLL	()	(.)	67.4 (50)	3	A/LU/L
		-		(.)	()	()		
				()	(')	()		"}
				()	(.)	()		
				()	()	()		
				()	()	()		
				()	()	()	·	
				()	()	()		
				()	()	()		
				()	()	()	•	
				()	()	()		
				()	()	()		
				()	()	(·)		
				()	()	()		
				()	()	(.)		
				()	()	()		
				()	()	()		

	Compound	QC Limits (Soll)	RPD (Soil)	QC Limits (Water)	RPD (Water)		Compound	QC Limits (Soil)	RPD (Soll)	QC Limits (Water)	RPD (Water)
A.	Phenot	26-90%	≤ 35%	12-110%	≤ 42%	GG.	Acenaphthene	31-137%	<u><</u> 19%	46-118%	<u><</u> 31%
C.	2-Chlorophenol	25-102%	<u><</u> 50%	27-123%	≤ 40%	n.	4-Nitrophenol	11-114%	<u><</u> 50%	10-80%	<u><</u> 50%
E.	1,4-Dichlorobenzene	28-104%	<u><</u> 27%	36-97%	≤ 28%	KK.	2,4-Dinitrotoluene	28-89%	<u><</u> 47%	24-96%	≤ 38%
J.	N-Nitroso-di-n-propylamine	41-126%	<u><</u> 38%	41-116%	<u><</u> 38%	TŢ.	Pentachlorophenol	. 17-109%	<u>< 47%</u>	9-103%	≤ 50%
R.	1,2,4-Trichlorobenzene	38-107%	<u><</u> 23%	39-98%	≤ 28%	ZZ.	Pyrene	35-142%	≤ 36%	26-127%	<u><</u> 31%
V.	4-Chloro-3-methylphenol	26-103%	<u><</u> 33%	23-97%	≤ 42%						

LDC#: 15332A3 SDG#: JO76/JQ01

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:___of___ Reviewer:___/5 2nd Reviewer:___/5

METHOD: GC/MS BNA (EPA SW 846 Method 8270SIM)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentra	Concentration (ug/Kg)				
Compound	3	4	RPD			
Fluorene	38	61U	-200 NC			
Phenanthrene	150	150	0			
Anthracene	48	40	18			
Fluoranthene	350	300	15			
Pyrene	210	150	33			
Benzo (a) anthracene	95	84	12			
Chrysene	120	94	24			
Benzo (b) fluoranthene	56	45	22			
Benzo (k) fluoranthene	90	72	22			
Benzo (a) pyrene	82	61	29			
Indeno (1,2,3-cd) pyrene	48	34	34			
Benzo (g,h,i)perylene	50	35	35			

V:\FIELD DUPLICATES\11025_PAHs\15332A3.wpd

LDC #: 15 332 A29 SDG #: 10076 (400)

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	
	Reviewer:	F
2nd	Reviewer:	4

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_b)/(A_b)(C_x)$ average RRF = sum of the RRFs/number of standards $A_x =$ Area of compound,

A_k = Area of associated internal standard

C_x = Concentration of compound,

C_k = Concentration of Internal standard

%RSD = 100 * (S/X)S = Standard deviation of the RRFs, X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (25 std)	RRF (2/5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	7/5/06	Phenol (1st internal standard)	2.120	2.120	2.228	2.228	3,0	3.0
		'' '	Naphthalene (2nd internal standard)	1.185	1-185	1.216	1.216	7.6	2.6
			Fluorene (3rd Internal standard)	1.413	1.413	1.433	1.433	2.3	2.3
			Pentachlorophenol (4th Internal standard)	0-1091.32	6 1-326	201.3	34 1.335	13-11-3	87 1.337
			Bis(2-ethylhexyl)phthalate (5th internal standard)	0.517	0.517	0.505	0.505	7.1	7-1
			Benzo(a)pyrene (6th Internal standard)	1.262	1-262	1.264	1-264	3.0	3,0
2			Phenol (1st internal standard)						
			Naphthalene (2nd internal standard)						
			Fluorene (3rd Internal standard)						
			Pentachlorophenol (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th internal standard)						
			Benzo(a)pyrene (6th Internal standard)						
3			Phenol (1st internal standard)						
]	Naphthalene (2nd internal standard)						
		Ì	Fluorene (3rd internal standard)						
]	Pentachlorophenol (4th internal standard)						
]	Bis(2-ethylhexyl)phthalate (5th Internal standard)	:				7	
			Benzo(a)pyrene (6th internal standard)						

Comments: .	Refer to	Initial	Calibration	<u>findings</u>	worksheet	for lis	t of	qualifications	and	associated	samples	when	<u>reported</u>	results de	not a	agree	within	10.0%	of the
recalculated														,					

LDC #: 15332 A2a SDG #: JO\$76

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	
Reviewer:	Ħ
2nd Reviewer:	~

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_{\nu})(C_{\mu})/(A_{\mu})(C_{\nu})$

RRF = continuing calibration RRF

A = Area of compound,

A_k = Area of associated internal standard

C_x = Concentration of compound,

C_k = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	cov	7/26/06	Phenol (1st internal standard)	2.228	2.313	2-313	6,5	6.5.
		-	Naphthalene (2nd internal standard)	1.216	1.217	1.217	0.	0-)
			Fluorene (3rd internal standard)	1. 433	1.484	1-484	3.4	3-6
			Pentachlorophenel (4th Internal standard)	1.337	1.335	1.335	0-	. 0-
			Bis(2-ethylhexyl)phthalate (5th internal standard)	0.505	0.550	0-550	8.9	8-9
			Benzo(a)pyrene (6th Internal standard)	1-244	1-310	1.310	3.6	3-6
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					- t
			Fluorene (3rd Internal standard)					
			Pentachiorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
3			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)		1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1			
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results.

LDC #: 15332020 SDG #: 10076 (400)

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	
Reviewer:	Ħ
2nd reviewer:_	Ĺ

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

Sample ID: 井 l

SS = Surrogate Spiked

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	1 22.8	914.9	58.8	58.8	6
2-Fluorobiphenyl	1558	895.7	51.6	57.6	
Terphenyl-d14	122.8	652.7	42.0	420	
Phenol-d5	2337	1445	61.9	61.9	
2-Fluorophenol	2337	1379	58.9	58.9	
2,4,6-Tribromophenol	2337	1617	69.3	69.3	
2-Chlorophenol-d4	2 777	1364	58.4	58.4	
1,2-Dichlorobenzene-d4	1558	750	48.0	48.0	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					٠
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5				·	
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4				•	

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Reviewer: / 2nd Reviewer: D

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = IMS - MSD I * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery __

MS/MSD samples: ____ 5 + 6

	Sp	lke	Sample	Spiked	Spiked Sample		Spike	Matrix Spik	e Duplicate	MS/MS	SD
Compound	Add (ug	ded	Concentration		ntration	Percent F	Percent Recovery		Recovery	RPD	
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
Phenol .	2290	2290		1110	1240	48.5	485	54.	54.1	11.1	11./
2-Chlorophenol .	V	1		1180	1310	51.5	51.5	57.2	51.2	10.4	10.4
1,4-Dichlorobenzene											
N-Nitroso-di-n-propylamine											
1,2,4-Trichlorobenzene											
4-Chloro-3-methylphenol	2290	2290		1230	1320	53.7	53.7	57.6	57.6	7.1	7.1
Acenaphthene	1520	1520		439	916	55.2	55.7	59.9	59.9	e4.8	8.8
4-Nitrophenol	2290	2290		1370	1200	57.8	598	65.5	65,5	9.]	9./
2,4-Dinitrotoluene	1520	1520		815	936	57.6	57.6	61.2	61.2	6.7	6.7
Pentachlorophenol											
Pyrene	1520	1520		896	1030	44.9	44.9	53.3	53.3	13-9	13.9

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 15332 A2a

VALIDATION FINDINGS WORKSHEET

SDG #: 10016 | 10016 | Laboratory Control Sample | Laboratory Control Sample Duplicates Results Verification

Page:	<u>/</u> of/_
Reviewer:_	n_
2nd Reviewer:_	1

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: LCS - 672206

		oike	Spike		LCS		LC	SD	LCS/LCSD	
Compound	II .	ded Key)	Concei (uz	ntration	Percent f	Recovery	Percent Recovery		RI	PD
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
Phenol	1500		1166		74.4	74.4				/
2-Chlorophenol	1:560		1140		73.1	13.1				
1,4-Dichlorobenzene	PΑ									
N-Nitroso-di-n-propylamine ,										
1,2,4-Trichlorobenzene										
4-Chloro-3-methylphenol	1170		1560		15	75				
Acenaphthene	1560		1160		74.4	74.4				
4-Nitrophenol	1500		1140		73.1	73.1				
2,4-Dinitrotoluene	1520	:	1200		. 76.9	76.9				
Pentachlorophenoi	NA						/			
Pyrene	1130		1560		72.4	72.4	NK/			

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:	15332 AZ	9
SDG #:	10076	12001

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

Page:_	_/_of_/
Reviewer:	15
2nd reviewer:	<u> </u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Factor of 2 to account for GPC cleanup

$/\underline{\Upsilon}$	N	N/A
Y	N	N/A

2.0

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

•			
Conc	entratio	$on = \frac{(A_{*})(I_{*})(V_{*})(DF)(2.0)}{(A_{*})(RRF)(V_{*})(V_{*})(V_{*})}$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. # 1 . Phe nanthrene
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _e	=	Amount of internal standard added in nanograms (ng)	Conc. = $(12784)(20)(2)(1008(1)$
V_o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	1.33
V,	=	Volume of extract injected in microliters (ul)	= 110 ug /kg
V,	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	•
0/ C	_	Percent colids, applicable to soil and colid matrices	·

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
#	Sample ID	Compound	()	()	Quantication
					111111111111111111111111111111111111111
			<u> </u>		·

LDC #: 15332A2b VAL	IDATION COMPLETENESS WORKSHEET	Date: \$/8/06
SDG #: JOØ76/JO81	Level III/IV	Page: _/of_/
Laboratory: Analytical Resources, Inc	<u>.</u>	Reviewer:
METHOD: GC/MS Semivolatiles (ED	A SW 846 Method 8270D-SIM)	2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D-SIM)

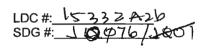
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	Α	Sampling dates: 2 10 06 - P 2 21 04
II.	GC/MS Instrument performance check	A	
III.	Initial calibration	A	% P&P, (2 Io.990
IV.	Continuing calibration	SW	1CV = 25
V.	Blanks	A	
VI.	Surrogate spikes	Δ	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples /SRM	SW	465
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	٨	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	Δ	Not reviewed for Level III validation.
XIII.	Tentitatively identified compounds (TICs)	N	Not reviewed for Level III validation. not reported
XIV.	System performance	A	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	GRC chan - up performed
XVI.	Field duplicates	SW	D = 3 + 4
XVII.	Field blanks	N	

A = Acceptable Note:

N = Not provided/applicable

ND = No compounds detected R = Rinsate

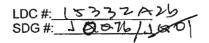

D = Duplicate TB = Trip blank

SW = See worksheet

FB = Field blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation MB-012206 LDW-SC8-8-10** LDW-SC28-12-12.6 LDW-SC33-8-10 LDW-SC201-8-10 LDW-SC33-8-10MS LDW-SC33-8-10MSD



VALIDATION FINDINGS CHECKLIST

Page:_/of_2 Reviewer:__/7 2nd Reviewer:___

Method: Semivolatiles (EPA SW 846 Method 8270ダング

			_	T
Validation Area	Yes	No	NA	Findings/Comments
Parastrosal Esterne Unites				
All technical holding times were met.	/			
Cooler temperature criteria was met.			Vojnesta	
(I). PouVS instrucion como manás estect				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	~			
Were all samples analyzed within the 12 hour clock criteria?	V	The statement	Table Wald	
iii) - jaliianeeni vastoin, ja saasta		41		
Did the laboratory perform a 5 point calibration prior to sample analysis?	V			
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			4,
Was a curve fit used for evaluation?				, i i i
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?				
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) > 0.05?				
ny samanne salaeten				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				:
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?				
Ve Bladks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?		-		
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
W. Surropate salkes	100		(4)	
Were all surrogate %R within QC limits?		,		
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
Musika sylve Mahrespikologiyleadse				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
All Urabaratory control samples				
Was an LCS analyzed for this SDG?				

VALIDATION FINDINGS CHECKLIST

Page: __of __~ Reviewer: ___/ 2nd Reviewer: ___/

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
K Restoral public Assurance and Stalliv Coding				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?	The second secon	ere erekene	7 () () () () () () ()	
Kuralegelskrathrae.				
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds from the associated calibration standard?		~~	711 7177	
XI. Tengar Composite Reconficetion				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?		_		,
Were chromatogram peaks verified and accounted for?			e per esperantes	
XII Compoundeusuiianon/CROLS				Committee Committee Committee
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		-		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tenedychy destriet somrag <u>de</u> cries),				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?	and all the Part y marking. Make		/	
Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?			\	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?			/	
XIV svetem perempatice 1 to 4 to 10 to				
System performance was found to be acceptable.		_		
AV. Ovejelka špessių pieci (čkle)				
Overall assessment of data was found to be acceptable.				in the second se
XXII: 由E低 applicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.	/55/00/00 # NAV	The second second	7777	
VIL Fletheims:		2.		
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Phenol**	P. Bls(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenoi**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	W. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenoi*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II. 4-Nitrophenol*	XX. Di-n-butyiphthalate	MMM. Bis(2-Chioroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Anliine
G. 2-Methylphenol	V. 4-Chloro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	OOO. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butyibenzyiphthalate	PPP, Benzolc Acid
I. 4-Methylphenol	X. Hexachiorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ, Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichiorophenoi**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	OO. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	тт.
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	UUU.
N. 2-Nitrophenol**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	vvv.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	www.

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	_/	_of_	1
Reviewer:		p	,
2nd Reviewer:	•	K.	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N N/A | Was a continuing calibration standard analyzed at least once every 12 hours of sample analyses. Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Y/N N/A

Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF? Y /N N/A

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 25.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	7/24/06	cev	J	19.9		1-74	A/W/L
	223		. R	37.6		1	· L
	7/2/06	100	R	36.4		1-24	J/W/A
<u> </u>	1600		ଷଷ	44.36		V	
ļ			· · · · · · · · · · · · · · · · · · ·		<u> </u>		
ļ							
<u> </u> -						_	
<u> </u>							
-							
 							
-	 						
-							
	<u> </u>]			
						<u> </u>	
· ·							
-	 		 				
<u></u>	<u></u>	<u> </u>	<u> </u>				

LDC #: 15332 A26 SDG #: 16 876/160]

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

	Page:		, -
	Reviewer:	<u></u>	_
2nd	Reviewer:	K	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y N N/A Was a LCS required?

Y(N) N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		LCS-072206	R	32.8 (40-130)	(·)	()	1-24	JINJ/P
				(')	(, .)	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				().	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	(·)		
			ļ	()	()	()		
				()	()	()		
			ļ	()	()	()		· ·
				()	()	()		
				()	()	()		
				()	()	(·)		
			<u> </u>	()	()	()		
				()	()	()		
			 	()	()	()		

LDC #: 15 33 2 A2b. SDG #: JOB 76 100}

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_	1	_of_	_
Reviewer:		PT	
2nd reviewer:		76	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Y	N	N/A
Y/	N	N/A

Were field duplicate pairs identified in this SDG?
Were target compounds identified in the field duplicate pairs?

	Concentration	on (ugil kay	450
Compound	3	4	RPD
KKK	23	19	19
Ø	5.5	3.7	39

	Concentration ()			
Compound		RPD		
		,		
·	:			

	Concentration) ()	
Compound			RPD
· .			

	Concentration ()	
Compound		RPD

LDC #: 1533 2A26 SDG #: 16 \$76 | 380

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	of	1
	Reviewer:_	15	
2nd	Reviewer:	×	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $RRF = (A_x)(C_h)/(A_h)(C_x)$

A, = Area of compound, C, = Concentration of compound,

A_k = Area of associated internal standard Ck = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	CEY	7/24/06	Pheno! (1st internal standard)	1.36700	1.52202	1.522	11. 33334	11.33
			Alaphthalene (2nd Internal standard)	0.13218	0.13830	0.136	4.62918	4.63
			Huorene (3rd internal standard)	1.06544	0.80162	6.802	24.76175	24.76
			Pentachlorophenol (4th internal standard)	0.09239	0.08037	6.0804	13.00860	13.01
			Biogramyline and Standard) Benzo(a) pyrene (6th Internal standard)	0.68780	0.68514	0.685	0.34276	0.343
			Benzo(a)pyrene (6th Internal standard)	1. 10702	1.06719	1.0672	3.59869	3.598
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					• 1
			Fluorene (3rd internal standard)			,		
			Pentachlorophenol (4th Internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a) pyrene (6th internal standard)					
3			Phenol (1st Internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd Internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					

Comments:	Refer to Continuing	Calibration findings wo	orksheet for list	of qualifications	and associated sam	ples when r	eported results	do not agree v	vithin 10.0% of the
<u>recalculated</u>	results.								

LDC #: 15 79 LAZY SDG #: 10 76/200

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:	/_of_	1_
	Reviewer:	15	
2nd	Reviewer:	K	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_k)/(A_k)(C_x)$ average RRF = sum of the RRFs/number of standards $A_x =$ Area of compound,

A_k = Area of associated internal standard

 C_{x} = Concentration of compound,

C_k = Concentration of Internal standard

%RSD = 100 * (S/X)

S = Standard deviation of the RRFs, X = Mean of the RRFs

#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Reported RRF (,	Recalculated RRF (2.5 std)	Reported Average RRF (Initial)	Recalculated Average RRF (Initial)	Reported %RSD	Recalculated %RSD
1	ICAL	-1-1-1	-Phenoi (1st internal standard)	1.303	1-303	1-347	1.347	6.4	L4
	301	7/21/06	Naphthalene (2nd internal standard)	0.121	0.121	0.132	0.132	14.0	14.0
			Fluorene (3rd internal standard)	0.918	0.978	1.065	1.065	11.5	11.5
			Pantachlorophenol (4th Internal standard)	6.105	0:105	0.692	0.092	26.3	26.3
			But a law standard)	0.669	0.669	6.683	0.683	3.6	3-,6-
			Photo-phenol (4th Internal standard) But	1.054	1.654	1.107	1.107	5.5	5.5
2			Phenol (1st internal standard)						
			Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
			Pentachlorophenol (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th internal standard)						
			Benzo(a)pyrene (6th internal standard)						
3			Phenol (1st internal standard)						
		1	Naphthalene (2nd Internal standard)						
		1	Fluorene (3rd internal standard)						
		1	Pentachlorophenol (4th internal standard)		: ./ :				
		1	Bis(2-ethylhexyl)phthalate (5th internal standard)						,
		1	Benzo(a)pyrene (6th internal standard)						

Comments:	Refer to Initial	Calibration finding	s worksheet	for list o	f qualifications	and	associated	samples	when	reported	results	do not	agree	within	10.0%	of the
recalculated	results.															
					•											

LDC #: 15332 AZU SDG #10876/1401

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1	_of_	_
Reviewer:		B	
2nd reviewer:		#	
		1	

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270)

1558

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100.

Where: SF = Surrogate Found

SS = Surrogate Spiked

56.8

50.8

Sample ID: #

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	1558	1455	93.2	93.2	6
2-Fluorobiphenyl	158	939.4	60.4	60.4)
Terphenyl-d14	ાષ્ટ્રક	674.8	43.2	43.2	
Phenol-d5	2337	1522	65.1	65.1	
2-Fluorophenol	2337	1494	64.0	64.0	
2,4,6-Tribromophenol	2337	2115	90.4	90.4	1
2-Chlorophenol-d4	2337	1406	60.3	60.3	

883.3

Sample ID:

1,2-Dichlorobenzene-d4

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenoi-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

	Page:_	/	_of	1
	Reviewer:		B	
2nd	Reviewer:		K	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = IMS - MSD I * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery ___

MS/MSD samples: 5 + 6

		lke	Sample	Spiked		Matrix	Matrix Spike		Matrix Spike Duplicate		SD
Compound	Adı (ng	ded (kg)	Concentration (ug kg)	Concer (us	itration	Percent I	Percent Recovery		Percent Recovery		D
	MS	MSD		Ms	MSD	Reported	Recaic.	Reported	Recaic,	Reported	Recalculated
Phenol											
Z-Chlorophenol											
1,4-Dichlorobenzene	153	153		102	80.7	66.7	66.7	52.7	52.7	23.3	23.3
N-Nitroso-di-n-propylamine	153	153		81	103	52.9	52.9	67.3	67.3	23.9	23.9
1,2,4-Trichlorobenzene	ادى	153		107	91.2	69.9	19.9	63.5	63.5	9.0	9.6
4-Chloro-3-methylphenol						<u> </u>					
Acenaphthene											
4-Nitrophenol							g (
2,4-Dinitrotoluene											
Pentachlorophenol /	230	229		269	231	117	117	101	101	15.2	15.2
Pyrene											

Comments: _F	Refer to Matrix Spike/Matrix	Spike Duplicates	findings worksheet fo	r list of qualifications	and associated	samples when	reported re	sults do	not agree with	in
10.0% of the	recalculated results.									

LDC#: 15332A29

VALIDATION FINDINGS WORKSHEET

SDG #: 16 276 Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

	Page:_	/	of_	1
	Reviewer:		17	5
2nd	Reviewer:		il	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = ILCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: LCS -672206

		olke		Spike Concentration		cs	LC	SD	LCS/	LCSD
Compound		(ded (key)	11	htration	Percent	Percent Recovery		Percent Recovery		ספ
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
Phenoi										
2-Chlorophenol										
1,4-Dichlorobenzene	156	NV	1/1	NA	71.2	71.2				/.
N-Nitroso-di-n-propylamine	156		90	1	57.7	57.7				
1,2,4-Trichlorobenzene	156		51.2		32.8	32.8				
4-Chloro-3-methylphenol										
Acenaphthene										
4-Nitrophenol										
2,4-Dinitrotoluene		:		:						
Pentachlorophenol	156	NA	179	NA.	us	115	N.K			
Pyrene										

Comments:	Refer to Labora	tory Control	Sample/Laborat	ory Control S	Sample Dup	icates findin	gs worksheet t	for list of qu	ualifications a	and associate	d samples	when re	ported
results do n	ot agree within	10.0% of the	recalculated re	sults.									

LDC #: 15332A2b SDG #: 10076 /1001

2.0

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of/
Reviewer:	13
2nd reviewer:_	X

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Factor of 2 to account for GPC cleanup

<u> Y</u> N	N/A	Were all reported results recalculated an	d verified for all level IV samples?
Y/N	N/A		target compounds agree within 10.0% of the reported results?
I			
Conc	entretic	on = $(A_{*})(1, V_{*})(DF)(2.0)$ $(A_{*})(RRF)(V_{*})(V_{*})(%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. # 1 . Dibenzo (a, h) anthracere
A _k	=	Area of the characteristic ion (EICP) for the specific internal standard	
l <u>.</u>	=	Amount of internal standard added in nanograms (ng)	Conc. = $(109826)(2)(2)(2)(1000)(32)$
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	245 396 110/ 72/
V _i	***	Volume of extract injected in microliters (ul)	= 50.40
V _t	==	Volume of the concentrated extract in microliters (ul)	= 50 ng kg
Df	=	Dilution Factor.	, v
% S	=	Percent solids, applicable to soil and solid matrices only.	

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration	Qualification
				,	
ļ 					
			<u> </u>		
			1		
				· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·	

LDC #: 15332A3 VALIDATION COMPLETENESS WORKSHEET

Level III/IV

Date: \$\frac{9}{4\structure}\$

Page: 1 of 1

Reviewer: 7

2nd Reviewer: 4

Laboratory: Analytical Resources, Inc.

SDG #: JO76/JQ01

METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	¥	Sampling dates: $\frac{1}{2}$ - $\frac{1}{2}$ - $\frac{1}{2}$ / $\frac{1}{2}$
II.	GC/ECD Instrument Performance Check	-	, ,
III.	Initial calibration	Ą	
IV.	Continuing calibration / I W	Å	
V.	Blanks	Á	
VI.	Surrogate spikes / Lutyrul fll	SW	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples	SW	
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	sulfur & oail dean up
Xb.	GPC Calibration	N	,
XI.	Target compound identification	4	
XII.	Compound quantitation and reported CRQLs	SW.	
XIII.	Overall assessment of data	Ä.	
XIV.	Field duplicates	dh	D=18+19
XV.	Field blanks	7	

Note: A = Acc

A = Acceptable

ND = No compounds detected

D = Duplicate TB = Trip blank

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation

1	LDW-SC8-8-10**	11	LDW-SC19-9-11.9**	21	LDW-SC49-6-8**	31	
2	LDW-SC8-8-10DL**	12	LDW-SC49-8-10	22	LDW-SC20-8-10	32	
3	LDW-SC10-6-8	13	LDW-SC21-10-11.3	23	LDW-SC20-8-10DL	33	
4	LDW-SC12-6.7-8.7	14	LDW-SC23-6-8	24	LDW-SC19-9-11.9MS	34	
5	LDW-SC14-6-8.7	15	LDW-SC23-8-10.2**	25	LDW-SC19-9-11.9MSD	35	
6	LDW-SC14-6-8.7DL	16	LDW-SC25-8-9.1	26		36	
7	LDW-SC14-10-11	17	LDW-SC28-12-12.6	27		37	
8	LDW-SC15-8-10	18	LDW-SC33-8-10	28		38	
9	LDW-SC19-6-7	19	LDW-SC201-8-10	29		39	
10	LDW-SC19-6-7DL	20	LDW-SC41-6-7.9	30		40	

LDC#: 1533243 SDG#: 1533243

VALIDATION FINDINGS CHECKLIST

Page: / of 2 Reviewer: 5 2nd Reviewer: 1

Method: GC HPLC				
Validation Area	Yes	No	NA	Findings/Comments
La estajisal taplajagilimes				18 M
All technical holding times were met.				
Cooler temperature criteria was met.				
(Boppia) aligation				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) ≤ 20%?	/			
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?		/		
Did the initial calibration meet the curve fit acceptance criteria?			/	
Were the RT windows properly established?				
W. Continuing collection				
What type of continuing calibration calculation was performed?%D or %R				
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) < 15%.0 or percent recoveries 85-115%?	/			
Were all the retention times within the acceptance windows?				
VARIAGE IV.				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/	-	
Wip Storrogate's pikes				
Were all surrogate %R within the QC limits?	-			
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?	/			
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?			/	·
wilk Matrix spike/Matrix spike/deplicates/				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	\$1000000000000000000000000000000000000		\$23 0 \$000	
VIII. Laboratory controlls amples				
Was an LCS analyzed for this SDG?	/_		ļ	
Was an LCS analyzed per extraction batch?				

LDC#: 15332 A3 SDG#: 1076/180]

VALIDATION FINDINGS CHECKLIST

Page: 76 2 Reviewer: 79 2nd Reviewer: 4

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?			-	
X-ir-egronal Quality Assurance and equality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?			2006000000	
Xe Jerge condeded dentification.				
Were the retention times of reported detects within the RT windows?			A TRAVENCIA	
XII Somportid Kira phiathor/CRQLS;				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		1		
XII Systemine formance				
System performance was found to be acceptable.	/			
XIII Cvarally sees meat erklala				
Overall assessment of data was found to be acceptable.				
XIV rivets outplicates				
Were field duplicate pairs identified in this SDG?			-	
Were target compounds idetected in the field duplicates?				
XVXFJeldblagkshire and a second of the secon				1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	I. Dieldrin	Q. Endrin ketone	Y. Arocior-1242	GG.
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	нн.
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Arocior-1254	II.
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. DB 608	кк.
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. DB 1701	LL.
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE.	MM.
H. Endosulfan I	P. Methoxychlor	X. Arocior-1232	FF.	NN.

Notes:	

LDC #:	5332	4-3
SDG #:_	5332	17001

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

Page:_	<u></u>
Reviewer:	13
Reviewer:	

METHOD: HPLC

Are surrogates required by the method? Yes____ or No___.

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were surrogates spiked into all samples and blanks?

Y N N/A Did all surrogate recoveries (%R) meet the QC limits?

	Sample	Detecto		Surrogate		-				
#	, di	Colum		Compound			%R (Limits	<u> </u>		Qualifications
	4	not spec	Quist	TCMX	4	3.2		50-150	no	QUAL 2X DIL
		3)		
		<u> </u>)		
	10	\ \\\		DCB		00		50-150)		SDR OIL
									<u> </u>	
	16/					2			1	112
\dashv	18	- 		TCMX		31.8		20-120	1 2	u1 P
		-						,	-	
_	2	1		TCMX		45.	8	80-150	IA	O QUAL POX DIL
				V-10.12				()		
								()		
	22	V		TCMX		36.4 (50-150)		1	141/P 1	
							(
								()		
								()		
								()		
								(
\dashv)		
)		
										T T T
	Surrogate Cor			Surrogate Compound			Surre	ogate Compound		Surrogate Compound
A	Chlorobenzene		G	Octacosane		M	Benzo(e)Pyrene		\$	1-Chloro-3-Nitrobenzene
С	4-Bromofluorobenz a,a,a-Trifluorot		Н	Ortho-Terpheny Fluorobenzene (FI		N O	Terphenyl-D14 Decafluorobiphenyl (DCB)		T U	3,4-Dinitrotoluene Tripentyltin
D	Bromochlorob		j i	n-Triacontane		Р	1-methylnaphthalene		V	Tri-n-propyllin
E	1,4-Dichlorob		К	Hexacosane		Q		enyl Acetic Acid (DCAA)	W	Tributyl Phosphate
F	1,4-Difluorobenze		L	Bromobenzene		R	4-Nitrophenol		×	Triphenyl Phosphate

LDC #:1	23	32A	+3
SDG #:_	10	76/	7001

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

	Page:_	1 of 1
	Reviewer:	19
2nd	Reviewer:	*

METHOD: __@C __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analy

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Y N N/A

Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

/Level IV/D Only Y N N/A

Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

#	LCS/LCSD ID	Compound	%	LCS R (Limits)		LCSD %R (Limits)		RPD (Limits)		Associated Samples	Qualifications
	LCS-672104	Α	49.1	(50-1	<i>(5</i> 2)	()	()	JOHNSST 22, 23	JUJ/P
				()	()	()	7-7	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
						()		<u>,</u>		
					'		· `		,		
		T		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	. ()	()	,	
				()	()	(,)		
						((
				()	()	()		
				()	()	()		
				()	().	′ ()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	(.)		
				(:)	(1	j		

LDC #:_1	53	3 2 A	53
SDG #:_	10.	76 W	601

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: _	
Reviewer:	17
2nd Reviewer:	K_

METHOD: __GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

∕ Level IV/D Only

Y N N/A Y/N N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

#	Compound Name	% RPD Bet column Finding	Associated Samples	Qualifications
	38	49		J/A autect
	28		A	4
	note: BB	for #9 has u	0% RPD Bit whemn	(pissel)

Comments: _	See sample calculation verification worksheet for recalculations	

LDC#: 1573243 SDG#: 1076/160]

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

.

METHOD:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

Y N N/A YN N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

_				<u> </u>
#	Compound Name	Finding	Associated Samples	Qualifications
	AA, 88	exceeded cal Range	1	ΔU
			5	ΔN
	BB	V		10.12
	AA BB, Z	1	q	AH
	, ,	1		4, 4
	ВВ	V	22	1)A
		<u> </u>	<u> </u>	

Comments: _	ee sample calculation verification worksheet for recalculations	

LDC #: 15332 A3 SDG #: 1076 [180]

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

	Page:	
	Reviewer:	17
2nd	Reviewer:	×

METHOD: __GC __HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable?

#	Compound Name	Finding	Associated Samples	Qualifications
	AA, BB	exceeded cal Prange.	\	R/A
	all except Above	diluted	2	R/A
	ВВ	exceeded cal Pange	5	R/A
	All except Above	diluted	6	R/A
	AA, BB, 7	exceeded cal Range	9	R/A
	all except albove	diluted	10	P/A
	38	exceeded and Pange	22	R/A
	all except above	di lufed	23	R/A

Comments:					

LDC #: 1533 2 A3 SDG #: 1076 140

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	
	Reviewer:	A
2nd	Reviewer:	C

METHOD: GC_	HPLC

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C

average CF = sum of the CF/number of standards

%RSD = 100 * (S/X)

A = Area of compound,

C = Concentration of compound,

S = Standard deviation of the CF

X = Mean of the CFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
_#	Standard ID	Calibration Date	Compound	CF (W std)	CF.	Average CF (initial)	Average CF (Initial)	%RSD	%RSD
1	ICAL	6/21/06	1260-1	0.1316	01316	0.1315	0.1375	15.1	15-1
	,	RTX-5							
2		7B-35	1260	0.1249	0.1249	0.1280	0.1280	11.9	11-9
<u> </u>					<u> </u>				
3		••				·			
4									

Comments: Refer to Initial Ca	alibration findings worksheet for list of qualifications and associated samples when rep	orted results do not agree within 10.0% of the recalculated
results,		:

LDC #:_	1533243	
SDG #:	1074 1200	

VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

	Page:_	
	Reviewer:	
2nd	Reviewer:	

METHOD: GC_	HPLC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	Average CF(Ical)/ CCV Conc.	CF/Conc. CCV	CF/Conc. CCV	%D	%D
1	cev 10:10	711966	1240-1 2TX-5	200	491.1	491.1	1-8	1.8
		'	7 B35	4	458.7	458.7	8.3	8.3
2	cev 15:08	7/19/06			453.	453.1	9.4	7.4
				ν	444.	4441	11-2	11.2
3	cev 204	7/19/06			497.8	4978	0.4	0,4
			<u> </u>	· J	504.1	504.1	0.8	0.8
		· · · · · · · · · · · · · · · · · · ·				<u> </u>	· · · · · · · · · · · · · · · · · · ·	
4	Cev 1805	7/20/06			5 35,5	535.5	. 7-1	7-1
			J	7	526.4	526,4	5.3	5-3

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:	5332A3
SDG #:_	1001/4706
_	

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	
Reviewer:	19
2nd reviewer:	4

METHOD: _GC _ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: #

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
TCMX	2B35	40	L9-3 27.13	69.2	69.3	O
DC13	7835	40	126:7 50.66	127	127	D

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
		,				

LDC #: <u>\</u>	5	33	2	A-3	
SDG #:_	لـ`	07	6	780	/

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:of	
Reviewer:/5	
2nd Reviewer:	

METHOD:GCHPLC			
The percent recoveries (%R) and rela	tive percent di	fferences (RPD) of the matrix spike an	d matrix spike duplicate were recalculated for the compounds identified below
using the following calculation:			
%Recovery = 100 * (SSC - SC)/SA	Where	SSC = Spiked concentration SA = Spike added	SC = Sample concentration
RPD =(((SSCMS - SSCMSD) * 2) / (SSCMS + 5	SCMSD))*100	MS = Matrix spike percent recovery	MSD = Matrix spike duplicate percent recovery
MS/MSD samples: 24+25			

	Sp	oike	Sample	Spike S	Sample	Matri	x spike	Matrix Spike	Matrix Spike Duplicate		/ISD
Compound	Ad (vg	ded	Conc.	Concei (us	ntration	Percent	Recovery	Percent R	eçovery	RP	D
	MS	MSD	J /	MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)				:							
Diesel (8015)											
Benzene (8021B)											
Methane (RSK-175)											
2,4-D (8151)											
Dinoseb (8151)						·					
Naphthalene (8310)						-	·		-		
Anthracene (8310)											
HMX (8330)											
2,4,6-Trinitrotoluene (8330)											
Arodor 1260	19.6	19.8	NO	12.4	14.0	63.3	63.3	70.7	70.7	12.1	12-1
			ļ							ļ	-
	-		<u> </u>						!	<u> </u>	
		-				<u> </u>		ļ	· · · · · · · · · · · · · · · · · · ·		
	<u> </u>	<u> </u>			1				<u> </u>	<u> </u>	

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET SDG #:						
The percent recoveries (%R) and re compounds identified below using the	lative percene following	ent differences (RPD) calculation:	of the laboratory control sample and labor	atory control sample duplicate we	re recalculated for the	
%Recovery = 100 * (SSC - SC)/SA	Where	SSC = Spiked concentrat SA = Spike added	on SC = Sample concentration			
RPD =(((SSCLCS - SSCLCSD) * 2) / (SSCLC LCS/LCSD samples:)))*100 LCS	= Laboratory Control Sample percent recovery	LCSD = Laboratory Control Sample dupli	cate percent recovery	

	Spi Add	ike	Sample	Spike :	Sample ntration	LC	cs	LCS	D	LCS/L	.CSD
Compound		1Kg/	Conc.	(पर	JEV)	Percent F	Recovery	Percent R	ecovery	RP	ם
	LCS	LCSD		LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)											
Diesel (8015)											
Benzene (8021B)											
Methane (RSK-175)											
2,4-D (8151)											
Dinoseb (8151)											
Naphthalene (8310)											
Anthracene (8310)											
HMX (8330)											
2,4,6-Trinitrotoluene (8330)											
Arodor 1260	102	NA	0	80.7	NA	79.1	79,	NA-			
					-						
						1					

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and associated to the control Sample Duplicate findings worksheet for list of qualifications and the control Sample Duplicate findings worksheet for list of qualifications and the control Sample Duplicate findings worksheet for list of the control Sample Duplicate findings worksheet findings worksheet for list of the control Sample Duplicate findings worksheet for list of the control Sample Duplicate findings worksheet for list of the control Sample Duplicate findings worksheet for list of the control Sample Duplicate findings worksheet for list of the control Sample Duplicate findings worksheet for list of the control Sample Duplicate findings worksheet find the control Sample Duplicate findings worksheet findings worksheet findings worksheet findings worksheet findings worksheet	lated samples when reported
results do not agree within 10.0% of the recalculated results.	

LDC #:	15332A3	
SDG #:	J076/JQ0	1

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

	Page:	<u>/</u> of <u>/</u>
	Reviewer:	
2nd	Reviewer:	4

METHOD: (_Gc	HPLO
\wedge		

	ţ	-	
/	Y	W	N/A
		N	N/A
	/-		

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds within 10% of the reported results?

Concentration= (A)(Fv)(Df)	Example:
(RF)(Vs or Ws)(%S/100)	Sample ID. # \ Compound Name \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor	June
RF= Average response factor of the compound	Concentration = 1603. 35 × 5
In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample	25.4
%S= Percent Solid	= 316.6 ug/kg

#	Sample ID	Compound	Reported Concentrations (Recalculated Results Concentrations ()	Qualifications
	Aroclor 1260 =	101 5650 × 80	= 1358.54		
		467253 × 0.1280			
	Arodol 1260-1+	2 +5 = 1358.54+	1866. 614 + 1584.	708	
		3	3		
		= 1603,35			

Comments:		 		

LDC #: 15332A19 VALIE	PATION COMPLETENESS WORKSHEET	Date: <u> </u>
SDG #: J076/JQ 01	Level III/IV	Page:_/_of/
Laboratory: Analytical Resources, Inc.		Reviewer:
METHOD: GC/MS Tributyl-tin (Krone)	18=101>- SIM	2nd Reviewer:/ N

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	Δ	Sampling dates: 2 18 - 2 27 00
If.	GC/MS Instrument performance check	Δ	
JII.	Initial calibration	1 2500	
IV.	Continuing calibration / 1 CV	Δ	
V.	Blanks	Δ	
VI.	Surrogate spikes		
VII.	Matrix spike/Matrix spike duplicates	Α	
VIII.	Laboratory control samples /52M	A	L C5
IX.	Regional Quality Assurance and Quality Control	N	·
X.	Internal standards	5W	•
XI.	Target compound identification	Δ	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	Δ	Not reviewed for Level III validation.
XIII.	Tentitatively identified compounds (TICs)	Ŋ	Not reviewed for Level III validation. not reported
XIV.	System performance	&	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	Ŋ	
XVII.	Field blanks	N	

Note:

ND = No compounds detected R = Rinsate

A = Acceptable N = Not provided/applicable SW = See worksheet

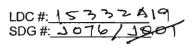
FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation

5	ediment				
1	LDW-SC25-8-9.1**	11	MB- 071406	21	31
2	LDW-SC25-8-9.1DL**	12		22	32
1 3	LDW-SC28-12-12.6	13		23	33
4	LDW-SC28-12-12.6DL	14		24	34
5	LDW-SC25-8-9.1MS	15		25	35
6	LDW-SC25-8-9.1MSD	16		26	36
7		17		27	37
8		18		28	38
9		19		29	39
10		20		30	40

Notota


LDC #: 15332A19 SDG #: 1076/1801

VALIDATION FINDINGS CHECKLIST

Page: / of 2 Reviewer: // 2nd Reviewer: //

Method: Semivolatiles (EPA SW 846 Method 8270C)

Method: Semivolatiles (EPA SW 846 Method 8270C)				
Validation Area	Yes	No	NA	Findings/Comments
(Elicanicar Inding times)				
All technical holding times were met.				
Cooler temperature criteria was met.	-			
freeMedasumentgeromense area)				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
District Californica				<u> </u>
Did the laboratory perform a 5 point calibration prior to sample analysis?	_			
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?				
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?				
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?	يممر	4 V		
ilv. Centicungs adjaction.				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?		_		
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?		1		
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?	/			
y/(B)ariks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.			/	
yi sa rojeta suksa				
Were all surrogate %R within QC limits?	\setminus			
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
vultivatos selvetivasigia advaltatas			(Z)-	
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
Will, ealer, along a cry commit samples			<u></u>	
Was an LCS analyzed for this SDG?				

VALIDATION FINDINGS CHECKLIST

Page: 7 of 2
Reviewer: 5
2nd Reviewer: 1

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	\leq	ļ		
Were the LCS percent recoverles (%R) and relative percent difference (RPD) within the QC limits?				
IX steptistals chality assurance and chality countries				
Were performance evaluation (PE) samples performed?			_	
Were the performance evaluation (PE) samples within the acceptance limits?	than arrows so	Section See Section 1997		
X (riteria) sendend				
Were internal standard area counts within -50% or +100% of the associated calibration standard?		/		
Were retention times within ± 30 seconds from the associated calibration standard?	/			
XI. Teiderceiller millientification				and the second s
Were relative retention times (RRT's) within + 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?			_	
Were chromatogram peaks verified and accounted for?			MA TOTAL PARTY OF	
XII-Someonetquantietton/SRGES.				1998
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?			_	-
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII Teneriusiy deniilteras mpomis (ROS)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			~	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?	,		~	
MM Bydlen gegennance with a second power of the second				
System performance was found to be acceptable.				
XV::Overállassessment ofidala				
Overall assessment of data was found to be acceptable.				
XVII Problem migres				
Field duplicate pairs were identified in this SDG.			-	A SECTION OF SECTION CONTRACTOR C
Target compounds were detected in the field duplicates.				
X/Lipedbanks				
Field blanks were identified in this SDG.			-	
Target compounds were detected in the field blanks.			-	

LDC #:_	1533	2A19
SDG #:_	1533	17001

VALIDATION FINDINGS WORKSHEET Internal Standards

	Page:	·_/_of	_
	Reviewer:	B	
2nd	Reviewer:	×	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were all internal standard area counts within -50 to +100 of the associated calibration standard?

YN N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications				
		1	p-Terphenyl-	14 395838(91680-36	(122)	J/A det our V+R				
		5	¥	377320 ()	NO QUAL (MS)				
			- T.		<u> </u>	1 /				
<u> </u>		3	¥	371428 ()		J/A dut our *				
-										
		,								
					* Pibuly Tina					
					Bufyl Tin ion					
<u> </u>										
<u></u>										
-										
		·	-							
<u></u>										
					L.					

* QC limits are advisory

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylena-d12

LDC #: 15332419 SDG #: 1076/1801

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	
Reviewer:	F
2nd Reviewer:	4

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable?

#	Date	Compound Sample tD	Finding	Associated Samples	Qualifications
		All	diluted	2, 4	R/A
ļ					
		·			

Comments:	 	 		 	 		 		
	 			 	 <u> </u>			 	
			_			_	 	 	

OVR.2S

LDC #: 15 35 4317 SDG #: 1076/1007

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	1	_of	/
	Reviewer:		P	
2nd	Reviewer:		d	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_k)/(A_k)(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of compound,

A_a = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound,

C_k = Concentration of internal standard

S = Standard deviation of the RRFs, X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (0,	RRF	Average RRF (Initial)	Average RRF (initial)	%RSD	· %RSD
1	ITU	7/17/04	Phenol (1st internal standard)	0.809	0.809	0.754	0.754	5.9	5.9
		, , ,	Naphthalane (2nd internal standard)	0.053	0.053	0.049	0.049	6.0	6.0
			Fluorene (3rd internal standard)	1					
			Pentachlorophenol (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th Internal standard)						
			Benzo(a)pyrene (6th internal standard)						
2			Phenol (1st internal standard)						
			Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
			Pentachiorophenol (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th Internal standard)						
			Benzo(a)pyrene (6th internal standard)						
3			Phenol (1st internal standard)						
			Naphthalene (2nd Internal standard)						
			Fluorene (3rd internal standard)						
			Pentachlorophenol (4th internal standard)		1.				
			Bis(2-ethylhexyl)phthalate (5th internal standard)						
			Benzo(a)pyrene (6th Internal standard)						

Comments: .	Refer	to I	<u>nitial</u>	Calibration	<u>findings</u>	worksheet	for I	ist o	f qualifications	and	associated	samples	when	reported	results	<u>do not</u>	agree	within	10.0%	of the
recalculated	results														·					
				•					•											

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	
Reviewer:	P
2nd Reviewer:	1

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_h)/(A_h)(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $A_x =$ Area of compound,

A_{ls} = Area of associated internal standard

 C_{*} = Concentration of compound,

C_h = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	40718	7/18/06	Phonol (1st internal standard)	0.60846	0.10221	0.30221	15.40758	15-40758
	11:37		Naphihalana (2nd internal standard)	0.04867	0.05428	0.05428	11.52071	11.52
			Fluorene (3rd internal standard)					
			Pentachiorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th Internal standard)					
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a) pyrene (6th internal standard)					
3			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th Internal standard)					
			Bis(2-ethylhexyl)phthalate (5th Internal standard)					
			Benzo(a)pyrene (6th internal standard)					

Comments:	Refer to 0	Continuing (Calibration find	ings worksheet fo	r list of	qualifications	and associa	ted samples	when repo	orted results do	not agree within	10.0% of the
recalculated	results.											

LDC #: 1533 2019 SDG #: 1076/1807

VALIDATION FINDINGS WORKSHEET <u>Surrogate Results Verification</u>

Page:	/_of_/
Reviewer:	A
2nd reviewer:	R

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270)

The percent recoveries (%F	 R) of surrogates were recalculate 	ed for the compounds identified below	using the following calculation:
----------------------------	---	---------------------------------------	----------------------------------

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: # !

	Surrogate Spiked		Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene do tripropy tivi	47.18	24.39 × 0.55 26.30 × 0.55	19 43.9	ا ۱۰۵۹ ع	۵ (
2-Fluorobiphenyl Tripurty) Tin	47.18	26.30 × 0.50	49.2	255.74=49.2) 0
Terphenyl-d14		Ì		Hexul	,,,
Phenol/d5				3 cho	rote.
2-Flugrophenol					,
2,4/6-Tribromophenol					•
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:____

	Surrogate Spiked	Surrogale Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14				,	
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4				1	
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5	1				
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

	Page:	/_of	/
	Reviewer:	P	
2nd	Reviewer:	01	
		$\overline{}$	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = IMS - MSD I * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery ____

MS/MSD samples: ____ 5 → C

		ike ded	Sample Concentration	Spiked Concer	Sample itration	Matrix	Spike	Matrix Spike	e Duplicate	MS/M	SD
Compound	(ng	Ita)	(ng/g)	(ne	JKY_	Percent F	Recovery	Percent F	Recovery	RPI)
	MS	MSD		MS	MSD	Reported	Recaic.	Reported	Recalc.	Reported	Recalculated
Eberrol Tin Ion	41.8	41.9	Qu	20.3 40.6	19.7	48.6	48.6	47.0	47.0	3.6	3,0
2-Chiarophenol											
1,4-Dichlorobenzene									/		
N-Nitroso-di-n-propylamine											
1,2,4-Trichlorobenzene											
4-Chloro-3-methylphenol											
Acenaphthene											
4-Nitrophenol											
2,4-Dinitrotoluene											
Pentachiorophenoi											
Pyrene											

Comments: Refer to Matrix Spike/Matrix S	pike Duplicates findings worksheet for lis	st of qualifications and associated	d samples when reported	results do not agree within
10.0% of the recalculated results.				

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	<u>/</u> of/_
Reviewer:	17
2nd Reviewer:	1

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: LCS-071406

Compound		oike Ided Kcy)	Conce	nike ntration	LC Percent I	CS Recovery	LC:		LCS/LCSD RPD		
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported Recalc.		Reported	Recalculated	
Phenol Tin Ion	27.7	NA	44.6	AU	62.1	62.	NA -				
2-Chloropherol											
1,4-Dichlorobenzene											
N-Nitroso-dl-n-propylamine											
1,2,4-T/ichlorobenzene											
4-Chloro-3-methylphenol											
Aceraphthene											
4-Nitrophenol											
2,4-Dinitrotoluene				,							
Pentachlorophenol											
Pyrene											

Comments:	Refer to Labo	oratory Con	trol Sample	/Laboratory	Control	<u>Sample Du</u>	plicates	findings	workshee	t for list o	t qualific	ations and	associated	samples	s when r	eported
results do n	ot agree with	in 10.0% of	f the recalc	ulated result	ts.											
			·													
																

LDC #:_	1533	2A19
SDG #:_	1533	17001

VALIDATION FINDINGS WORKSHEET Internal Standards

	Page:	·_/_of	_
	Reviewer:	B	
2nd	Reviewer:	×	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were all internal standard area counts within -50 to +100 of the associated calibration standard?

YN N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		1	p-Terphenyl-	14 395838(91680-36	(122)	J/A det our V+R
		5	¥	377320 ()	NO QUAL (MS)
			- T.		<u> </u>	1 /
<u> </u>		3	¥	371428 ()		J/A dut our *
-						
		,				
					* Pibuly Tina	
					Bufyl Tin ion	
				`		
<u> </u>						
<u></u>						
-						
		·	-			
<u></u>						
					L.	

* QC limits are advisory

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylena-d12

LDC #: 15332419 SDG #: 1076/1801

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	
Reviewer:	F
2nd Reviewer:	4

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable?

#	Date	Compound Sample tD	Finding	Associated Samples	Qualifications
		All	diluted	2, 4	R/A
ļ					
		·			

Comments:	 	 		 	 		 		
	 			 	 <u> </u>			 	
			_			_	 	 	

OVR.2S

LDC #: 15 35 4317 SDG #: 1076/1007

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	1	_of	/
	Reviewer:		P	
2nd	Reviewer:		d	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_k)/(A_k)(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of compound,

A_a = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound,

C_k = Concentration of internal standard

S = Standard deviation of the RRFs, X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (0,	RRF	Average RRF (Initial)	Average RRF (initial)	%RSD	· %RSD
1	ITU	7/17/04	Phenol (1st internal standard)	0.809	0.809	0.754	0.754	5.9	5.9
		, , ,	Naphthalane (2nd internal standard)	0.053	0.053	0.049	0.049	6.0	6.0
			Fluorene (3rd internal standard)	1					
			Pentachlorophenol (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th Internal standard)						
			Benzo(a)pyrene (6th internal standard)						
2			Phenol (1st internal standard)						
			Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
			Pentachiorophenol (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th Internal standard)						
			Benzo(a)pyrene (6th internal standard)						
3			Phenol (1st internal standard)						
			Naphthalene (2nd Internal standard)						
			Fluorene (3rd internal standard)						
			Pentachlorophenol (4th internal standard)		1.				
			Bis(2-ethylhexyl)phthalate (5th internal standard)						
			Benzo(a)pyrene (6th Internal standard)						

Comments: .	Refer	to I	<u>nitial</u>	Calibration	<u>findings</u>	worksheet	for I	ist o	f qualifications	and	associated	samples	when	reported	results	<u>do not</u>	agree	within	10.0%	of the
recalculated	results														·					
				•					•											

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	
Reviewer:	P
2nd Reviewer:	1

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_h)/(A_h)(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $A_x =$ Area of compound,

A_{ls} = Area of associated internal standard

 C_{*} = Concentration of compound,

C_h = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	40718	7/18/06	Phonol (1st internal standard)	0.60846	0.10221	0.30221	15.40758	15-40758
	11:37		Naphihalana (2nd internal standard)	0.04867	0.05428	0.05428	11.52071	11.52
			Fluorene (3rd internal standard)					
			Pentachiorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th Internal standard)					
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a) pyrene (6th internal standard)					
3			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th Internal standard)					
			Bis(2-ethylhexyl)phthalate (5th Internal standard)					
			Benzo(a)pyrene (6th internal standard)					

Comments:	Refer to 0	Continuing (Calibration find	ings worksheet fo	r list of	qualifications	and associa	ted samples	when repo	orted results do	not agree within	10.0% of the
recalculated	results.											

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

	Page:	/_of	/
	Reviewer:	P	
2nd	Reviewer:	01	
		$\overline{}$	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = IMS - MSD I * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery ____

MS/MSD samples: ____ 5 → C

		ike ded	Sample Concentration	Spiked Sample Concentration		Matrix	Matrix Spike		Matrix Spike Duplicate		SD
Compound	(ng	Ita)	(ng/g)	(ne	JKY_	Percent Recovery		Percent Recovery		RPD	
	MS	MSD		MS	MSD	Reported	Recaic.	Reported	Recalc.	Reported	Recalculated
Eberrol Tin Ion	41.8	41.9	Qu	20.3 40.6	19.7	48.6	48.6	47.0	47.0	3.6	3,0
2-Chiarophenol											
1,4-Dichlorobenzene									/		
N-Nitroso-di-n-propylamine											
1,2,4-Trichlorobenzene											
4-Chloro-3-methylphenol											
Acenaphthene											
4-Nitrophenol											
2,4-Dinitrotoluene											
Pentachiorophenoi											
Pyrene											

Comments: Refer to Matrix Spike/Matrix S	pike Duplicates findings worksheet for lis	st of qualifications and associated	d samples when reported	results do not agree within
10.0% of the recalculated results.				

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	<u>/</u> of/_
Reviewer:	17
2nd Reviewer:	1

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: LCS-071406

Compound		oike Ided Kcy)	Conce	Spike Concentration (us \ \		LCS Percent Recovery		SD Recovery	LCS/LCSD RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
Phenol Tin Ion	27.7	NA	44.6	AU	62.1	62.	NA -			
2-Chloropherol										
1,4-Dichlorobenzene										
N-Nitroso-dl-n-propylamine										
1,2,4-T/ichlorobenzene										
4-Chloro-3-methylphenol										
Aceraphthene										
4-Nitrophenol										
2,4-Dinitrotoluene				,						
Pentachlorophenol										
Pyrene										

Comments:	Refer to Labo	oratory Con	trol Sample	/Laboratory	Control	<u>Sample Du</u>	plicates	findings	workshee	t for list o	t qualific	ations and	associated	samples	s when r	eported
results do n	ot agree with	in 10.0% of	f the recalc	ulated result	ts.											
			·													
																

LDC #:_	15 332A19
SDG #:_	J076/180T

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	/of/
Reviewer:	15
2nd reviewer:	<u></u>

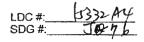
METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Υ	N	WA
Υ	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $\frac{(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)}{(A_{\bullet})(RRF)(V_{\bullet})(V_{\bullet})(\%S)}$			Example:				•		
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D			_;			
A	/=	Area of the characteristic ion (EICP) for the specific internal standard							
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = <u>(</u>)()()()(<u>)(</u>	<u> }(_</u>	
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).			ail	KI D			
V_i	=	Volume of extract injected in microliters (ul)	=		000	r v		•	
V,	==	Volume of the concentrated extract in microliters (ul)							
Df	=	Dilution Factor.							
%S	=	Percent solids, applicable to soil and solid matrices only.				۲.	. •	•	
2.0	=	Factor of 2 to account for GPC cleanup					•		


2.0		ark for all o cleanap		•	
#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
		<u>.</u>			
					· •
	· · · · · · · · · · · · · · · · · · ·				
	·				
				· .	

LDC#		VA	LIDATIO		PLETEN evel III/		SS WORKSHE	ET	Date: 8 8 2 Page: 1 of 1
	atory: Analytical Resour	ces, li	nc	_	010/11//				Reviewer: W
METH	IOD: Metals (EPA SW 8	346 M	ethod 6010E	3/7000)					2nd Reviewer:
	amples listed below wer tion findings worksheets		ewed for ea	ch of the f	following	valio	dation areas. Valid	ation find	dings are noted in attache
	Validation	Area					Co	nments	
1.	Technical holding times			A	Sampling	date	es: 2/10/06 -	2/5	106
0.	Calibration			SW			,		
III.	Blanks			A					
IV.	ICP Interference Check Sa	mple (I	CS) Analysis	SW					
V.	Matrix Spike Analysis			SW					
VI.	Duplicate Sample Analysis			A					
VII.	Laboratory Control Sample	s (LCS)	A	Les,	51	2 M		
VIII.	Internal Standard (ICP-MS)			N	2 60	+	utilizel.		
IX.	Furnace Atomic Absorption	QC		N	3,-		0		
X.	ICP Serial Dilution			A					
XI.	Sample Result Verification			A	Not reviewed for Level III validation.				
XII.	Overall Assessment of Data	а		+					
XIII.	Field Duplicates			N					
XIV.	Field Blanks			\v\					
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	е	R = Rins	o compound sate eld blank	ls detected		D = Duplicate TB = Trip blank EB = Equipment	blank	
Validat	ed Samples: ** Indicates sam	ple und	derwent Level	V validation	1				
1	LDW-SC8-8-10**	11			21	\prod		31	
2	LDW-SC12-6.7-8.7	12			22			32	
3	LDW-SC14-6-8.7	13			23	\perp		33	
4	LDW-SC14-10-11	14			24	\perp		34	
5	LDW-SC25-8-9.1	15			25	\perp		35	
6	LDW-SC28-12-12.6	16			26			36	
7	LDW-SC8-8-10MS	17			27			37	
8	LDW-SC8-8-10DUP	18			28			38	
9	PB	19			29			39	
10		20			30			40	
Notes	:								

Page:_	of~
Reviewer:	MY
2nd Reviewer.	W

Method: Metals (EPA SW 846 Method 6010/7000/6020)

1110411110411110110110110110110110110110				
Validation Area	Yes	No	NA	Findings/Comments
Brechicalholdingsimes is a second of the sec				
All technical holding times were met.	V	<u> </u>	ļ	
Cooler temperature criteria was met.		00000	2002549205	
II Galibration (1)				
Were all instruments calibrated daily, each set-up time?	1	<u> </u>	<u> </u>	
Were the proper number of standards used?	1			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury and 85-115% for cyanide) QC limits?	/			
Were all initial calibration correlation coefficients > 0.995? (Level IV only)				
IIIn Blanks		T T		
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
pystoralitoterence Chebic Sample 1997 p. m. 1997				
Were ICP interference check samples performed daily?	/_			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	210027042	127709-0710-05-100-06	Sales Company	
W-Matrix spike/Matrix spike/duplicates				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.		/		
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	/			
Vallaboratory controls amples		1000		
Was an LCS anayized for this SDG?	/			
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			
VI. Furnare Atomic Absorption QC			A Second	
If MSA was performed, was the correlation coefficients > 0.995?			4	
Do all applicable analysies have duplicate injections? (Level IV only)				
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			/	
Were analytical spike recoveries within the 85-115% OC limits?				

VALIDATION FINDINGS CHECKLIST

Page: ∑of →
ReviewerI,M_
2nd Reviewer:

		,	$\overline{}$	
Validation Area	Yes	No	NA	Findings/Comments
VIPICE Seral pulpions a says as a register	125			
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the IDL?	1	See		
	1	_	┼─	
Were all percent differences (%Ds) < 10%?	-	<u> </u>	 	
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.		ĺ	1-	
8/JE/hterital/StandardS(EPA/SW/S4F)Method/8020)		ALC: NO.		na na vista de la compania de la co La compania de la co
Were all the percent recoveries (%R) within the 30-120% of the intensity of the internal standard in the associated initial calibration?			/	
If the %Rs were outside the criteria, was a reanalysis performed?			/	
X: Regional Quality As Surance and Quality Quartol:				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
X Sample Fesult Verideation () 1970 - 1970				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Auguralia sessimento i della sessimento della sessima della sessimento della sessimento della sessimento della sessima della sessimento della				
Overall assessment of data was found to be acceptable.	/		2543.00	
Change applicates to the second of the secon				
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.			/	
XIII Feldulans (200)				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.			/	

LDC #: 533 AC

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:_	l_of
Reviewer:	MH
2nd reviewer:	

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1,5.6	Selvit	Al, Sb, As) Ba, Be, Cd, Ca, Cr, Co Cu) Fe, Pb Mg, Mn, (Hg, N), K, Se) Ag Na, (T) No, B, Si, CN,
2-4	-	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Ag) Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
10× 7		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
18	<i></i>	AI, (Sb) (Q) Ba, Ba, Cd, Ca, (Cr) (Co) (Cy) Fo(Pb) Mg, Mn, (Hg, (Ni) K, \$a) (Ag) Na, (Ti) (V/Zz) Md, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni; K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
·		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al. Sb. As, Ba, Be, Cd. Ca, Cr. Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
**		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ní, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
ICP Trace	.,	AI, St). (As) Ba, Be, (C), Ca, Cr, (C), Cy, Fe, Pb) Mg, Mn, Hg, Ni) K, Se(Ag), Na, (T)(V)Zn, (Mo) B, Si, CN,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,

Comments:_	Mercury by CVAA if performed?	

LDC #:	15332A4
SDG #:	T076

VALIDATION FINDINGS WORKSHEET Calibration

Page:_	
Reviewer:	MH
2nd Reviewer:	N

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y) N N/A

Were all instruments callbrated daily, each set-up time, and were the proper number of standard Were all instruments callbrated daily, each set-up time, and were the proper number of standards used?

Y) N N/A Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110% for all analytes except mercury (80-120%) and cyanide (85-115%)?

LEVEL IV ONLY:

YNNA Was a midrange cyanide standard distilled?

Are all correlation coefficients ≥0.995? Y7N N/A

N N/A Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recalculation Worksheet for recalculations.

#	Date	Calibration ID	Analyte	%R	Associated Samples	Qualification of Data
	7/13/06	CRDL	Zn	65-0 (70-130)	1,5,6,8	N. Fuel (>2x ckbc)
\parallel	-					0 0
				,		
П						
\parallel		· · · · · · · · · · · · · · · · · · ·				
					<u> </u>	
H						
\parallel						

Comments:	<u> </u>	 	 	 	
		 	 	 · · · · · · · · · · · · · · · · · · ·	

LDC #:_	15332A4
SDG #:	7076

VALIDATION FINDINGS WORKSHEET ICP Interference Check Sample

Page:_	of/
Reviewer:_	my
2nd Reviewer:	1

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. N N/A

#	Date	ICS Identification	Analyte	Finding	Associated Samples	, Qualifications
	7/3/46	JESA	Gr	-6.2 V/L	1,5,6,8	No gred (Al Ca, Mg Fe
	, ,		Mo	8. 1		
			Se	-94.1		590% in Zes of Foliation
			Zn	-101	<u> </u>	<i>J.</i>
\parallel						
\parallel	:					
$\parallel \rightarrow \parallel$	÷				· · · · · · · · · · · · · · · · · · ·	
-						
H	:					
		~				
1.	· ·					

Comments	:	 	 	 	 	_
		 	 	 	 	_

LDC #:	5332A4
SDG #:	To 76

VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis

	Page:_	of
	Reviewer:_	IMY /
nd	Reviewer:_	X

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as	applicable questions are Identified as "N/A".
--	---

(Y) N N/A

Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor 1/3 - Y AD N/A

of 4 or more, no action was taken.

70-13
Was a post digestion spike analyzed for ICP elements that did not meet the required criteria for matrix spike recovery? Y N N/A W LEVEL IV ONLY: Y N N/A W

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	Matrix Spike ID	Matrix	Anaiyte	%R	Associated Samples	Qualifications
]	X 7	celient	5b	16.8	1-6. 8 my JluJ/A (port sq	
					1,5.6.8	
_					<u>'</u>	
+						
+						
4						
-						
-						
_						
+					<u> </u>	
+						
T						
_	```					
-						
+						
\exists						

Comments:		
		•

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page:	of
Reviewer:	m
2nd Reviewer:	K,

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found x 100 True

Where Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
3eV	ICP (Initial calibration)	Sb	2064	2000	103,2	103.2	7
	GFAA (Initial calibration)						
Ful	CVAA (Initial calibration)	Hg	7.87	8-0	98.4	98.4	Y
cw	ICP (Continuing calibration)	Ag	969,4	1000	96.9	76.9	
	GFAA (Continuing calibration)	0					
col	CVAA (Continuing calibration)	149	fios	40	100-5	1.0-5	у
	Cyanide (Initial calibration)	Ü			,		
•	Cyanide (Continuing calibation)	***					

Comments:	Refer to Calibration	Verification findings	worksheet for list o	f qualifications ar	d associated s	samples when	reported resu	lts do not agree	within 10	0.0% of the
recalculated										

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

•	1
Page:	of
Reviewer:	mn
2nd Reviewer:	d
-	

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recaluculated using the following formula:

%R = <u>Found</u> x 100

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result). True

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$ (S+D)/2

Where, S = Original sample concentration

D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = !!-SDR! x 100

Where, I = Initial Sample Result (mg/L)

SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	Recalculated %R / RPD / %D	Reported %R / RPD / %D	Acceptable (Y/N)
-as8B	ICP interference check	TR	.921	1000	92.1	92-1.	Ý
· us	Laboratory control sample	Pb	206.2	טייק	63	[°3.	î
7	Matrix spike	As	(SSR-SR)	363	93.9	93-1	
. 8	Duplicate	V	19.1	7216	8.6	8.6	
	ICP serial dilution	cy	3/215	300,365	4.]	4-0	y

Comments:	Refer to appr	ropriate wor	ksneet for its	st of qualificat	ions and asso	ociated sample	<u>s wnen repor</u>	<u>tea results ao n</u>	<u>ot agree within 1</u>	0.0% of the rec	alculated results.

LDC #:_	(5332AY
SDG #:	7076

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

Page:_	
Reviewer:	MW
2nd reviewer:_	

N	METHOD: Tra	ice Metals (EPA SW 846 Metho	d 6010/7000)
	Please see qu N N/A N N/A N N/A	Have results been reported a	ed range of the instruments and within the linear range of the ICP?
	Detected analy ollowing equa	yte results fortion:	were recalculated and verified using the
С	Concentration =	<u>(RD)(FV)(Dil)</u> (In. Vol.)(%S)	Recalculation:
	RD =	Raw data concentration	As = 0.1149 xo. stl x2 x 1000/rd = 20.9 wykg
F	-	Final volume (ml)	15- 10069 x 0546
In	n. Vol. ==	Initial volume (ml) or weight (G)	1 19
D	ii =	Dilution factor	
0/		Decimal percent solids	

Ac 21 Co 1-9 Co 9,4 Co 90,7 Pb 84 Hg 0,85 Mi 2.3 Ni 2.3 V 12.1 2n 182	21 169 547 914	У — Н
Gy 54.3 Co 9.4 Cu 90.7 Pb 84 Hg 0.85 HO 2.3 NI 2.3 V 12.1	54.7 9.4	
Co 9,4 Co 90,7 Pb 84 Hg 0,85 Mi 2,3 Ni 2,3 V 12.	9.4	
Cu 90.7 Pb 84 Hg 0,85 H0 2.3 N1 2.3 N1 2.3 V 12.	91.4	
Pb 84/ 14g 0,85 140 2.3 101 2.3 101 2.3 102 12.1	91.4	
Hg 0,85 HO 2.3 Ni 2.3 Ni 2.3 V 12.1		
Mo 2.3 Mi 2.3 My 2.3 V 12.1	84'	
Mo 2.5 Ni 2.5 No 2.3 No 2.3	28.0	
Ag 2.3 V 12.1	2.3	
VO 12.1	24	
12	2,3	
7n (82	12.6	
	183	
1		

METHOD: TOC (Plumb), Total Solids (EPA Method 160.3) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attach validation findings worksheets. Validation Area	SDG	DC #: 15332A6 VALIDATION COMPLETENESS WORKSHEET DG #: JO76/JQ01 Level III/IV Aboratory: Analytical Resources, Inc. Date: 8/8/06 Reviewer: pure 2nd Reviewer: pure									
Validation Area	METI	HOD: TOC (Plumb), Tota	al Soli	ds (EPA Me	thod 160.	3)					
I. Technical holding times				ewed for eac	ch of the f	ollowing	y va	alidation are	eas. Validatio	on fin	dings are noted in attached
Italia		Validation	Area						Comm	ents	
III. Blanks	I.	Technical holding times			A	Samplin	ıg d	ates: 2/10	06 - 2/	75	1.6
III. Blanks	ila.	Initial calibration			A						
Note: A = Acceptable N= Not provided/applicable SW = See worksheet Not compounds detected N= Not provided/applicable SW = See worksheet Not compounds detected N= Not provided/applicable SW = See worksheet Not compounds detected N= Not provided/applicable SW = See worksheet Not compounds detected N= Not provided/applicable SW = See worksheet Not compounds detected N= Not provided/applicable SW = See worksheet Not compounds detected N= Re Rinsate FB = Field blank Re R	Ifb.	Calibration verification			A						
V Duplicates A C. Turbicutus VI. Laboratory control samples A LCS, SR_M VII. Sample result verification A Not reviewed for Level III validation. VIII. Overall assessment of data A- (15, 16) IX. Field duplicates 5 (15, 16) X Field blanks ND = No compounds detected D = Duplicate Note: A = Acceptable N = Rinsate TB = Trip blank SW = See worksheet FB = Field blank EB = Equipment blank Validated Samples: ** Indicates sample underwent Level IV validation 1 LDW-SC8-8-10** 11 LDW-SC23-6-8 21 LDW-SC8-8-10MP 31 2 LDW-SC8-8-10** 11 LDW-SC23-8-10.2** 22 LDW-SC20-8-10MS 32 3 LDW-SC19-6-8 12 LDW-SC28-12-12.6 24 LDW-SC20-8-10DUP 33 4 LDW-SC14-6-8.7 14 LDW-SC28-12-12.6 24 LDW-SC8-10-10-11 15 LDW-SC3-8-10 25 DW-SC-0-8-10	III.	Blanks			Á						
VI. Laboratory control samples A LCC, 5 R-M. VII. Sample result verification A Not reviewed for Level III validation. VIII. Overall assessment of data A A IX. Field duplicates \$\frac{1}{2}\times\$ \text{ \$\frac{1}{2}\times\$ \$\frac{1}\times\$ \$	iV	Matrix Spike/Matrix Spike D	uplicat	es	A	luz					
VII. Sample result verification A Not reviewed for Level III validation. VIII. Overall assessment of data A A IX. Field duplicates \$\mathcal{L}\$ \$	٧	Duplicates			A	<u>I</u>	(.	Triplical	Tres .		— ·
VIII. Overall assessment of data A	VI.	Laboratory control samples			A.	LUS,		SRIY.			
IX. Field duplicates	VII.	. Sample result verification				Not reviewed for Level III validation.					
Note: A = Acceptable	VIII.	Overall assessment of data			A-						
Note: A = Acceptable	IX.	Field duplicates			4W	(15,16)					
N = Not provided/applicable SW = See worksheet FB = Field blank FB = Frield blank EB = Equipment blank	L _X	Field blanks			<u> </u>						
1 LDW-SC8-8-10** 11 LDW-SC23-6-8 21 LDW-SC8-8-10DUP 31 2 LDW-SC10-6-8 12 LDW-SC23-8-10.2** 22 LDW-SC20-8-10MS 32 3 LDW-SC12-6.7-8.7 13 LDW-SC25-8-9.1 23 LDW-SC20-8-10DUP 33 4 LDW-SC14-6-8.7 14 LDW-SC28-12-12.6 24 LDW-SC8-8-10-TRP 34 5 LDW-SC14-10-11 15 LDW-SC33-8-10 25 LDW-SC 20-8-10-TRP 34 6 LDW-SC15-8-10 16 LDW-SC33-8-10 26 LBS 36 7 LDW-SC19-6-7 17 LDW-SC41-6-7.9 27 37 8 LDW-SC19-9-11.9** 18 LDW-SC49-6-8** 28 38		N = Not provided/applicable SW = See worksheet		R ≃ Rins FB ≃ Fie	sate eld blank		ď	TB = 7	rip blank	k	
2 LDW-SC10-6-8 12 LDW-SC23-8-10.2** 22 LDW-SC20-8-10MS 32 3 LDW-SC12-6.7-8.7 13 LDW-SC25-8-9.1 23 LDW-SC20-8-10DUP 33 4 LDW-SC14-6-8.7 14 LDW-SC28-12-12.6 24 LDW-SC8-8-10-12-12-12-12-12-12-12-12-12-12-12-12-12-	validat	ed Samples: "Indicates sam	T uni	derwent Level i	v validation		_				
3 LDW-SC12-6.7-8.7 13 LDW-SC25-8-9.1 23 LDW-SC20-8-10DUP 33 4 LDW-SC14-6-8.7 14 LDW-SC28-12-12.6 24 LDW-SC8-8-10-TRP 34 5 LDW-SC14-10-11 15 LDW-SC33-8-10 25 LDW-SC-20-8-10-TRP 34 6 LDW-SC15-8-10 16 LDW-SC201-8-10 26 Lts 36 7 LDW-SC19-6-7 17 LDW-SC41-6-7.9 27 37 8 LDW-SC19-9-11.9** 18 LDW-SC49-6-8** 28 38	1_	LDW-SC8-8-10**	11	LDW-SC23-6	-8	21	1	LDW-SC8-8-1	10DUP	31	
4 LDW-SC14-6-8.7 14 LDW-SC28-12-12.6 24 LDW-SC8-8-10-TRP 34 5 LDW-SC14-10-11 15 LDW-SC33-8-10 25 LDW-SC 20-8-10-TBP 6 LDW-SC15-8-10 16 LDW-SC201-8-10 26 LBS 36 7 LDW-SC19-6-7 17 LDW-SC41-6-7.9 27 37 8 LDW-SC19-9-11.9** 18 LDW-SC49-6-8** 28 38	2	LDW-SC10-6-8	12	LDW-SC23-8	-10.2**	22	2	LDW-SC20-8	-10MS	32	
6 LDW-SC15-8-10 16 LDW-SC201-8-10 26 Lt/S 36 7 LDW-SC19-6-7 17 LDW-SC41-6-7.9 27 37 8 LDW-SC19-9-11.9** 18 LDW-SC49-6-8** 28 38	3	LDW-SC12-6.7-8.7	13	LDW-SC25-8-	LDW-SC25-8-9.1		3			_	
6 LDW-SC15-8-10 16 LDW-SC201-8-10 26 Lt/S 36 7 LDW-SC19-6-7 17 LDW-SC41-6-7.9 27 37 8 LDW-SC19-9-11.9** 18 LDW-SC49-6-8** 28 38	4	LDW-SC14-6-8.7	14	LDW-SC28-12-12.6		24	1	LDW-SC8.	8-10/kP	34	
7 LDW-SC19-6-7 17 LDW-SC41-6-7.9 27 37 8 LDW-SC19-9-11.9** 18 LDW-SC49-6-8** 28 38	5	LDW-SC14-10-11	15	LDW-SC33-8-10		25	5	LDW-SO	20-8-10]	BP	
8 LDW-SC19-9-11.9** 18 LDW-SC49-6-8** 28 38	6	LDW-SC15-8-10	16	LDW-SC201-8-10		26	3	HB		36	
8 LDW-SC19-9-11.9** 18 LDW-SC49-6-8** 28 38		LDW-SC19-6-7	17	LDW-SC41-6-7.9		27	7		<u> </u>	37	
9 LDW-SC49-8-10 19 LDW-SC20-8-10 29 39	8	LDW-SC19-9-11.9**	_	LDW-SC49-6-	8**	28	3			38	
	9	LDW-SC49-8-10	19 5	LDW-SC20-8-	-10	29)	-		39	
10 LDW-SC21-10-11.3 20 LDW-SC8-8-10MS 30 40	10	LDW-SC21-10-11.3	20	LDW-SC8-8-1	0MS	30)			40	

VALIDATION FINDINGS CHECKLIST

Page: of Reviewer: NY
2nd Reviewer:

Method:Inorganics (EPA Method & wwy

	T	T	T	
Validation Area	Yes	No	NA	Findings/Comments
te Technical holding times are that the second seco		504		
All technical holding times were met.	1			
Coolor temperaturo criteria was met.	\ \\	1		
IIX Calibration				
Were all instruments calibrated daily, each set-up time?	V			
Were the proper number of standards used?	/			
Were all initial calibration correlation coefficients ≥ 0.995?			/	
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/			_
Were titrant checks performed as required? (Level IV only)				
Were balance checks performed as required? (Level IV only)	/			
III. Blank 19				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
IV. Matrix spike/Matrix spike/duplicates and Duplicates				ar of the bolish by the confidence of
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	Ś	ĺ		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.				
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	/			
V leaboratory controls amples c. 11				
Was an LCS anaylzed for this SDG?			_	
Was an LCS analyzed per extraction batch?			_	
Were the LCS percent recoverles (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?		VANCOUS VANCOU		
VII, Regional Quality Assurance and Quality Control。 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是				Salar Control
Were performance evaluation (PE) samples performed?			1	
Were the performance evaluation (PF) samples within the acceptance limits?			X	

VALIDATION FINDINGS CHECKLIST

Page: Lof_	_
Reviewer. M4	
2nd Reviewer:	_

Validation Area	Yes	No	NA	Findings/Comments
vii Sample Result verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	>			
Were detection limits < RL?	~			
VIII Overall assessment of data in the large of the most of the second o				
Overall assessment of data was found to be acceptable.	V			
IX field duplicates 75 and 15				
Field duplicate pairs were identified in this SDG.	V			
Target analytes were detected in the field duplicates.	7			
XII, edit planks				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:_	of
Reviewer:	WY
2nd reviewer:	

All circled methods are applicable to each sample.

Sample ID	Parameter
1-19	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR°+ (TS)
70,22	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOO CR"+
2/24,23,75	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN (TOO CR"+ (TS)
,	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR°+
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CNT NH3 TKN TOC CR8+
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁸⁺
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁸⁺
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁸⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk Cn Nh ₃ TKN toc CR ⁵⁺
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
	ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁸⁺
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	PH TDS CI F NO, NO, SO, PO, ALK CN NH, TKN TOC CR8+
	pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+
	ph tds ci f No _s No ₂ So ₄ Po ₄ Alk Cn' Nh ₃ TKN toc CR ⁶⁺
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CRO+
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR8+

Comments:	

LDC#:_	17332A6
SDG#:	ger cour

VALIDATION FINDINGS WORKSHEET Field Duplicates

Reviewer: 2nd Reviewer:

Inorganics, Method <u>Sel</u> www

Y'N NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concent			
Analyte	15	16	RPD	
тѕ	65.3	65.1	0	(520)
тос	1.53	1.55	1	(430)

V:\FIELD DUPLICATES\FD_inorganic\15332A6.wpd

LDC #:	[332A6
SDG #:	See cou

VALIDATION FINDINGS WORKSHEET <u>Initial and Continuing Calibration Calculation Verification</u>

Page:_	of
Reviewer:	My
nd Reviewer:	

METHOD: Inorganics, I	Method _	Ell coul
The correlation coefficient	ent (r) fo	r the calibration of was recalculated. Calibration date:
An initial or continuing	calibratio	on verification percent recovery (%R) was recalculated for each type of analysis using the following formula:
%R = <u>Found</u> x 100 True		Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	
Type of Analysis	Analyte		(units)	(units)	r or %R	r or %R	Acceptable (Y/N)
Initial calibration		Blank					
Calibration verification		Standard 1					
		Standard 2					
		Standard 3					
		Standard 4					
		Standard 5					
		Standard 6					
		Standard 7					
Calibration verification	TOU	5000	5454		(09,08	109.09	У
Calibration verification	Tou	5000	¥143		(02,86	1.2.87	J
Calibration verification							

Comments:	Refer to Calibration	Verification findings	worksheet for list	of qualifications	and associated	samples when	reported results do	not agree within	10.0%
of the recalc	ulated results.					,		_	
						•			

LDC #:	15332A	6_
SDG #:_	Cie	cover

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

	Page:_	[of]
	Reviewer:	my
2nd	Reviewer:	d
	_	$\overline{}$

METHOD: Inorganics,	Method	See	coul

Percent recoverles (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = Found \times 100$ Where, True

Found =

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True =

concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = \frac{|S-D|}{x} \times 100$ Where,

S =

Original sample concentration

(S+D)/2

D =

Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated %R / RPD	Reported %R / RPD	Acceptable (Y/N)
Lez	Laboratory control sample	Tol	0,545	0-50	109	15900	У
70	Matrix spike sample		(SSR-SR)	2 4)	113.7	113.8]
21, "rf	Duplicate sample	Ts	54.8	54.6	0-5	0.5	J

results.	

LDC #:_	10332/16
SDG #:	all wer

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	of	
Reviewer:	MY	
2nd reviewer:	0	

		2nd reviewer:	
METHOD: Inorganics, Method	See cone		
N N/A Have results been report	ed and calculated correctly brated range of the instrum		
Compound (analyte) results for	ring equation:	reported with a positive detect were	
Concentration =	Recalculation:		
Toc= Toc Newly x Toc (250/1) TS.	Tac = -	19154 X 0, 5756 = 20/92 ppn = 2.02 1/0	1
	•	<i>(-</i>	

#	Sample ID	Analyte	Reported Concentration (1/2)	Calculated Concentration (火)	Acceptable (Y/N)
1	1,	TS	2.02	54.6	Y
	Ŋ	TS To U	2.07	2002	
				· · · · · · · · · · · · · · · · · · ·	
ļ					
ļ					
-					
ļ					
-					
ļ					
-					

Note:			
RECALC.6			

SDG Labo METI The s		595 ervice ins/D	es Ltd. ibenzofurar	L ns (EPA Mo	_evel IV	, 13∤ <mark>B</mark>	WORKSHEET In areas. Validation		Date: 8/55/64 Page:
valida	ation findings worksheets.			T	I				
	Validation	Area		i i	<u> </u>		Comn		
I.	Technical holding times			A .	Sampling	dates:	2/15/01	•	
11.	HRGC/HRMS Instrument pe	erforma	ance check	4					
111.	Initial calibration			<u> </u>			· · · · · · · · · · · · · · · · · · ·		
IV.	Routine calibration			 					
V.	Bianks			SN	. 1				
VI.	Matrix spike/Matrix spike du	plicate	s/buP	N/A	t-xt				
VII.	Laboratory control samples			A-	LCS.	SRM			
VIII.	Regional quality assurance	and qu	ality control	N A	<u> </u>				
IX.	Internal standards		<u> </u>						
X.	Target compound identificat	ions		A .					
XI.	Compound quantitation and	CRQL	.s	 				_	
XII.	System performance			<u> </u>					
XIII.	Overall assessment of data			SWAN					
XIV.	Field duplicates			7					
XV.	Field blanks			N					
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet ted Samples:		R = Rin	o compounds sate eld blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blan	ık	
1	LDW-SC20-8-10	11			21			31	
2	LDW-SC20-8-10DUP	12			22			32	
3		13			23			33	
4		14	-		24			34	
5		15			25			35	
6		16			26			36	
7		17			27			37	
8		18			28			38	
9		19	-		29			39	
10		20			30			40	

Notes:_

VALIDATION FINDINGS CHECKLIST

Page: 1 of 3
Reviewer: 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
i. Technical holding times				
All technical holding times were met.	/			
Cooler temperature criteria was met.	/			
II. GC/MS (natrument performance check				
Was PFK exact mass 380.9760 verified?				
Were the retention time windows established for all homologues?				
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers \leq 25% ?				
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?				
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?		,		
III. Initial calibration				
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled standards and \leq 30% for labeled standards?				
Did all calibration standards meet the Ion Abundance Ratio criteria?	/			
Was the signal to noise ratio for each target compound \geq 2.5 and for each recovery and internal standard \geq 10?	/			
IV. Continuing calibration				
Was a routine calibration performed at the beginning and end of each 12 hour period?				
Were all percent differences (%D) \leq 20% for unlabeled standards and \leq 30% for labeled standards?				
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
V. Bianks				
Was a method blank associated with every sample in this SDG?	/			
Was a method blank performed for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?				
VI. Matrix spike/Matrix spike dupilcates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
VII. Laboratory control samples				
Was an LCS analyzed for this SDG?				

LDC #: Kryoczzzł SDG #: Corer

VALIDATION FINDINGS CHECKLIST

Page: 2-of 3
Reviewer: 1
2nd Reviewer: 1

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	7			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
VIII. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			/	
Were the performance evaluation (PE) samples within the acceptance limits?				
IX. Internal standards				
Were internal standard recoveries within the 40-135% criteria?	/	<u> </u>		
Was the minimum S/N ratio of all internal standard peaks ≥ 10?	/			
X Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	/			
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?				
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	/			
Did compound spectra contain all characteristic ions listed in the table attached?	/			
Was the Ion Abundance Ratio for the two quantitation ions within criteria?	/			
Was the signal to noise ratio for each target compound and labeled standard > 2.5?	/			
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?	2			
For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in the corresponding PCDPE channel?		/		
Was an acceptable lock mass recorded and monitored?				
XI: Compound quantitation/CHQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XII. System performance				
System performance was found to be acceptable.				
XIII: Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates	—			
Field duplicate pairs were identified in this SDG.				

LDC #:_	15426421	
SDG #:		

VALIDATION FINDINGS CHECKLIST

	Page:_	3	_of <u>-</u> ⊰
	Reviewer:		K /
2nd	Reviewer:		9

Validation Area	Yes	No	NA	Findings/Comments
Target compounds were detected in the field duplicates.				,
XV. Field blanks				
Field blanks were identified in this SDG.		/		
Target compounds were detected in the field blanks.			1	

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G, OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:	 			

LDC #:_	154	OSAZ
SDG #		

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	
Reviewer:_	d.
2nd Reviewer:	Q _

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW-846 Method 8290) /6/≥₺

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Were all samples associated with a method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction was performed?

Y/N N/A Was the method blank contaminated?

Blank extraction date: 7/11/06

Blank analysis date: 7/19/06

Associated samples: 44

Compound	Blank ID			Sa	ample Identifica	tion	 	
	WC19595-	101 1,	2					
F	0.089	75	×					
G	0.376							
J	0.052							
Q	0.086							
ч	0.052	V						
		<u> </u>						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 15405AM SDG #: COPER

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	of
Reviewer:	DC,
2nd Reviewer:	4

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8299) 1612 B

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Was the overall quality and usability of the data acceptable?

\rightarrow											
#	Date	Sample ID	Finding	Associated Samples	Qualifications						
		1,2	H (DB5)		R/A						

Comments:						
				 		 _

LDC #: ISHOSAZ SDG #: cara

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	10f_1
	Reviewer:	K
2nd	Reviewer:	d

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW-846 Method 8299) 16136

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_k)/(A_k)(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

A_x = Area of compound,

A_k = Area of associated internal standard C_k = Concentration of internal standard

C_x = Concentration of compound, S = Standard deviation of the RRFs, X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (CS≯ std)	RRF (2-2) std)	%RSD	%RSD
1	Iche	4/27/06	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	0.99	0.99	0.97	9.97	11.9	11.7
			2,3,7,8-TCDD (19C-2,3,7,8-TCDD)					,	
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)						
			OCDF (13C-OCDD)						
2	ICAL	6/26/06	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	1.35	1.35	1,25	1.25	15.0	15.0
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.12	1.12	1.06	1.06	مد. ا	(3.6
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.96	0.96	0.72	0.92	8.25	8.36
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.09	1.09	1.06	1.05	7.43	7.42
			OCDF (13C-OCDD)	1.57	1.57	1.4	121	4.67	4.6
3			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (¹⁸ C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)						
			OCDF (**C-OCDD)						

Comments:	Refer	to Initia	l Calibration	findings	worksheet	for lis	t of	qualifications	and	associated	samples	when	reported	results	do not	agree	within	10.0%	of the
recalculated						_													

VALIDATION FINDINGS WORKSHEET **Routine Calibration Results Verification**

•	Page:_	<u> </u>
	Reviewer:	X
2nd	Reviewer:	01

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) 6138

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_k)/(A_k)(C_x)$

RRF = continuing calibration RRF

 $A_x =$ Area of compound,

A_k = Area of associated internal standard

C_x = Concentration of compound,

C_k = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	(CC)	RAF core (CC)	- %D	%D
1	DX62-703	7/19/04	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	1.35	9.01	8.97 9.0	o not superio	d
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.12	9.44	94.0 94		
			1.2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	0.96	49.0	49-3,49		
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.09	46.9	49.1 46	.و	
			OCDF (i3C-OCDD)	1-57	91.8	90.091.	6	
2	Dx62_304	7/19/06	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	1.35	9.02	8.99		
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.1>	9.31	9.28		
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	8.96	47.4	47.5		
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.09	47.0	47.0		
			OCDF (13C-OCDD)	1.57	89.5	89.3		
3	5863-182	7/26/06	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	0.99	10.1	10.1		
			2;3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (15C-OCDD)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 45405A2 SDG #: cover

VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Sample Results Verification</u>

Page:_	lof_1
Reviewer:	-
2nd Reviewer:	9

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the la	aboratoy control sample and laborato	ry control sample duplicate (if ap	oplicable) were recalculated
for the compounds identified below using the following calculation:			

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: WG19595-102

Compound	Ac	pike Ided	Spiked S Concen	tration	LC Percent R		I CS		I CS/I	
		LCSD	LCS	Lesp	Reported	Recalc	Reported	Recalc	Reported	Recalculated
2,3.7.8-TCDD	10		8.59		85.9	85.9			,,	
1,2,3,7,8-PeCDD	50		44.4		84.8	88.8				
1,2,3,4,7,8-HxCDD	1		47.8		95.5	95.6				
1,2,3,4,7,8,9-HpCDF			45.6		91.2	91.2				
OCDF	100		93.4		93.4	93.4				
			,							
	ļ									
			<u>.</u>							

Comments:	Refer to Laborator	y Control Sample	findings worksheet	for list of qualif	ications and ass	ociated samples	s when reported re	sults do not agree v	<u>vithi</u> n 10.0% of the
recalculated	results.								
									-

Ions Monitored for HRGC/HRMS Analysis of PCDDs/PCDFs

Descriptor	Accurate mass ^(a)	Ion ID	Elemental Composition	Analyte	Descriptor	Accurate Mass ^(a)	Ion ID	Elemental Composition	Analyte
1	303.9016 305.8987 315.9419 317.9389 319.8965 321.8936 331.9368 333.9338 375.8364 [354.9792]	M M+2 M M+2 M M+2 M M+2 M+2 LOCK	C ₁₂ H ₄ ³⁵ Cl ₄ O C ₁₂ H ₄ ³⁵ Cl ₃ ³⁷ ClO ¹³ C ₁₂ H ₄ ³⁵ Cl ₃ ³⁷ ClO C ₁₂ H ₄ ³⁵ Cl ₄ O ₂ C ₁₂ H ₄ ³⁵ Cl ₄ O ₂ C ₁₂ H ₄ ³⁵ Cl ₄ O ₂ ¹³ C ₁₂ H ₄ ³⁵ Cl ₄ O ₂ ¹³ C ₁₂ H ₄ ³⁵ Cl ₄ O ₂ ¹³ C ₁₂ H ₄ ³⁵ Cl ₅ O ₃ OClO ₂ C ₁₂ H ₄ ³⁵ Cl ₅ O ₃ OClO ₂ C ₁₂ H ₄ ³⁵ Cl ₅ O ₃ OClO ₂ C ₁₂ H ₄ ³⁵ Cl ₅ O ₃ OClO ₂ C ₁₂ H ₄ ³⁵ Cl ₅ O ₃ OClO ₂	TCDF TCDF (S) TCDF (S) TCDD TCDD TCDD (S) TCDD (S) TCDD (S) HxCDPE PFK	4	407.7818 409.7788 417.8250 419.8220 423.7767 425.7737 435.8169 437.8140 479.7165 [430.9728]	M+2 M+4 M+2 M+2 M+4 M+4 M+2 M+4 M+4 LOCK	C ₁₂ H ³⁵ Cl ₆ ³⁷ Cl ₂ O C ₁₂ H ³⁵ Cl ₅ ³⁷ Cl ₂ O ¹³ C ₁₂ H ³⁵ Cl ₇ O ¹³ C ₁₂ H ³⁵ Cl ₆ ³⁷ ClO C ₁₂ H ³⁵ Cl ₈ ³⁷ ClO ₂ C ₁₂ H ³⁵ Cl ₈ ³⁷ Cl ₂ O ₂ ¹³ C ₁₂ H ³⁵ Cl ₈ ³⁷ Cl ₂ O ₂ ¹³ C ₁₂ H ³⁵ Cl ₅ ³⁷ Cl ₂ O ₂ C ₁₂ H ³⁵ Cl ₇ ³⁷ Cl ₂ O C ₈ F ₁₇	HpCDF HpCDF HpCDF HpCDD HpCDD HpCDD HpCDD (S) HpCDD (S) NCDPE PFK
2	339.8597 341.8567 351.9000 353.8970 355.8546 357.8516 367.8949 369.8919 409.7974 [354.9792]	M+2 M+4 M+2 M+4 M+2 M+4 M+2 M+4 M+2 LOCK	C ₁₂ H ₃ ³⁵ Cl ₃ ³⁷ ClO C ₁₂ H ₃ ³⁵ Cl ₃ ³⁷ Cl ₂ O ¹³ C ₁₂ H ₃ ³⁵ Cl ₃ ³⁷ Cl ₂ O C ₁₂ H ₃ ³⁵ Cl ₃ ³⁷ Cl ₂ O C ₁₂ H ₃ ³⁵ Cl ₃ ³⁷ Cl ₂ O C ₁₂ H ₃ ³⁵ Cl ₃ ³⁷ Cl ₂ O ¹³ C ₁₂ H ₃ ³⁵ Cl ₃ ³⁷ Cl ₂ O ¹³ C ₁₂ H ₃ ³⁵ Cl ₃ ³⁷ Cl ₂ O C ₁₂ H ₃ ³⁵ Cl ₃ ³⁷ Cl ₂ O C ₁₂ H ₃ ³⁵ Cl ₆ ³⁷ ClO C ₆ F ₁₃	PeCDF PeCDF (S) PeCDF (S) PeCDD PeCDD PeCDD PeCDD (S) PeCDD (S) PeCDD (S) PECDF (S)	5	441.7428 443.7399 457.7377 459.7348 469.7780 471.7750 513.6775 [422.9278]	M+2 M+4 M+2 M+4 M+2 M+4 M+4 LOCK	C ₁₂ ³⁵ Cl ₇ ³⁷ ClO C ₁₂ ³⁵ Cl ₈ ³⁷ Cl ₂ O C ₁₂ ³⁵ Cl ₇ ³⁷ ClO ₂ C ₁₂ ³⁵ Cl ₇ ³⁷ Cl ₂ O ₂ ¹³ C ₁₂ ³⁵ Cl ₇ ³⁷ Cl ₂ O ₂ ¹³ C ₁₂ ³⁵ Cl ₈ ³⁷ Cl ₂ O ₂ C ₁₂ ³⁵ Cl ₈ ³⁷ Cl ₂ O C ₁₀ F ₁₇	OCDF OCDD OCDD (S) OCDD (S) OCDD (S) DCDPE PFK
3	373.8208 375.8178 383.8639 385.8610 389.8156 391.8127 401.8559 403.8529 445.7555 [430.9728]	M+2 M+4 M M+2 M+2 M+4 M+2 M+4 M+4 LOCK	C ₁₂ H ₂ ³⁵ Cl ₃ ³⁷ ClO C ₁₂ H ₂ ³⁵ Cl ₃ ³⁷ Cl ₂ O ¹³ C ₁₂ H ₂ ³⁵ Cl ₅ O ¹³ C ₁₂ H ₂ ³⁵ Cl ₅ ³⁷ ClO C ₁₂ H ₂ ³⁵ Cl ₅ ³⁷ ClO ₂ C ₁₂ H ₂ ³⁵ Cl ₅ ³⁷ ClO ₂ ¹³ C ₁₂ H ₂ ³⁵ Cl ₅ ³⁷ ClO ₂ ¹³ C ₁₂ H ₂ ³⁵ Cl ₅ ³⁷ Cl ₂ O C ₁₂ H ₂ ³⁵ Cl ₆ ³⁷ Cl ₂ O C ₁₂ H ₂ ³⁵ Cl ₆ ³⁷ Cl ₂ O C ₉ F ₁₇	HXCDF HXCDF (S) HXCDF (S) HXCDD (S) HXCDD HXCDD HXCDD (S) HXCDD (S) OCDPE PFK					

(a) The following nuclidic masses were used:

H = 1.007825 O = 15.994915 C = 12.000000 $^{35}CI = 34.968853$ $^{13}C = 13.003355$ $^{37}CI = 36.965903$ F = 18.9984

S = internal/recovery standard

C:\WPDOCS\WRK\DIOXIN90\TCl90.21

LDC #:_	15426421	·
SDG #:_	Cover	

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	lof/
Reviewer:	
2nd reviewer:	OV

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

M	Ν	N/A
$\langle Y \rangle$	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concent	ration	$= \frac{(A_{\bullet})(I_{\bullet})(DF)}{(A_{it})(RRF)(V_{o})(\%S)}$	Exampl
A_x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. =
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
RRF	=	Relative Response Factor (average) from the initial calibration	=
Df	==	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices only.	

Example:	
Sample I.D. 1	_ _ :
Conc. = (1.0eL)(20 (6.35e8)(1.12	(0.622) (17)
= 0.318 ng/by	

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
i					
			-		
-					