
APPENDIX D-2 ROUND 2 DATA VALIDATION REPORT

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

LDC #15063/15115/15145/14235 August 9, 2006

Windward Environmental, LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 ATTN: Ms. Marina Mitchell

SUBJECT: Lower Duwamish Waterway Group Sediment Sample Data Validation

Dear Ms. Mitchell,

Enclosed is our EPA Level III and Level IV data validation of analytical chemistry. results generated in support of the Lower Duwamish Waterway Group project. The analyses were performed by Analytical Resources, Inc. and AXYS Analytical Services Ltd. Samples were analyzed for GC/MS Semivolatiles by EPA SW 846 Methods 8270D and 8270D-SIM, GC Polychlorinated Biphenyls by EPA SW 846 Method 8082, Butyltins by EPA SW 846 Methods 8270D-SIM/Krone Method, Metals by EPA SW 846 Methods 6010B/7471A, Total Organic Carbon by Plumb and Method. Total Solids by EPA Method 160.3 HRGC/HRMS Dioxins/Dibenzofurans by EPA Method 1613B. Samples are referenced under the following Sample Delivery Groups: JH57, JK31, JL31, JL32, JL33, JL34 and DPWG19451/WG19107. See the Sample Analysis Table (Attachment 1) for the number of samples reviewed.

Please feel free to contact us if you have any questions.

Sincerely,

Stella S. Cuenco

Project Manager/Senior Chemist

CHEMICAL DATA QUALITY REVIEW FOR SUBSURFACE SEDIMENT SAMPLES (ROUND 2)

Lower Duwamish Waterway Group LDC# 15063, 15115, 15145 & 15238

This report details the findings of an EPA Level III and EPA Level IV data validation of analytical chemistry results generated in support of the Lower Duwamish Waterway Group project. The analyses were performed by Analytical Resources, Inc. and AXYS Analytical Services Ltd. Samples were analyzed for GC/MS Semivolatiles by EPA SW 846 Methods 8270D and 8270D-SIM, GC Polychlorinated Biphenyls by EPA SW 846 Method 8082, Butyltins by EPA SW 846 Methods 8270D-SIM/Krone Method, Metals by EPA SW 846 Methods 6010B/7471A, Total Organic Carbon by Plumb Method, Total Solids by EPA Method 160.3 and HRGC/HRMS Dioxins/Dibenzofurans by EPA Method 1613B. Samples are referenced under the following Sample Delivery Groups: JH57, JK31, JL31, JL32, JL33, JL34 and DPWG19451/WG19107. See the Sample Analysis Table (Attachment 1) for the number of samples reviewed and the Sample Validation Table (Attachment 2) for the sample identifications and analyses. Sample IDs ending in "**" underwent Level IV review.

The QC guidelines used for data qualification are those specified in the National Functional Guidelines for Organic Data Review (October 1999), National Functional Guidelines for Inorganic Data Review (July 2002) and the EPA Region 10 SOP for the Validation of Polychlorinated Dibenzodioxin (PCDD) and Polychlorinated Dibenzofuran (PCDF) Data (Revision 2.0 January 31, 1996). Specific QC criteria used follow the Lower Duwamish Waterway Group Final Subsurface Sediment Sampling for Chemical Analyses Quality Assurance Project Plan (February 3, 2006). Where specific guidance is not available, the data has been evaluated in a conservative manner using professional experience.

The following items were evaluated during the review:

- Holding Times
- Sample Preservation
- Cooler Temperatures
- Instrument Calibration
- Blanks
- Surrogates
- Matrix Spike/Matrix Spike Duplicates
- Internal Standards
- Laboratory Control Samples
- Target Compound Identifications*
- Compound Quantitation and CRQLs*
- System Performance
- Field Replicates

^{*}Data were not reviewed for Level III.

					kalin kann										mei						154 155 214	Hardina								17271174(191)	HILLIAN IN	ALEX DESC	itettu (1714)		Dillin.
		LDC /	#1 5063	(1)	/ind	wa	rd l	Env	'iro	nm	ent	al,	¥.(iea	ttle	W	4 / I	_OV	/er	Du	war	nis	ηM	/ate	rwa	ay (Gro	up)						
_DC	SDG#	DATE REC'D	(3) DATE DUE	T(DC (mb)	Sol	tal lids 0.3)																												
Matri	x: Water/Sediment			W	s	W	s	W	s	W	s	W	s	W	S	W	S	W	s	W	s	W	s	W	S	W	s	W	s	V	S	W	\$	W	s
Α	JK31	06/08/06	06/29/06	0	14	0	14																												
Α	JK3 <u>1</u>	06/08/06	06/29/06	0.	19	0	19.																												
								<u> </u>								L																			
				<u> </u>	lacksquare																		<u> </u>												
			_							ļ																									
_									Ц.																										
_				_				<u></u>				_	_							_			_												_
				<u> </u>			ļ		_		_							_			_														
_									<u> </u>							\square						<u> </u>													
_	_		_						_			_																						_	
_									_		<u> </u>							_																\Box	_
_	_	_							_	_	_	_						_	_																_
	_			_							_	_				Щ					_			_											
_							_		<u> </u>									<u> </u>					_	ļ										\dashv	
\rightarrow										_	<u> </u>								_				_	_											
				_					ļ	_												_	<u></u>											\dashv	
				_					ļ									_						_			····		\Box						
-+		_		<u> </u>						_								<u> </u>				_	_	_	_										
\dashv	_	-		ļ					_			_						<u> </u>	_				_	_											_
\dashv			<u> </u>	\vdash	\vdash				\vdash	_		ļ				Н			\vdash										_						_
\dashv	_			ļ	-					_		_							\vdash				_	\vdash										-	_
\dashv			ļ <u>. </u>	\vdash					\vdash		_	\vdash	ļ										\vdash	\vdash											
\dashv				\vdash	\vdash	<u> </u>			\vdash									\vdash	-	 	-		\vdash	\vdash											
																						 	 	⊢											
-			-																																
					-					 		-						-		\vdash															
\dashv		-								\vdash												\vdash												\vdash	
	_											-		ļ						\vdash		 			—										
\dashv	<u> </u>					 				-																				 		_			$\overline{}$
\dashv																																			_
otal	B/SC	-		0	33	0	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	66
otai	B/3C	<u> </u>		U	33	<u> </u>	აა	U	U	L		<u> </u>		U	U	U	U		L	U	ŢŮ	ΙV	L	U	<u> </u>	ı v	<u> </u>				ľ		Ū	<u> </u>	<u></u>

۸	lta	٦h	-	~-	~+	1
м	Цa	UH	ш	е	11	- 1

		LDC:	#15115	; (V)	linc	lwa	ırd	Ēπ	/iro	nm	ent	al,	LL	3 - ()ea	ttle	W	4 77	Lov	/er	Du	war	nis	h V	/ate) TW	ay (Gro	up)		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				The state of the s
LDC	SDG#	DATE REC'D	(3) DATE DUE	SV (82)	OA 70D)	(82	OA 70D IM)	PC (80	:Bs (82)	&	tals Hg '846)	(74	lg 71A)	Buty (Kre	itins one)										2,732,270								2524534	7.7.55	
Matr				-	S		s	w		W		W		W	S	W	s	w	s	W	s	w	s	w	s	W	Ş	w	s	W	s	W	S	W	s
Α			07/07/06		12	0	12	0	16	0		0	3	0	4				_					_											Ш
A	<u>J</u> H57	06/15/06	07/07/06	0	7	0	7	.0	17	0	4	0	0	::0	1			_						ļ											
Н				\vdash			-		├	-	_	\vdash		_										 											
Н			_	┢						┝	\vdash	<u> </u>						-					\vdash	ļ <u> </u>											
								\vdash			\vdash							<u> </u>				\vdash	ļ												
				 								\vdash											_												
\sqcap			_																																-
						<u> </u>							 							-									\vdash						
П																									-				_						П
																																			П
	<u>_</u>																									·									
Ш																																			Ш
Щ				<u> </u>							<u></u>							L						<u> </u>											
				_						_														<u> </u>					Щ				\dashv		Ш
$\vdash \vdash$	_			_		ļ					ļ	_													ļ							Ш	\dashv		Н
$\vdash \vdash \vdash$			_	_			_			<u> </u>		_																							Н
$\vdash\vdash$				ļ		_					_	\vdash																							Н
$\vdash \vdash \vdash$						ļ				<u> </u>	<u> </u>	┢	_																						Н
$\vdash \vdash$	<u> </u>			\vdash	\vdash	\vdash				\vdash	\vdash	-												_	\vdash										Н
 				 	\vdash	\vdash	\vdash					\vdash	\vdash	_					┝						\vdash										Н
				-		\vdash				-	├─	\vdash	\vdash																						Н
	_																																		П
	,																				,							,							
																																			
																																			Ш
Fotal	B/SC			0	19	0	19	0	33	0	13	0	3	0	5	0	0	0_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	92

Attachment 1 LDC #15145 (Windward Environmental, LLC - Seattle WA / Lower Duwamish Waterway Group) (3) DATE DATE Dioxins LDC SDG# REC'D DUE (1613B) w s w s w s w s w s w s w s ws ws wswswswsws Matrix: Water/Sediment A DPWG19451/WG19107 06/23/06 07/17/06 0

B/SC

Total

LDC #15238 (Windward Environmental, LLC - Seattle WA / Lower Duwamish Waterway Group)															imer Sea		W	4 / L	_OV	/er	Đư	war	nis	h W		erw:	av (Gro	up)	_			_		
LDC	SDG#	DATE REC'D	(3) DATE	SV (827	OA 70D)	SV (82) -SI	OA 70D IM)	PC (80	Bs 82)	H (747	g /1A)	Р	b 0B)	тс	C mb)	To Sol (16)	tal ids 0.3)										<u>-</u>		<u>.</u>						
Matri	x: Water/Sediment			W	s	W	s	W	s	W	s	W	s	W	S	W	\$	w	s	W	s	W	s	w	s	W	s	W	s	w	s	w	s	W	s
A	JL31/JL32/JL33/JL34	07/17/06	08/07/06	0	16	0	16	0	50	0	4	0	6	0	62	0	62																		
																																	\Box		
								l																						_					
																												l			—				
																												· · · ·							
					-																	\vdash	_										\Box		
																						<u> </u>													-
																												_			\vdash				
- 			-												-									\vdash			\vdash								
	_							\vdash				_										<u> </u>				 						 	 		\dashv
						-														\vdash					\vdash					\vdash		-			\dashv
╟┈╌┤																									-							ļ			\dashv
$\ $				 	-																<u> </u>			├									\vdash		
				\vdash		-																		\vdash	<u> </u>								\vdash		-
																					:														-
					-															\vdash					ļ		_				_	 			Щ
 																				\vdash	ļ			_						_		_	\square		
										_																						ļ			
				ļ			<u> </u>																		_					ļ			\square		
																											<u> </u>						Ш		
igspace																																			
				ļ																													\square		
																										<u> </u>							Ш		
																																	Ш		
									ļ																										
					—							<u> </u>							<u> </u>							 					<u> </u>				\square
																						-													$ \neg $
Fotal	B/SC			0	16	0	16	0	50	0	4	0	6	0	62	0	62	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	216

SDG#: JK31				VALID	ATION S	SAMPLE	TABLE							LDC#; 1	5063A
Project Name: Lower D	uwamish Waterway G	iroup		Parar	neters/Ar	nalytical N	Method						Proje	ct #04-0	8-06-24
Client ID#	Lab ID #	Matrix	Date Collected	TOC (Plumb)	Total Solids (160.3)										
LDW-SC26-6-8	JK31A	sediment	02/22/06	Х	Х										
LDW-SC26-11.1-12.1	JK31B	sediment	02/22/06	X	Х										
LDW-SC51-3.8-5.8	JK31C	sediment	02/22/06	X	x			_		_					
LDW-SC37-5.3-6.9	JK31D	sediment	02/22/06	×	X										
LDW-SC28-5.5-7.5	JK31E	sediment	02/25/06	X	X										
LDW-SC1-4-6	JK31F	sediment	02/09/06	Х	X										
LDW-SC4-4-6	JK31G_	sediment	02/09/06	Χ	X				_						
LDW-SC33-4-6	JK31H	sediment	02/11/06	X	X						<u> </u>				
LDW-SC201-4-6	JK31I	sediment	02/11/06	X	x				_						
LDW-SC41-4-6	JK31J	sediment	02/21/06	X	х						ļ				
LDW-SC45-5-6	JK31K	sediment	02/21/06	X	X										
LDW-SC15-4-6	JK31L	sediment	02/17/06	X	Х										
LDW-SC20-4-6	JK31M	sediment	02/15/06	X	X				<u> </u>						
LDW-SC39-4-6	JK31N	sediment	02/16/06	X	Х				<u> </u>						
LDW-SC12-4-6.7	JK310	sediment	02/16/06	Χ	X										
LDW-SC6-6-8	JK31P	sediment	02/10/06	X	X					 					
LDW-SC8-4-6	JK31Q	sediment	02/10/06	X	X			_							
LDW-SC8-6-8	JK31R	sediment	02/10/06	Х	Х										
LDW-SC10-4-5	JK31S	sediment	02/10/06	Х	X										
LDW-SC16-4-6	JK31T	sediment	02/14/06	Х	Х										
LDW-SC16-8-10	JK31U	sediment	02/14/06	Х	Х										
LDW-SC23-4-6	JK31V	sediment	02/17/06	Х	Х							<u>. </u>			
LDW-SC21-4-6.2	JK31W	sediment	02/15/06	Х	х										
LDW-SC32-5.2-8	JK31X	sediment	02/11/06	Х	Х										
LDW-SC14-4.1-6	JK31Y	sediment	02/13/06	Х	Х										

SDG#; JK31				VALID	ATION	SAMPLE TA	\BLE					LDC#: 1	5063A
Project Name: Lower	Duwamish Waterway (Group		Paran	neters/A	nalytical Me	thod				Proje	ct #04-0	8-06-24
Client ID #	Lab ID#	Matrix	Date Collected	TOC (Plumb)	Total Solids (160.3)				_				
LDW-SC203-4-6	JK31Z	sediment	02/18/06	Х	Х	<u> </u>							
LDW-SC25-4-6	JK31AA	sediment	02/18/06	х	Х			_					
LDW-SC2-4-6	JK31AB	sediment	02/09/06	x	х								
LDW-SC2-10.7-12	JK31AC	sediment	02/09/06	х	x								
LDW-SC17-6-8.2	JK31AD	sediment	02/24/06	X	Х						_		
LDW-SC19-4-6	JK31AE	sediment	02/24/06	х	х						,		
LDW-SC46-4-6.8	JK31AF	sediment	02/24/06	Х	Х								
LDW-SC49-4-6	JK31AG	sediment	02/06/06	Х	х								
LDW-SC26-6-8MS	JK31AMS	sediment	02/22/06	Х									
LDW-SC26-6-8DUP	JK31ADUP	sediment	02/22/06	Х	х								
LDW-SC26-6-8TRP	JK31ATRP	sediment	02/22/06	Х	Х								
LDW-SC16-8-10MS	JK31UMS	sediment	02/14/06	Х									
LDW-SC16-8-10DUP	JK31UDUP	sediment	02/14/06	Х	Х								
LDW-SC16-8-10TRP	.lK31UTRP	sediment	02/14/06		. х								

SDG#: JH57				VALIE	ATION 8	SAMPLE	TABLE					LDC#: 1	5115A
Project Name: Lower	Duwamish Waterway (Group		Parar	neters/A	nalytical I	Vethod				Pro	ect #04-0	8-06-24
Client ID #	Lab ID #	Matrix	Date Collected	SVOA (8270D)	SVOA (8270D -SIM)	PCBs (8082)	Metals SW846	Hg (7471A)	Butyltins (Krone)				
LDW-SC26-6-8	JH57A	sediment	02/22/06	Х	Х	x	X	_	×				
LDW-SC26-6-8DL	JH57ADL	sediment	02/22/06	X	Х				X				
LDW-SC26-11.1-12.1	JH57B	sediment	02/22/06			X	х						
LDW-SC26-11.1-12.1DL	JH57BDL	sediment	02/22/06			Х							
LDW-SC51-3.8-5.8	JH57C	sediment	02/22/06			Х							
LDW-SC37-5.3-6.9	JH57D	sediment	02/22/06	×	Х	Х	Х						
LDW-SC28-5.5-7.5	JH57E	sediment	02/25/06	X	Х	X	Х		Х			_	
LDW-SC28-5.5-7.5DL	JH57EDL_	sediment	02/25/06						x				ļ
LDW-SC1-4-6	JH57F	sediment	02/09/06			X							
LDW-SC4-4-6	JH57G	sediment	02/09/06			X							
LDW-SC33-4-6	JH57H	sediment	02/11/06	X	Х	X	х						
LDW-SC33-4-6DL	JH57HDL	sediment	02/11/06	mana de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición dela composición de la composición dela composición del		X				 			
LDW-SC201-4-6	JH57I	sediment	02/11/06	X	Х	х							
LDW-SC201-4-6DL	JH57IDL	sediment	02/11/06			X							
LDW-SC41-4-6	JH57J	sediment	02/21/06	X	Χ	x							
LDW-SC41-4-6DL	JH57JDL	sediment	02/21/06			×							
LDW-SC45-5-6_	JH57K	sediment	02/21/06			Х							
LDW-SC45-5-6DL	JH57KDL_	sediment	02/21/06			χ							
LDW-SC15-4-6	JH57L	sediment	02/17/06			×			Х				
LDW-SC15-4-6DL	JH57LDL	sediment	02/17/06			Х							
LDW-SC20-4-6	JH57M	sediment	02/15/06			Х							
LDW-SC20-4-6DL	JH57MDL	sediment	02/15/06			Х							ļ
LDW-SC39-4-6	JH57N	sediment	02/16/06			Х							<u> </u>
LDW-SC39-4-6DL	JH57NDL	sediment	02/16/06			Х							
LDW-SC12-4-6.7	JH57O	sediment	02/16/06			х		Х					

SDG#: JH57				VALID	ATION S	SAMPLE	TABLE	The state of the s				Section of the Control of the Contro		LDC#: 1	5115A
Project Name: Lower	Duwamish Waterway G	iroup		Paran	neters/A	nalytical I	Vethod						Proje	ct #04-08	3-06-24
Client ID #	Lab ID#	Matrix	Date Collected	SVOA (8270D)	SVOA (8270D -SIM)	PCBs (8082)	Metals SW846	Hg (7471A)	Butyltins (Krone)						
LDW-SC12-4-6.7DL	JH57ODL	sediment	02/16/06			х					_				
LDW-SC6-6-8	JH57P	sediment	02/10/06	Х	Х	Х	Х	_							
LDW-SC8-4-6	JH57Q	sediment	02/10/06	Х	Х	х	х								
LDW-SC8-4-6RE	JH57QRE	sediment	02/10/06		Х										
LDW-SC8-6-8	JH57R	sediment	02/10/06	Х	Х	х									
LDW-SC8-6-8DL	JH57RDL	sediment	02/10/06			Х									
LDW-SC8-6-8RE	JH57RRE	sediment	02/10/06		Х						ļ. <u> </u>				
LDW-SC10-4-5	JH57S	sediment	02/10/06	Х	X	X		X					ļ		
LDW-SC10-4-5DL	JH57SDL	sediment	02/10/06			x									
LDW-SC16-4-6	JH57T	sediment	02/14/06	X	Х	Х	X				_				
LDW-SC16-4-6DL	JH57TDL	sediment	02/14/06	X	X	X									
LDW-SC16-8-10	JH57 <u>U</u>	sediment	02/14/06	χ	X	X	Х			_					
LDW-SC23-4-6	JH57V	sediment	02/17/06	Х	Х	Х			х						
LDW-SC23-4-6DL	JH57VDL	sediment	02/17/06			Х									
LDW-SC21-4-6.2	JH57W	sediment	02/15/16			Х									
LDW-SC32-5.2-8	JH57X	sediment	02/11/06	Х	Х	Х									
LDW-SC14-4.1-6	JH57Y	sediment	02/13/06	Х	Х	X		Х							
LDW-SC14-4.1-6DL	JH57YDL	sediment	02/13/06			X									
LDW-SC14-4.1-6RE	JH57YRE	sediment	02/13/06		Х										
LDW-SC203-4-6	JH57Z	sediment	02/18/06	Х	Х	X									
LDW-SC203-4-6RE	JH57ZRE	sediment	02/18/06		Х										
LDW-SC25-4-6	JH57AA	sediment	02/18/06			X.	Х		X						
LDW-SC25-4-6DL	JH57AADL	sediment	02/18/06			Х			Х						
LDW-SC2-4-6	JH57AB	sediment	02/09/06	Х	Х	х	х			_					
LDW-SC2-4-6DL	JH57ABDL	sediment	02/09/06			Х									
LDW-SC2-10.7-12	JH57AC	sediment	02/09/06	Х	Х	х	х								

SDG#: JH57				VALIE	ATION S	SAMPLE	TABLE			\$ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			LDC#:	5115A
Project Name: Lower I	Duwamish Waterway G	iroup		Parar	neters/A	nalytical l	Method					Proje	ct #04-0	8-06-24
Client ID #	Lab ID #	Matrix	Date Collected	SVOA (8270D)	SVOA (8270D -SIM)	PCBs (8082)	Metals SW846	Hg (7471A)	Butyltins (Krone)					
LDW-SC17-6-8.2	JH57AD	sediment	02/24/06	х	Х	x	х							
LDW-SC17-6-8.2DL	JH57ADDL	sediment	02/24/06	Х	Х									
LDW-SC19-4-6	JH57AE	sediment	02/24/06			х		_						
LDW-SC19-4-6DL	JH57AEDL	sediment	02/24/06			X								
LDW-SC46-4-6.8	JH57AF	sediment	02/24/06	_		Х					<u> </u>			
LDW-SC46-4-6.8DL	JH57AFDL	sediment	02/24/06			Х								
LDW-SC49-4-6	JH57AG	sediment	02/06/06			Х								
LDW-SC49-4-6DL	JH57AGDL	sediment	02/06/06			Х		_						
LDW-SC26-6-8MS	JH57AMS	sediment	02/22/06				X							
LDW-SC26-6-8DUP	JH57ADUP	sediment	02/22/06				X							
LDW-SC28-5.5-7.5MS	JH57EMS	sediment	02/25/06						х					
LDW-SC28-5.5-7.5MSD	JH57EMSD	sediment	02/25/06						х					
LDW-SC37-5.3-6.9MS	JH57DMS	sediment	02/22/06	Х	Х									
LDW-SC37-5.3-6.9MSD	JH57DMSD	sediment	02/22/06	X	Х									
LDW-SC4-4-6MS	JH57GMS	sediment	02/09/06			Х								
LDW-SC4-4-6MSD	JH57GMSD	sediment	02/09/06			Х								
LDW-SC16-4-6MS	JH57TMS	sediment	02/14/06			Х								
LDW-SC16-4-6MSD	JH57TMSD	sediment	02/14/06			Х								
LDW-SC2-10.7-12MS	JH57ACMS	sediment	02/09/06			Х								
LDW-SC2-10 7-12MSD	IH57ACMSD	sediment	02/09/06			×								

SDG# : DPWG19451/WG	19107			VALID	ATION S	AMPLE	TABLE						LDC#: 1	5145A
Project Name: Lower Du	wamish Waterway G	roup		Paran	neters/Ar	alytical l	Vethod					Proje	ct #04-0	8-06-24
Client ID #	Lab ID#	Matrix	Date Collected	Dioxins (1613B)							_	_		
LDW-SC26-6-8	L8881-1	sediment	02/22/06	х										
LDW-SC20-4-6	L8881-2	sediment	02/15/06	х								- <u>-</u> -	_	
LDW-SC20-4-6DUP	L8881-2DUP	sediment	02/15/06	Х										
														L
	_										 ·			
						_								
								_						
	_													
											 _	_		
								_						
												_		
												_		
	_											_		igwdown
_														
							_		_					
_										_				
	_									l 				

Aff	tac	hm	en	t 2

SDG#: JL31/JL32/J	JL33/JL34	_		VALID	ATION S	SAMPLE	TABLE				_		LDC#: 1	5238A
Project Name: Low	ver Duwamish Waterway G	roup		Paran	neters/Ai	nalytical	Method					Proje	ct #04-0	8-06-24
Client ID #	Lab ID#	Matrix	Date Collected	SVOA (8270D)	SVOA (8270D -SIM)	PCBs (8082)	Hg (7471A)	Pb (6010B)	TOC (Plumb)	Total Solids (160.3)			_	
LDW-SC1-05	JL31A	sediment	02/09/06	x	x	х	х		Х	Х				
LDW-SC1-05DL	JL31ADL	sediment	02/09/06		Х									
LDW-SC15-1	JL31B	sediment	02/09/06	х	Х	X	х		Х	Х		 	_	
LDW-SC15-1DL	JL31BDL	sediment	02/09/06		х							 		
LDW-SC1-1-1,5	JL31C	sediment	02/09/06	x	х	х	х		Х	Х		 		
LDW-SC1-1-1.5DL	JL31CDL	sediment	02/09/06		X_				_				_	
LDW-SC1-1.5-2	JL31D	sediment	02/09/06	<u>x</u>	х	X	X		Х	Х		, , , , , ,	_	<u> </u>
LDW-\$C1-1.5-2DL	JL31DDL	sediment	02/09/06		х							 		
LDW-SC6-0-0.5	JL31E	sediment	02/10/06		_	х			х	х				
LDW-SC6-0.5-1	JL31F	sediment	02/10/06			х			Х	Х				
LDW-SC6-1-1.5	JL31G	sediment	02/10/06			х			х	Х				
LDW-SC6-1.5-2	JL31H	sediment	02/10/06			Х			х	Х				
LDW-SC6-2-2,5	JL31I	sediment	02/10/06			х			X	Х				
LDW-SC6-2.5-3	JL31J	sediment	02/10/06			Х			х	Х				
LDW-SC6-3-3.5	JL31K	sediment	02/10/06			х		,	Х	Х				
LDW-SC6-3.5-4	JL31L	sediment	02/10/06			х			х	х				
LDW-SC6-4-4.5	JL31M	sediment	02/10/06			х			Х	х				
LDW-SC33-0-0.5	JL31N	sediment	02/11/06			Х		Х	Х	X				
LDW-SC33-0.5-1	JL31O	sediment	02/11/06			X		Х	Х	х				
LDW-SC33-1-1.5	JL31P	sediment	02/11/06			х		Х	Х	Х				
LDW-SC33-1.5-2	JL31Q	sediment	02/11/06			х		X	Х	x				
LDW-SC33-2-2.5	JL31R	sediment	02/11/06			Х		Х	Х	х				
LDW-SC33-2.5-3	JL31S	sediment	02/11/06			х		X	х	х				
LDW-SC13-05	JL32A	sediment	02/13/06			Х			х	х				
LDW-SC135-1	JL32B	sediment	02/13/06	_		х			x	х				

SDG#:	11	21/II	22/11	22/1	2.4

VALIDATION SAMPLE TABLE

LDC#: 15238A

Project Name: Lower	Duwamish Waterway	Group		Paran	<u>neters/A</u>	nalytical	Method						Proje	ct #04-08	3-06-24
Client ID #	Lab ID#	Matrix	Date Collected	SVOA (8270D)	SVOA (8270D -SIM)	PCBs (8082)	Hg (7471A)	Pb (6010B)	TOC (Plumb)	Total Solids (160.3)					
LDW-SC13-1-1.5	JL32C	sediment	02/13/06			х			х	X					
LDW-SC13-1.5-2	JL32D	sediment	02/13/06			Х			х	Х					
LDW-SC13-2-2.5	JL32E	sediment	02/13/06			х			X	X					
LDW-SC13-2.5-3	JL32F	sediment	02/13/06			X			Х	X					
LDW-SC13-3-3.5	JL32G	sediment	02/13/06			Х			Х	Х					_
LDW-\$C27-0-0.5	JL32H	sediment	02/14/06			х			X	Х					_
LDW-SC27-0.5-1	JL32I	sediment	02/14/06			x			X	Х					
LDW-SC27-1-1.5	JL32J	sediment	02/14/06			Х			х	Х					
LDW-SC27-1.5-2	JL32K	sediment	02/14/06			Х			X	Х					
LDW-SC27-2-2.5	JL32L	sediment	02/14/06			Х			х	Х					
LDW-SC27-2.5-3	JL32M	sediment	02/14/06			X			х	х					
LDW-SC27-3-3.5	JL32N	sediment	02/14/06			х			x	X					
LDW-SC27-3.5-4	JL32O	sediment	02/14/06			х			X	Х					
LDW-SC27-4-4.5	JL32P	sediment	02/14/06			Х			х	Х					
LDW-SC12-05	JL33A	sediment	02/16/06		_	Х			Х	Х		_			
LDW-SC125-1	JL33B	sediment	02/16/06			Х			х	Х					
LDW-SC12-1-1.5	JL33C	sediment	02/16/06			Х			x	х	_				
LDW-SC12-1.5-2	JL33D	sediment	02/16/06			X			х	Х					
LDW-SC12-2-2.5	JL33E	sediment	02/16/06			Х			<u>x</u>	х					
LDW-SC12-2.5-3	JL33F	sediment	02/16/06			Х			x	Х					
LDW-SC12-3-3.5	JL33G	sediment	02/16/06			Х			х	х					
LDW-SC12-3.5-4	JL33H	sediment	02/16/06			Х			х	Х					
LDW-SC23-0-0.5	JL331_	sediment	02/17/06	Х	Х				X	х					
LDW-SC23-0-0.5DL	JL33IDL	sediment	02/17/06		Х										
LDW-SC23-0.5-1	JL33J	sediment	02/17/06	х	Х				х	х	_				
LDW-SC23-0.5-1DL	JL33JDL	sediment	02/17/06		х										

CDC#.	н	24	7 11	22/11	22/11	24
SDC#-	. 11	:31	/. H	377.11	33/11	34

VALIDATION SAMPLE TABLE

LDC#: 15238A

Project Name: Lower	Duwamish Waterway	Group		Paran	neters/A	nalytical	Method		_		 	Proje	ct #04-08	3-06-24
Client ID#	Lab ID #	Matrix	Date Collected	SVOA (8270D)	SVOA (8270D -SIM)	PCBs (8082)	Hg (7471A)	Ръ (6010В)	TOC (Plumb)	Total Solids (160.3)				
LDW-SC23-1-1.5	JL33K	sediment	02/17/06	X	X				х	Х				
LDW-SC23-1-1.5DL	JL33KDL	sediment	02/17/06		х							<u> </u>		
LDW-SC23-1.5-2	JL33L	sediment	02/17/06	X	Х				x	х				
LDW-SC23-1.5-2DL	JL33LDL	sediment	02/17/06		Х									
LDW-SC23-2-2.5	JL33M	sediment	02/17/06	x	х				х	Х				
LDW-SC23-2.5-3	JL33N	sediment	02/17/06	x	Х				Х	Х	 			
LDW-SC23-3-3.5	JL33O	sediment	02/17/06	x	х				Х	Х				
LDW-SC23-3-3.5DL	JL33ODL	sediment	02/17/06	x										
LDW-SC23-3.5-4	JL33P	sediment	02/17/06	Х	Х				Х	Х	 _		_	
LDW-SC23-3.5-4DL	JL33PDL	sediment	02/17/06	x										
LDW-SC44-05	JL34A	sediment	02/21/06			х			х	Х				
LDW-SC445-1	JL34B	sediment	02/21/06			х			x	Х				
LDW-SC44-1-1.5	JL34C	sediment	02/21/06			Х			х	Х	 			
LDW-SC44-1.5-2	JL34D	sediment	02/21/06	_	_	X			х	Х				
LDW-SC44-2-2.5	JL34E	sediment	02/21/06			Х			х	х				
LDW-SC44-2.5-3	JL34F	sediment	02/21/06		_	Х			x	Х				
LDW-SC44-3-3.5	JL34G	sediment	02/21/06		_	х			Х	Х			_	
LDW-SC51-0-0.5	JL34H	sediment	02/22/06	х	Х				· X	х				
LDW-SC51-0.5-1	JL34I	sediment	02/22/06	Х.	х				х	Х				
LDW-SC51-1-1.5	JL34J	sediment	02/22/06	х	Х				Х	Х				
LDW-SC51-1.5-2	JL34K	sediment	02/22/06	х	Х	_			х	Х				
LDW-SC1-05MS	JL31AMS	sediment	02/09/06				х		_					
LDW-SC1-05DUP	JL31ADUP	sediment	02/09/06				Х				 <u> </u>			
LDW-SC15-1MS	JL31BMS	sediment	02/09/06	X	Х									_
LDW-SC15-1MSD	JL31BMSD	sediment	02/09/06	х	х									
LDW-SC1-1-1.5MS	JL31CMS	sediment	02/09/06						х					

0 D O 11	•••	~ 4		00/11	00/11	~ .
SDG#:	. II	31	/.I}	327.11	:3:37.11	.34

VALIDATION SAMPLE TABLE

LDC#: 15238A

Project Name: Lower	Duwamish Waterway	Group		Paran	neters/Ar	nalytical	Method	_				Proje	ct #04-0	8-06-24
Client ID #	Lab ID#	Matrix	Date Collected	SVOA (8270D)	SVOA (8270D -SIM)	PCBs (8082)	Hg (7471A)	Pb (6010B)	TOC (Plumb)	Total Solids (160.3)				
LDW-SC1-1-1.5DUP	JL31CDUP	sediment	02/09/06						х	Х				
LDW-SC1-1-1.5TRP	JL31CTRP	sediment	02/09/06						Х	Х	 			
LDW-SC33-0-0.5MS	JL31NMS	sediment	02/11/06					x						
LDW-SC33-0-0.5DUP	JL31NDUP	sediment	02/11/06					Х			 			
LDW-SC33-2-2.5MS	JL31RMS	sediment	02/11/06			Х								
LDW-SC33-2-2.5MSD	JL31RMSD	sediment	02/11/06			Х	<u>`</u>			_				
LDW-SC13-05MS	JL32AMS	sediment	02/13/06		_	Х					 	_		
LDW-SC13-05MSD	JL32AMSD	sediment	02/13/06	_		Х								
LDW-SC135-1MS	JL32BMS	sediment	02/13/06						x		 			
LDW-SC135-1DUP	JL32BDUP	sediment	02/13/06						<u> </u>	Х				
LDW-SC135-1TRP	JL32BTRP	sediment	02/13/06						X	Х				
LDW-SC12-05MS	JL33AMS	sediment	02/16/06			x			X		 			
LDW-SC12-05MSD	JL33AMSD_	sediment	02/16/06			х								
LDW-SC12-05DUP	JL33ADUP	sediment	02/16/06						x	x _				
LDW-SC12-05TRP	JL33ATRP	sediment	02/16/06						Х		 			
LDW-SC44-05MS	JL34AMS	sediment	02/21/06	_					х					
LDW-SC44-05DUP	JL34ADUP_	sediment	02/21/06						х	X				
1 DW-SC44-0- 5TRP	.ll 34ATRP	sediment	02/21/06_						x				<u> </u>	

Only issues which require comment or action are discussed in this report. Data deficiencies are arranged by method. Potential effects of data anomalies have been described where possible.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.

The following qualifiers are for the dioxin/dibenzofuran analysis only:

- J1 Blank Contamination: Indicates possible high bias and/or false positives.
- J2 Calibration Range exceeded: Indicates possible low bias.
- J3 Holding times not met: Indicates low bias for most analytes.
- J4 Other QC parameters outside control limits: bias not readily determined.
- J5 Other QC parameters outside control limits. The reported results appear to be biased high. The actual value of target compound in the sample may be lower than the value reported by the laboratory.
- Other QC parameters outside control limits. The reported results appear to be biased low. The actual value of target compound in the sample may be higher than the value reported by the laboratory.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

Overall Data Assessment

I. Usability

- A. Instrument calibration, method blank contamination, compound quantitation and various QC exceedance problems warranted the qualification of a portion of the data set.
 - Due to continuing calibration %D and RRF problems, results for several compounds were qualified as estimated (J/UJ) in the semivolatile-SIM analyses.
 - Due to method blank contamination, phenol was qualified as non-detected
 (U) in the semivolatile analyses.
 - Due to compound quantitation %RPD problems, detected results were qualified as estimated (J) for several compounds in the PCB analyses.
 - Due to various QC accuracy and precision problems, results were qualified as estimated (J/UJ) in the semivolatile, semivolatile-SIM, PCB and metal analyses.
- B. No action was taken when the SRM results were outside the limit of Mean ± Standard Deviation for the organic analyses since the SRM standards were outdated and there were no certified QC limits established.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J/UJ) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

GC/MS Semivolatiles by EPA SW 846 Method 8270D

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals. All ion abundance requirements were met.

All ion abundance requirements were met.

III. Initial Calibration

Percent relative standard deviations (%RSD) were less than or equal to 15:0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all semivolatile target compounds and system performance check compounds (SPCCs) were greater than or equal to 0.05 as required.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

All of the continuing calibration RRF values were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks with the following exceptions:

SDG	Method Blank ID	Extraction Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
JH57	JH7MBS1	5/10/06	Phenol	110 ug/Kg	LDW-SC26-6-8** LDW-SC26-6-8DL** LDW-SC37-5.3-6.9** LDW-SC38-5-7.5** LDW-SC33-4-6** LDW-SC201-4-6** LDW-SC41-4-6** LDW-SC6-6-8 LDW-SC8-4-6 LDW-SC10-4-5 LDW-SC10-4-5 LDW-SC16-4-6 LDW-SC16-4-6DL LDW-SC16-8-10** LDW-SC32-5-2-8 LDW-SC32-4-6 LDW-SC23-4-6 LDW-SC203-4-6 LDW-SC203-4-6 LDW-SC20-4-6 LDW-SC217-6-8.2 LDW-SC17-6-8.2
JL31 JL33 JL34	MB-061206	6/12/06	Phenol	290 ug/Kg	LDW-SC1-0-5 LDW-SC1-5-1 LDW-SC1-1-1.5 LDW-SC23-0-0.5 LDW-SC23-0.5-1 LDW-SC23-1-1.5 LDW-SC23-1.5-2 LDW-SC23-2-5 LDW-SC23-2-5 LDW-SC23-3-3.5 LDW-SC23-3-3.5 LDW-SC23-3-3.5-4 LDW-SC23-3-5-4 LDW-SC23-3-5-4 LDW-SC51-0-0.5 LDW-SC51-0-5-1 LDW-SC51-1.5-2

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

SDG	Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
JH57	LDW-SC2-4-6	Phenol	73 ug/Kg	73U ug/Kg
JL31	LDW-SC1-05	Phenol	70 ug/Kg	70U ug/Kg

SDG	Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
JL33	LDW-SC23-0-0.5	Phenol	400 ug/Kg	400U ug/Kg
JL33	LDW-SC23-0.5-1	Phenol	65 ug/Kg	65U ug/Kg
JL34	LDW-\$C51-0-0.5	Phenol	96 ug/Kg	96U ug/Kg

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

SDG	LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
JL31 JL33 JL34	LCS-061206	4-Chloroaniline Aniline	38.9 (40-130) 22.9 (40-130)	LDW-SC1-05 LDW-SC15-1 LDW-SC1-1-1.5 LDW-SC23-0-0.5 LDW-SC23-0-5-1 LDW-SC23-1-1.5 LDW-SC23-1-5-2 LDW-SC23-2-2.5 LDW-SC23-3-3.5 LDW-SC23-3-3.5 LDW-SC23-3-5-4 LDW-SC23-3-5-4 LDW-SC23-3-5-4 LDW-SC23-3-5-4 LDW-SC51-0-0.5 LDW-SC51-1-1.5 LDW-SC51-1-1.5	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р

Standard reference material was performed at the required frequencies.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

SDG	Sample	Compound	Finding.	Criteria `	Flag	A or P
JH57	LDW-SC26-6-8**	Phenanthrene Fluoranthene Pyrene	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A N/A N/A	-
JH57	LDW-SC16-4-6 LDW-SC17-6-8.2	Fluoranthene Pyrene	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A N/A	-
JL33	LDW-SC23-3-3.5	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A N/A N/A N/A N/A N/A	-
JL33	LDW-SC23-3.5-4	Fluoranthene	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A	-

N/A = Not applicable

For the results above flagged "Not applicable", the affected compound results in the associated samples were deemed unusable and did not warrant qualification of the data.

Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

SDG	Sample	Compound	Flag	A or P
JH57	LDW-SC26-6-8**	Phenanthrene Fluoranthene Pyrene 1,3-Dichlorobenzene Dimethylphthalate	R R R R	A
JH57	LDW-SC26-6-8DL**	All TCL compounds except Phenanthrene Fluoranthene Pyrene	R	А
JH57	LDW-SC16-4-6 LDW-SC17-6-8.2	Fluoranthene Pyrene 1,3-Dichlorobenzene Dimethylphthalate	R R R R	A
JH57	LDW-SC16-4-6DL LDW-SC17-6-8.2DL	All TCL compounds except Fluoranthene Pyrene	R	A
JH57	LDW-SC37-5.3-6.9** LDW-SC28-5.5-7.5** LDW-SC33-4-6** LDW-SC201-4-6** LDW-SC41-4-6** LDW-SC6-6-8 LDW-SC8-6-8 LDW-SC10-4-5 LDW-SC10-4-5 LDW-SC16-8-10** LDW-SC32-5.2-8 LDW-SC32-5.2-8 LDW-SC34-6 LDW-SC34-6 LDW-SC203-4-6 LDW-SC203-4-6 LDW-SC2-4-6 LDW-SC2-10.7-12	1,3-Dichlorobenzene Dimethylphthalate	RR	A
JL33	LDW-SC23-3-3.5	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	R R R R R R R R R	Α
JL33	LDW-SC23-3-3.5DL	All TCL compounds except Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	R	Α
JL33	LDW-SC23-3.5-4	Fluoranthene	R	А

SDG	Sample	Compound	Flag	A or P
JL33	LDW-\$C23-3.5-4DL	All TCL compounds except Fluoranthene	R	А

XVI. Field Replicates

Samples LDW-SC33-4-6** and LDW-SC201-4-6** were identified as field replicates. No semivolatiles were detected in any of the samples with the following exceptions:

		Concentrati	on (ug/Kg)	
SDG	Compound	LDW-SC33-4-6**	LDW-\$C201-4-6**	RPD (Límits)
JH57	Naphthalene	410	380	8 (≤50)
JH57	2-Methylnaphthalene	63	82	26 (≤50)
JH57	Acenaphthene	1000	710	34 (≤50)
JH57	Dibenzofuran	380	280	30 (≤50)
JH57	Fluorene	630	510	21 (≤50)
JH57	Phenanthrene	1400	1300	7 (≤50)
JH57	Anthracene	420	490	15 (≤50)
JH57	Fluoranthene	3200	5000	44 (≤50)
JH57	Pyrene	2600	4700	58 (≤50)
JH57	Benzo(a)anthracene	610	780	24 (<50)
JH57	Bis(2-ethylhexyl)phthalate	56	65U	Not calculable
JH57	Chrysene	560	900	47 (≤50)
JH57	Benzo(b)fluoranthene	380	650	52 (≤50)
JH57	Benzo(k)fluoranthene	250	440	55 (≤50)
JH57	Benzo(a)pyrene	270	500	60 (≤50)
JH57	Indeno(1,2,3-cd)pyrene	84	180	73 (≤50)
JH57	Benzo(g,h,i)perylene	110	210	63 (≤50)

		Concentrati		
SDG	Compound	LDW-SC33-4-6**	LDW-SC201-4-6**	RPD (Limits)
JH57	1-Methylnaphthalene	76	110	37 (≤50)

XVII. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Semivolatiles - Data Qualification Summary - SDGs JH57, JL31, JL33 and JL34

SDG	Sample	Compound	Flag	A or P	Reason
JL31 JL33 JL34	LDW-SC1-0-5 LDW-SC1-5-1 LDW-SC1-1-1.5 LDW-SC1-1.5-2 LDW-SC23-0-0.5 LDW-SC23-0.5-1 LDW-SC23-1.5-2 LDW-SC23-1.5-2 LDW-SC23-2-2.5 LDW-SC23-2-5-3 LDW-SC23-3-3-5 LDW-SC23-3-3-5 LDW-SC23-3-5-4 LDW-SC23-3-5-4DL LDW-SC51-0-0.5 LDW-SC51-0-5-1 LDW-SC51-1-1.5 LDW-SC51-1-1.5	4-Chloroaniline Aniline	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р	Laboratory control samples (%R)
JH57	LDW-SC26-6-8**	Phenanthrene Fluoranthene Pyrene 1,3-Dichlorobenzene Dimethylphthalate	R R R R R	A	Overall assessment of data
JH57	LDW-SC26-6-8DL**	All TCL compounds except Phenanthrene Fluoranthene Pyrene	R	A	Overall assessment of data
JH57	LDW-SC16-4-6 LDW-SC17-6-8.2	Fluoranthene Pyrene 1,3-Dichlorobenzene Dimethylphthalate	RRRR	A	Overall assessment of data
JH57	LDW-SC16-4-6DL LDW-SC17-6-8.2DL	All TCL compounds except Fluoranthene Pyrene	R	A	Overall assessment of data
JH57	LDW-SC37-5.3-6.9** LDW-SC28-5.5-7.5** LDW-SC33-4-6** LDW-SC201-4-6** LDW-SC41-4-6** LDW-SC6-6-8 LDW-SC8-4-6 LDW-SC10-4-5 LDW-SC10-4-5 LDW-SC16-8-10** LDW-SC23-4-6 LDW-SC32-5.2-8 LDW-SC14-4.1-6 LDW-SC203-4-6 LDW-SC2-4-6 LDW-SC2-4-6 LDW-SC2-10.7-12	1,3-Dichlorobenzene Dimethylphthalate	R R	А	Overall assessment of data

SDG	Sample	Compound	Flag	A or P	Reason
JL33	LDW-SC23-3-3.5	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	* * * * * *	A	Overall assessment of data
JL33	LDW-SC23-3-3.5DL	All TCL compounds except Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	R	A	Overall assessment of data
JL33	LDW-SC23-3.5-4	Fluoranthene	R	Α	Overail assessment of data
JL33	LDW-SC23-3.5-4DL	All TCL compounds except Fluoranthene	R	А	Overall assessment of data

Lower Duwamish Waterway Group Semivolatiles - Laboratory Blank Data Qualification Summary - SDGs JH57, JL31, JL33 and JL34

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
JH57	LDW-SC2-4-6	Phenol	73U ug/Kg	Α
JL31	LDW-SC1-05	Phenol	70∪ ug/Kg	А
JL33	LDW-SC23-0-0.5	Phenol	400U ug/Kg	Α _
JL33	LDW-SC23-0.5-1	Phenol	65U ug/Kg	А
JL34	LDW-SC51-0-0.5	Phenol	96U ug/Kg	A

GC/MS Semivolatiles by EPA SW 846 Method 8270D using Selected Ion Monitoring (SIM).

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals. All ion abundance requirements were met.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

Average relative response factors (RRF) for all target compounds and system monitoring compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% for all compounds with the following exceptions:

SDG	Date	Compound	%D	Associated Samples	Flag	A or P
JH57	5/18/06	2,4-Dimethylphenol	35.72017	LDW-SC26-6-8** LDW-SC28-5.5-7.5** LDW-SC33-4-6** LDW-SC201-4-6** LDW-SC41-4-6** LDW-SC8-4-6 LDW-SC16-4-6 LDW-SC16-4-6 LDW-SC16-8-10** LDW-SC23-4-6 LDW-SC32-5.2-8 LDW-SC14-4.1-6 LDW-SC203-4-6 LDW-SC203-4-6 LDW-SC203-4-6 LDW-SC17-6-8.2	J (all detects) UJ (all non-detects)	A

SDG	Date	Compound	%D	Associated Samples	Flag	A or P
JH57	5/19/06	N-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene Hexachlorobutadiene Dimethylphthalate	32.5 89.9 26.2 79.7	LDW-SC26-6-8DL** LDW-SC8-4-6RE LDW-SC8-6-8RE LDW-SC16-4-6DL LDW-SC14-4.1-6RE LDW-SC203-4-6RE LDW-SC203-4-6RE LDW-SC17-6-8.2DL	J (all detects) UJ (all non-detects)	Р
JL31 JL33 JL34	6/20/06	2-Methylphenol 2,4-Dimethylphenol 1,2,4-Trichlorobenzene	57.8 29.6 26.3	LDW-SC1-0-5DL LDW-SC1-5-1DL LDW-SC1-1-1.5DL LDW-SC1-1.5-2DL LDW-SC23-0-0.5DL LDW-SC23-0-5-1DL LDW-SC23-1-1.5DL LDW-SC23-2-5-3 LDW-SC23-2-5-3 LDW-SC23-3-3-5 LDW-SC23-3-5-4 LDW-SC51-0-0.5 LDW-SC51-1-1.5 LDW-SC51-1-1.5	J (all detects) UJ (all non-detects)	A

All of the continuing calibration RRF values were within validation criteria with the following exceptions:

SDG	Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
JH57	5/19/06	1,2,4-Trichlorobenzene	0.03227 (≥0.05)	LDW-SC26-6-8DL** LDW-SC8-4-6RE LDW-SC8-6-8RE LDW-SC16-4-6DL LDW-SC14-4.1-6RE LDW-SC203-4-6RE LDW-SC203-4-6RE LDW-SC17-6-8.2DL	J (all detects) UJ (all non-detects)	A

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

SDG	Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
JL33	LDW-SC23-1.5-2	Nitrobenzene-d5 2-Fluorobiphenyl	29.6 (40-130) 38.4 (40-130)	All base neutral compounds	J (all detects) UJ (all non-detects)	A

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

SDG	Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
JL31	LDW-SC15-1MS/MSD (LDW-SC15-1)	1,2,4-Trichlorobenzene N-Nitroso-di-n-propylamine	28.5 (40-130) 0 (40-130)	32.8 (40-130) 0 (40-130)		J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A

Although the percent recoveries of N-Nitroso-di-n-propylamine in the above MS/MSD were severely low (0%), the associated result was qualified as estimated (J/UJ) due to matrix interference.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

SDG	Sample	Internal Standards	Area (Limits)	Compound	Flag	A or P
JH57	LDW-SC17-6-8.2	Acenaphthene-d10	276496 (286380-1145522)	Dimethylphthalate	J (all detects) UJ (all non-detects)	A
JH57	LDW-SC17-6-8.2	Chrysene-d12	611047 (147566-590266)	Butylbenzylphthalate	J (all detects)	А
JH57	LDW-SC16-4-6	Acenaphthene-d10	261575 (286380-1145522)	Dimethylphthalate	J (all detects) UJ (all non-detects)	А
JH57	LDW-SC16-4-6	Chrysene-d12	702517 (147566-590266)	Butyłbenzylphthalate	J (all detects)	А
JH57	LDW-SC14-4.1-6	Chrysene-d12 Perylene-d12	685000 (147566-590266) 720075 (178804-715218)	Butylbenzylphthalate Dibenz(a,h)anthracene	J (all detects) J (all detects)	A

SDG	Sample	Internal Standards	Area (Limits)	Compound	Flag	A or P
JH57	LDW-SC203-4-6	Chrysene-d12	708757 (147566-590266)	Butylbenzylphthalate	J (all detects)	А
JH57	LDW-SC8-4-6	Chrysene-d12	715010 (147566-590266)	Butylbenzylphthalate	J (all detects)	А
JH57	LDW-SC8-6-8	Chrysene-d12 Perylene-d12	923397 (147566-590266) 746730 (178804-715218)	Butylbenzylphthalate Dibenz(a,h)anthracene	J (all detects) J (all detects)	А
JH 57	LDW-SC26-6-8**	Chrysene-d12 Perylene-d12	763575 (147566-590266) 733567 (178804-715218)	Butylbenzylphthalate Dibenz(a,h)anthracene	J (all detects) J (all detects)	A
JL31	LDW-SC1-05	Chrysene-d12 Perylene-d12	596775 (126152-504606) 683744 (145432-581726)	Butylbenzylphthalate Dibenz(a,h)anthracene	J (all detects) J (all detects)	A
JL31	LDW-SC15-1	Perylene-d12	683648 (145432-581726)	Dibenz(a,h)anthracene	J (all detects)	А
JL31	LDW-SC1-1-1.5	Phenanthrene-d10 Chrysene-d12	661632 (160778-643110) 638406 (126152-504606)	N-Nitrosodiphenylamine Hexachlorobenzene Pentachlorophenol Butylbenzylphthalate	J (all detects) J (all detects) J (all detects) J (all detects)	А
JL31	LDW-SC1-1.5-2	Phenanthrene-d10 Chrysene-d12	647040 (160778-643110) 615323 (126152-504606)	N-Nitrosodiphenylamine Hexachlorobenzene Pentachlorophenol Butylbenzylphthalate	J (all detects) J (all detects) J (all detects) J (all detects)	A
JL33	LDW-SC23-0-0.5	Chrysene-d12 Perylene-d12	556060 (126152-504606) 618937 (145432-581726)	Butylbenzylphthalate Dibenz(a,h)anthracene	J (all detects) J (all detects)	А
JL33	LDW-SC23-0.5-1	Chrysene-d12 Perylene-d12	619712 (126152-504606) 620519 (145432-581726)	Butylbenzylphthalate Dibenz(a,h)anthracene	J (all detects) J (all detects)	A
JL33	LDW-SC23-1-1.5	Chrysene-d12 Perylene-d12	592829 (126152-504606) 593044 (145432-581726)	Butylbenzylphthalate Dibenz(a,h)anthracene	J (all detects) J (all detects)	А

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

SDG	Sample	Compound	Finding	Criteria	Flag	A or P
JH57	LDW-SC26-6-8**	Pentachlorophenol	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A	-

N/A = Not applicable

For the result above flagged "Not applicable", the affected compound result in the associated sample was deemed unusable and did not warrant qualification of the data.

Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

SDG	Sample	Compound	Flag	A or P
JH57	LDW-SC26-6-8**	Pentachlorophenol	R	A
JH57	LDW-SC26-6-8DL**	All TCL compounds except Pentachlorophenol	R	A
JH57	LDW-SC8-4-6	Dibenz(a,h)anthracene Pentachlorophenol N-Nitrosodiphenylamine	R R R	A
JH57	LDW-SC8-4-6RE	All TCL compounds except Dibenz(a,h)anthracene Pentachlorophenol N-Nitrosodiphenylamine	R	А
JH57	LDW-SC8-6-8	Dibenz(a,h)anthracene 2-Methylphenol Pentachlorophenol N-Nitrosodiphenylamine	R R R R	A

SDG	Sample	Compound	Flag	A or P
JH57	LDW-SC8-6-8RE	All TCL compounds except Dibenz(a,h)anthracene 2-Methylphenol Pentachlorophenol N-Nitrosodiphenylamine	R	A
JH57	LDW-SC14-4.1-6	Dibenz(a,h)anthracene Butylbenzylphthalate N-Nitrosodiphenylamine	R R R	А
JH57	LDW-SC14-4.1-6RE	All TCL compounds except Dibenz(a,h)anthracene Butylbenzylphthalate N-Nitrosodiphenylamine	R	A
JH57	LDW-SC203-4-6	Dibenz(a,h)anthracene Butylbenzylphthalate N-Nitrosodiphenylamine 2,4-Dimethylphenol	R R R	A
JH57	LDW-SC203-4-6RE	All TCL compounds except Dibenz(a,h)anthracene Butylbenzylphthalate N-Nitrosodiphenylamine 2,4-Dimethylphenol	R	A
JH57 JL31 JL33	LDW-SC16-4-6DL LDW-SC17-6-8.2DL LDW-SC1-0-5DL LDW-SC1-1-5-1DL LDW-SC1-1-1-5DL LDW-SC1-1-1-5DL LDW-SC23-0-0.5DL LDW-SC23-0-5-1DL LDW-SC23-1-1-5DL LDW-SC23-1-1-5DL	All TCL compounds	R	A

XVI. Field Replicates

Samples LDW-SC33-4-6** and LDW-SC201-4-6** were identified as field replicates. No semivolatiles were detected in any of the samples with the following exceptions:

		Concentrati	Concentration (ug/Kg)	
SDG	Compound	LDW-SC33-4-6**	LDW-SC201-4-6**	RPD (Limits)
JH57	Dibenz(a,h)anthracene	57	100	55 (≤50)
JH57	1,4-Dichlorobenzene	5,9	3.9	41 (≤50)
JH57	Pentachlorophenol	36	36	0 (≤50)
JH57	2,4-Dimethylphenol	6.5U	6.5	Not calculable

XVII. Field Blanks	
No field blanks were identified in this SDG.	

Lower Duwamish Waterway Group Semivolatiles - (SIM) - Data Qualification Summary - SDGs JH57, JL31, JL33 and JL34

SDG	Sample	Compound	Flag	A or P	Reason
JH57	LDW-SC26-6-8** LDW-SC28-5.5-7.5** LDW-SC33-4-6** LDW-SC31-4-6** LDW-SC41-4-6** LDW-SC8-6-8 LDW-SC16-8-10** LDW-SC23-4-6 LDW-SC32-5.2-8 LDW-SC14-4.1-6 LDW-SC203-4-6 LDW-SC203-4-6 LDW-SC32-5-8	2,4-Dimethylphenol	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
JH57	LDW-SC26-6-8DL** LDW-SC8-4-6RE LDW-SC8-6-8RE LDW-SC16-4-6DL LDW-SC14-4,1-6RE LDW-SC203-4-6RE LDW-SC17-6-8.2DL	N-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene Hexachlorobutadiene Dimethylphthalate	J (all detects) UJ (all non-detects)	Р	Continuing calibration (%D)
JL31 JL33 JL34	LDW-SC1-0-5DL LDW-SC1-1-5-1DL LDW-SC1-1-1.5DL LDW-SC1-1-1.5-2DL LDW-SC23-0-0.5DL LDW-SC23-0-5-1DL LDW-SC23-1-1.5DL LDW-SC23-2-2.5 LDW-SC23-2-5-3 LDW-SC23-3-5-5 LDW-SC23-3-5-4 LDW-SC51-0-0.5 LDW-SC51-1-1.5-1 LDW-SC51-1-1.5-2	2-Methylphenol 2,4-Dimethylphenol 1,2,4-Trichlorobenzene	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
JH57	LDW-SC26-6-8DL** LDW-SC8-4-6RE LDW-SC8-6-8RE LDW-SC16-4-6DL LDW-SC14-4.1-6RE LDW-SC203-4-6RE LDW-SC17-6-8.2DL	1,2,4-Trichlorobenzene	J (all detects) UJ (all non-detects)	A	Continuing calibration (RRF)
JL33	LDW-SC23-1.5-2	1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene Hexachlorobutadiene N-Nitrosodiphenylamine Hexachlorobenzene Butylbenzylphthalate Dibenz(a,h)anthracene Benzyl alcohol N-Nitrosodimethylamine	J (all detects) UJ (all non-detects)	А	Surrogate recovery (%R)

SDG	Sample	Compound	Flag	A or P	Reason
JL31	LDW-SC15-1	1,2,4-Trichlorobenzene N-Nitroso-di-n-propylamine	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicates (%R)
JH57	LDW-SC17-6-8.2 LDW-SC16-4-6	Dimethylphthalate	J (all detects) UJ (all non-detects)	А	Internal standards (area)
JH57	LDW-SC17-6-8.2 LDW-SC16-4-6 LDW-SC203-4-6 LDW-SC8-4-6	Butylbenzylphthalate	J (all detects)	A	Internal standards (area)
JH57 JL31 JL33	LDW-SC14-4.1-6 LDW-SC8-6-8 LDW-SC26-6-8** LDW-SC1-05 LDW-SC23-0-0.5 LDW-SC23-0.5-1 LDW-SC23-1-1.5	Butylbenzylphthalate Dibenz(a,h)anthracene	J (all detects) J (all detects)	А	Internal standards (area)
JL31	LDW-SC15-1	Dibenz(a,h)anthracene	J (all detects)	A	Internal standards (area)
JL31	LDW-SC1-1-1.5 LDW-SC1-1.5-2	N-Nitrosodiphenylamine Hexachlorobenzene Pentachlorophenol Butylbenzylphthalate	J (all detects) J (all detects) J (all detects) J (all detects)	A	Internal standards (area)
JH57	LDW-SC26-6-8**	Pentachlorophenol	R	Α	Overall assessment of data
JH57	LDW-SC26-6-8DL**	All TCL compounds except Pentachlorophenol	R	Α	Overall assessment of data
JH57	LDW-SC8-4-6	Dibenz(a,h)anthracene Pentachlorophenol N-Nitrosodiphenylamine	R R R	А	Overall assessment of data
JH57	LDW-SC8-4-6RE	All TCL compounds except Dibenz(a,h)anthracene Pentachlorophenol N-Nitrosodiphenylamine	R	А	Overall assessment of data
JH57	LDW-SC8-6-8	Dibenz(a,h)anthracene 2-Methylphenol Pentachlorophenol N-Nitrosodiphenylamine	R R R	A	Overall assessment of data
JH57	LDW-SC8-6-8RE	All TCL compounds except Dibenz(a,h)anthracene 2-Methylphenol Pentachlorophenol N-Nitrosodiphenylamine	R	А	Overall assessment of data
JH57	LDW-SC14-4.1-6	Dibenz(a,h)anthracene Butylbenzylphthalate N-Nitrosodiphenylamine	R R R	Α	Overall assessment of data

SDG	Sample	Compound	Flag	A or P	Reason
JH57	LDW-SC14-4.1-6RE	All TCL compounds except Dibenz(a,h)anthracene Butylbenzylphthalate N-Nitrosodiphenylamine	R	A	Overall assessment of data
JH57	LDW-SC203-4-6	Dibenz(a,h)anthracene Butylbenzylphthalate N-Nitrosodiphenylamine 2,4-Dimethylphenol	R R R R	A	Overall assessment of data
JH57	LDW-SC203-4-6RE	All TCL compounds except Dibenz(a,h)anthracene Butylbenzylphthalate N-Nitrosodiphenylamine 2,4-Dimethylphenol	R	А	Overall assessment of data
JH57 JL31 JL33	LDW-SC16-4-6DL LDW-SC17-6-8.2DL LDW-SC1-0-5DL LDW-SC1-5-1DL LDW-SC1-1-1.5DL LDW-SC23-0-0.5DL LDW-SC23-0-0.5DL LDW-SC23-0.5-1DL LDW-SC23-1-1.5DL LDW-SC23-1.5-2DL	All TCL compounds	R	A	Overall assessment of data

Lower Duwamish Waterway Group Semivolatiles - (SIM) - Laboratory Blank Data Qualification Summary - SDGs JH57, JL31, JL33 and JL34

No Sample Data Qualified in this SDG

Polychlorinated Biphenyls by EPA SW 846 Method 8082

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of multicomponent compounds was performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Retention time windows were evaluated and considered technically acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 15.0% QC limits.

Retention times (RT) of all compounds in the calibration standards were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

VI. Surrogate Spikes and Internal Standards

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

SDG	Sample	Column	Surrogate	%R (Limits)	Compound	Flag	A or P
JH57	LDW-SC15-4-6	ZB5	Decachlorobiphenyl	201 (50-150)	All TCL compounds	J (all detects)	Α
JH57	LDW-SC20-4-6	ZB35	Decachlorobiphenyl	249.9 (50-150)	All TCL compounds	J (all detects)	А
J 11 57	LDW-SC39-4-6	ZB35	Decachlorobiphenyl Tetrachloro-m-xylene	232.8 (50-150) 43.8 (50-150)	All TCL compounds	J (all detects) UJ (all non-detects)	A
JH57	LDW-SC12-4-6.7	ZB35 ZB5	Decachlorobiphenyl Tetrachloro-m-xylene	549.5 (50-150) 42.2 (50-150)	All TCL compounds	J (all detects) UJ (all non-detects)	Α
JH57	LDW-SC16-8-10**	ZB35	Decachlorobiphenyl	195 (50-150)	All TCL compounds	J (all detects)	Р
JH57	LDW-SC23-4-6**	ZB5	Decachlorobiphenyl	207 (50-150)	All TCL compounds	J (all detects)	А
JH57	LDW-SC14-4.1-6**	ZB5	Decachlorobiphenyl	236 (50-150)	All TCL compounds	J (all detects)	А

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since the MS/MSD samples were diluted out, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Although sulfur and acid cleanup was not required by the method, it was performed by the laboratory.

Florisil cleanup was not required and therefore not performed.

b. GPC Calibration

GPC cleanup was not required and therefore not performed.

XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

SDG	Sample	Compound	Finding	Criteria	Flag	A or P
JH57	LDW-SC26-11.1-12.1** LDW-SC33-4-6** LDW-SC201-4-6** LDW-SC41-4-6** LDW-SC20-4-6 LDW-SC12-4-6.7 LDW-SC23-4-6** LDW-SC14-4.1-6** LDW-SC24-6 LDW-SC46-4-6.8	Aroclor-1254 Aroclor-1260	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A N/A N/A	-
JH57	LDW-SC45-5-6** LDW-SC8-6-8 LDW-SC16-4-6	Aroclor-1254	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A N/A	
JH57	LDW-SC15-4-6 LDW-SC10-4-5 LDW-SC25-4-6 LDW-SC19-4-6 LDW-SC49-4-6	Aroclor-1242 Aroclor-1254 Aroclor-1260	Sample result exceeded calibration range. Reported result should be within calibration range.		N/A N/A N/A	-
JH57	LDW-SC39-4-6	Aroclor-1260	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A N/A	-

N/A = Not applicable

For the results above flagged "Not applicable", the affected compound results in the associated samples were deemed unusable and did not warrant qualification of the data.

The sample results for detected compounds from the two columns were within 40.0% relative percent differences (RPD) with the following exceptions:

SDG	Sample	Compound	%RPD	Flag	A or P
JH57	LDW-SC41-4-6**	Aroclor-1254 Aroclor-1260	53 51	J (all detects) J (all detects)	А

SDG	Sample	Compound	%RPD	Flag	A or P
JH57	LDW-SC45-5-6**	Aroclor-1260	61	J (all detects)	A
JH57 JL31 JL34	LDW-SC2-4-6 LDW-SC33-1.5-2 LDW-SC445-1	Aroclor-1260	46	J (all detects)	A
JL33	LDW-SC12-2-2.5	Aroclor-1260	42	J (all detects)	A

The pattern of peaks on detected samples were possibly weathered aroclors. The results were reported by the laboratory on the best possible match.

Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

SDG	Sample	Compound	Flag	A or P
JH57	LDW-SC26-11.1-12.1** LDW-SC33-4-6** LDW-SC201-4-6** LDW-SC12-4-6.7 LDW-SC14-4.1-6** LDW-SC2-4-6 LDW-SC46-4-6.8 LDW-SC45-5-6**	Aroclor-1254 Aroclor-1260	R R	А
JH57	LDW-SC26-11.1-12.1DL** LDW-SC33-4-6DL** LDW-SC201-4-6DL** LDW-SC12-4-6.7DL LDW-SC14-4.1-6DL** LDW-SC2-4-6DL LDW-SC46-4-6.8DL LDW-SC45-5-6DL**	All TCL compounds except Aroclor-1254 Aroclor-1260	R	А
JH57	LDW-SC8-6-8 LDW-SC16-4-6	Aroclor-1254	R	А
JH57	LDW-SC8-6-8DL LDW-SC16-4-6DL	All TCL compounds except Aroclor-1254	R	А
JH57	LDW-SC41-4-6** LDW-SC20-4-6 LDW-SC23-4-6** LDW-SC15-4-6 LDW-SC10-4-5 LDW-SC25-4-6 LDW-SC19-4-6 LDW-SC49-4-6	Aroclor-1242 Aroclor-1254 Aroclor-1260	R R	А

SDG	Sample	Compound	Flag	A or P
JH57	LDW-SC41-4-6DL** LDW-SC20-4-6DL LDW-SC23-4-6DL** LDW-SC15-4-6DL LDW-SC10-4-5DL LDW-SC25-4-6DL LDW-SC19-4-6DL LDW-SC49-4-6DL	All TCL compounds except Aroclor-1242 Aroclor-1254 Aroclor-1260	R	A
JH57	LDW-SC39-4-6	Aroclor-1260	R	A
JH57	LDW-SC39-4-6DL	All TCL compounds except Aroclor-1260	R	А

XIV. Field Replicates

Samples LDW-SC33-4-6** and LDW-SC201-4-6** and samples LDW-SC33-4-6DL** and LDW-SC201-4-6DL** were identified as field replicates. No polychlorinated biphenyls were detected in any of the samples with the following exceptions:

		Concentration (ug/Kg)		
SDG	Compound	LDW-SC33-4-6**	LDW-SC201-4-6**	RPD (Limits)
JH57	Aroclor-1254	140	110	24 (≤50)
JH57	Aroclor-1260	120	240	67 (≤50)

		Concentration (ug/Kg)		
SDG	Compound	LDW-SC33-4-6DL**	LDW-SC201-4-6DL**	RPD (Limits)
JH57	Aroclor-1254	150	120	22 (≤50)
JH57	Aroclor-1260	130	220	51 (≤50)

XV. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Polychlorinated Biphenyls - Data Qualification Summary - SDGs JH57, JL31, JL32, JL33 and JL34

SDG	Sample	Compound	Flag	A or P	Reason
JH57	LDW-SC15-4-6 LDW-SC20-4-6 LDW-SC23-4-6** LDW-SC14-4.1-6**	All TCL compounds	J (all detects)	А	Surrogate recovery (%R)
JH57	LDW-SC39-4-6 LDW-SC12-4-6.7	All TCL compounds	J (all detects) UJ (all non-detects)	А	Surrogate recovery (%R)
JH57	LDW-SC16-8-10**	All TCL compounds	J (all detects)	Р	Surrogate recovery (%R)
JH57	LDW-SC41-4-6**	Aroclor-1254 Aroclor-1260	J (all detects) J (all detects)	Α	Compound quantitation and CRQLs (RPD)
JH57 JL31 JL33 JL34	LDW-SC45-5-6** LDW-SC2-4-6 LDW-SC33-1.5-2 LDW-SC12-2-2.5 LDW-SC445-1	Aroclor-1260	J (all detects)	Α	Compound quantitation and CRQLs (RPD).
JH57	LDW-SC26-11.1-12.1** LDW-SC33-4-6** LDW-SC201-4-6** LDW-SC12-4-6.7 LDW-SC14-4.1-6** LDW-SC2-4-6 LDW-SC46-4-6.8 LDW-SC45-5-6**	Aroclor-1254 Aroclor-1260	R R	A	Overall assessment of data
JH57	LDW-SC26-11.1-12.1DL** LDW-SC33-4-6DL** LDW-SC201-4-6DL** LDW-SC12-4-6.7DL LDW-SC14-4.1-6DL** LDW-SC2-4-6DL LDW-SC46-4-6.8DL LDW-SC45-5-6DL**	All TCL compounds except Aroclor-1254 Aroclor-1260	R	A	Overall assessment of data
JH57	LDW-SC8-6-8 LDW-SC16-4-6	Aroclor-1254	R	Α	Overall assessment of data
JH57	LDW-SC8-6-8DL LDW-SC16-4-6DL	All TCL compounds except Aroclor-1254	R	Α	Overall assessment of data
	LDW-SC41-4-6** LDW-SC20-4-6 LDW-SC23-4-6** LDW-SC15-4-6 LDW-SC10-4-5 LDW-SC25-4-6 LDW-SC19-4-6 LDW-SC49-4-6	Aroclor-1242 Aroclor-1254 Aroclor-1260	R R R	A	Overall assessment of data

SDG	Sample	Compound	Flag	A or P	Reason
JH57	LDW-SC41-4-6DL** LDW-SC20-4-6DL LDW-SC23-4-6DL** LDW-SC15-4-6DL LDW-SC10-4-5DL LDW-SC25-4-6DL LDW-SC19-4-6DL LDW-SC49-4-6DL	All TCL compounds except Aroclor-1242 Aroclor-1254 Aroclor-1260	R	A	Overall assessment of data
JH57	LDW-SC39-4-6	Aroclor-1260	R	А	Overall assessment of data
JH57	LDW-SC39-4-6DL	All TCL compounds except Aroclor-1260	R	Α	Overall assessment of data

Lower Duwamish Waterway Group Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDGs JH57, JL31, JL32, JL33 and JL34

No Sample Data Qualified in this SDG

Butyltins By EPA SW 846 Method 8270D using Selected Ion Monitoring (SIM) & Krone Method

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals. All ion abundance requirements were met.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

Average relative response factors (RRF) for all target compounds and system monitoring compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% for all compounds.

All of the continuing calibration RRF values were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within the QC limits. Since the samples were diluted out, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

SDG	Sample	Compound	Finding	Criteria	Flag	A or P
JH57	LDW-SC26-6-8** LDW-SC25-4-6	Tributyltin ion	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A	A
JH57	LDW-SC28-5.5-7.5	Tributyltin ion Dibutyltin ion	Sample result exceeded calibration range.	Reported result should be within calibration range.	N/A N/A	A

N/A = Not applicable

For the results above flagged "Not applicable", the affected compound results in the associated samples were deemed unusable and did not warrant qualification of the data.

Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

SDG	Sample	Compound	Flag	A or P
JH57	LDW-SC26-6-8** LDW-SC25-4-6	Tributyltin ion	R	А
JH57	LDW-SC26-6-8DL** LDW-SC25-4-6DL	All TCL compounds except Tributyltin ion	R	. A
JH57	LDW-SC28-5.5-7.5	Tributyltin ion Dibutyltin ion	R R	Α
JH57	LDW-SC28-5.5-7.5DL	All TCL compounds except Tributyltin ion Dibutyltin ion	R	A

XVI. Field Replicates

No field replicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Butyltins - Data Qualification Summary - SDG JH57

SDG	Sample	Compound	Flag	A or P	Reason
.JH57	LDW-SC26-6-8** LDW-SC25-4-6	Tributyltin ion	R	A	Overall assessment of data
JH57	LDW-SC26-6-8DL** LDW-SC25-4-6DL	All TCL compounds except Tributyltin ion	R [°]	А	Overall assessment of data
JH57	LDW-SC28-5.5-7.5	Tributyltin ion Dibutyltin ion	R R	Α	Overall assessment of data
JH57	LDW-SC28-5.5-7.5DL	All TCL compounds except Tributyltin ion Dibutyltin ion	R	A	Overall assessment of data

Lower Duwamish Waterway Group Butyltins - Laboratory Blank Data Qualification Summary - SDG JH57

No Sample Data Qualified in this SDG

Metals by EPA SW 846 Methods 6010B/7471A

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

SDG	Method Blank ID	Analyte	Maximum Concentration	Associated Samples
JH57	PB (prep blank)	Zinc	1.1 mg/Kg	LDW-SC26-6-8** LDW-SC26-11.1-12.1 LDW-SC37-5.3-6.9** LDW-SC38-5.5-7.5** LDW-SC33-4-6 LDW-SC6-8-8 LDW-SC8-4-6 LDW-SC16-4-6 LDW-SC16-4-6 LDW-SC25-4-6 LDW-SC25-4-6 LDW-SC25-4-6 LDW-SC2-4-6 LDW-SC2-10.7-12 LDW-SC17-6-8.2

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>10X blank contaminants) than the concentrations found in the associated method blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

SDG	Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
JH57	LDW-SC26-6-8MS (LDW-SC26-6-8** LDW-SC26-11.1-12.1 LDW-SC37-5.3-6.9** LDW-SC33-4-6 LDW-SC6-6-8 LDW-SC6-4-6 LDW-SC16-4-6 LDW-SC16-8-10** LDW-SC2-4-6 LDW-SC2-4-6 LDW-SC2-4-6 LDW-SC2-4-6 LDW-SC2-10.7-12 LDW-SC17-6-8.2 LDW-SC26-6-8DUP)	Antimony	29.9 (70-130)	J (all detects) UJ (all non-detects)	A

Although the percent recovery of antimony was severely low (<30%) in the MS sample above, the results in all the associated samples were qualified as estimated (J/UJ) since the post spike recoveries for antimony were greater then 75%.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

VIII. Internal Standards

ICP-MS was not utilized in this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Replicates

No field replicates were identified in this SDG.

XIV. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Metals - Data Qualification Summary - SDGs JH57 and JL31

SDG	Sample	Analyte	Flag	A or P	Reason
JH57	LDW-SC26-6-8** LDW-SC26-11.1-12.1 LDW-SC37-5.3-6.9** LDW-SC38-5.5-7.5** LDW-SC33-4-6 LDW-SC6-6-8 LDW-SC8-4-6 LDW-SC16-4-6 LDW-SC16-4-6 LDW-SC25-4-6 LDW-SC2-4-6 LDW-SC2-4-6 LDW-SC2-4-6 LDW-SC2-4-6 LDW-SC2-10.7-12 LDW-SC17-6-8.2 LDW-SC26-6-8DUP	Antimony	J (all detects) UJ (all non-detects)	A	Matrix spike analysis (%R)

Lower Duwamish Waterway Group Metals - Laboratory Blank Data Qualification Summary - SDGs JH57 and JL31

No Sample Data Qualified in this SDG

Total Organic Carbon by Plumb Method and Total Solids by EPA Method 160.3

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration of each method were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Duplicates

Duplicate (DUP) and Triplicate (TRP) sample analyses were reviewed for each matrix as applicable. Relative percent differences (RPD) and relative standard deviation (RSD) were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Replicates

Samples LDW-SC33-4-6** and LDW-SC201-4-6** were identified as field replicates. No concentrations were detected in any of the samples with the following exceptions:

		Concentration (%)		
SDG	Compound	LDW-SC33-4-6**	LDW-SC201-4-6**	RPD (Limits)
JK31	Total solids	60.40	57.10	6 (≤20)
JK31	Total organic carbon	2.10	2.13	1 (≤30)

X. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Wet Chemistry - Data Qualification Summary - SDGs JK31, JL31, JL32, JL33 and JL34

No Sample Data Qualified in this SDG

Lower Duwamish Waterway Group Wet Chemistry - Laboratory Blank Data Qualification Summary - SDGs JK31, JL31, JL32, JL33 and JL34

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Lower Duwamish Waterway Group

Collection Date:

February 15 through February 22, 2006

LDC Report Date:

December 19, 2006

Matrix:

Sediment

Parameters:

Dioxins/Dibenzofurans

Validation Level:

EPA Level IV

Laboratory:

AXYS Analytical Services Ltd.

Sample Delivery Group (SDG): DPWG19451/WG19107

Sample Identification

LDW-SC26-6-8 LDW-SC20-4-6 LDW-SC20-4-6DUP

Introduction

This data review covers 3 sediment samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1613B for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Lower Duwamish Waterway Group Final Subsurface Sediment Sampling for Chemical Analyses Quality Assurance Project Plan (February 3, 2006) and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (August 2002).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between ¹³C-2,3,7,8-TCDD and ¹³C-1,2,3,4-TCDD was less than or equal to 25%.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all native compounds and less than or equal to 30.0% for all labelled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was technically acceptable.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration concentrations were within the QC limits.

The ion abundance ratios for all PCDDs and PCDFs were within method criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
WG19107-101	5/9/06	1,2,3,4,6,7,8-HpCDD OCDD OCDF Total HpCDD	0.070 ng/Kg 0.118 ng/Kg 0.076 ng/Kg 0.070 ng/Kg	All samples in SDG DPWG19451/WG19107

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within QC limits.

Standard reference material was performed at the required frequencies.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits.

X. Target Compound Identifications

All target compound identifications were within validation criteria.

*XI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG DPWG19451/WG19107	All compounds reported by the lab as estimated (K) maximum possible concentration (EMPC)	U	А

XII. System Performance

The system performance was acceptable.

XIII. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
All samples in SDG DPWG19451/WG19107	2,3,7,8-TCDF on DB-5	R	A

Data flags have been summarized at the end of the report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

XV. Field Blanks

No field blanks were identified in this SDG.

Lower Duwamish Waterway Group Dioxins/Dibenzofurans - Data Qualification Summary - SDG DPWG19451/WG19107

SDG	Sample	Compound	Flag	A or P	Reason
DPWG19451/ WG19107	LDW-SC26-6-8 LDW-SC20-4-6 LDW-SC20-4-6DUP	All compounds reported by the lab as estimated (K) maximum possible concentration (EMPC)	U	А	Compound quantitation and CRQLs (EMPC)
DPWG19451/ WG19107	LDW-SC26-6-8 LDW-SC20-4-6 LDW-SC20-4-6DUP	2,3,7,8-TCDF on DB-5	R	A	Overall assessment of data

Lower Duwamish Waterway Group Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG DPWG19451/WG19107

No Sample Data Qualified in this SDG

LDC #: 15115A2a	_VALIDATION COMPLETENESS WORKSHEET	Date: 6/23/01
SDG #: <u>JH57</u>	Level IV /lil	Page:_/_of_/_
Laboratory: Analytical Resource	es, Inc.	Reviewer:
	es (EPA SW 846 Method 82702)	2nd Reviewer: 7

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ı.	Technical holding times		Sampling dates: 2 9 — 2 25 06
H.	GC/MS instrument performance check	Δ	
III.	Initial calibration	A	% RSD, r2 20.990
IV.	Continuing calibration	Α	
V.	Blanks	SW	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples /SRIV	A	LCS
IX.	Regional Quality Assurance and Quality Control	. N	
X.	Internal standards	٨	
· XI.	Target compound identification	A	
XII.	Compound quantitation/CRQLs	52	
XIII.	Tentitatively identified compounds (TICs)	ν	not reported
XIV.	System performance	A	
XV.	Overall assessment of data	XSW	
XVI.	Field duplicates	لىپى	D=5+4
XVII.	Field blanks	N	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples

** level 1

-	<u>sedimento</u>						
1	LDW-SC26-6-8 **	11	LDW-SC10-4-5	21	LDW-SC17-6-8.2	31	JHSTMBS
2	LDW-SC26-6-8DL ***	12	LDW-SC16-4-6	22	LDW-SC17-6-8.2DL	32	·
3	LDW-SC37-5.3-6.9 **	13	LDW-SC16-4-6DL 57	23	LDW-SC37-5.3-6.9MS	33	
4	LDW-SC28-5.5-7.5**	14	LDW-SC16-8-10 **	24	LDW-SC37-5.3-6.9MSD	34	
5	LDW-SC33-4-6 **	15	LDW-SC23-4-6	25		35	
6	LDW-SC201-4-6 D **	16	LDW-SC32-5.2-8	26		36	
7	LDW-SC41-4-6 **	17	LDW-SC14-4.1-6	27		37	
8	LDW-SC6-6-8	18	LDW-SC203-4-6	28		38	
9	# LDW-SC#-4-6	19	LDW-SC2-4-6	29		39	
10	LDW-SC8-6-8	20	LDW-SC2-10.7-12	30		40	

LDC#: 15115 A2a SDG#: 1457

VALIDATION FINDINGS CHECKLIST

Page: __of___2
Reviewer:_____2
2nd Reviewer:______2

Method: Semivolatiles (EPA SW 846 Method 8270C)

Validation Area	Yes	No	NA	Findings/Comments
Jakestinkalid odelguines, illesiaen es a salate de la desarra de la companya de l				
All technical holding times were met.				
Cooler temperature criteria was met.				
ulus chi shi shumentpendimanse Che A 1997 Baran 1997 Baran 1997			i i	
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
Minutals alteration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	_			
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?			_	ż
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?				
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?		(Table 1 to 1 t		
Wacaminung celisianons				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?		_		
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?		\		
VEDIanks			11	
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?		. ,		
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
Veconogic spikes and the second secon				
Were all surrogate %R within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VIII transchike Matricspike dupireates vaz sakonen a sakonen sakonen sakonen sakonen sakonen sakonen sakonen s				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	_/		-	
VIII Todao y como samples as transcriptions and the same same same same same same same sam				
Was an LCS analyzed for this SDG?				

LDC#: | 5115 A29 SDG#: 1457

VALIDATION FINDINGS CHECKLIST

Page: 2of 2 Reviewer: 2

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?		· · · ·		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		:	Name and Address	
DE Regional Quality Assurance and Quality/Leonfrol. (v. 4.5.5.2)				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?	10153.550	nd the second	1000 Sec.	
Xaumenratisiandalos <u>erre</u> met <u></u>			i i	
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			***
Were retention times within ± 30 seconds from the associated calibration standard?			100 A	
XI Tanget compound identification				
Were relative retention times (RRTs) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XI a compound quantitation CRO!				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				:
XIII Tentatively identified components (IIICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?				•
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?			/	/
Mersysiem beroman en an de la grand de				
System performance was found to be acceptable.		_		
W yearligas estinación dala esta del ser esta				
Overall assessment of data was found to be acceptable.				
XVisi Field deplicates dress and the property of the property				
Field dupticate pairs were identified in this SDG.		-		
Target compounds were detected in the field duplicates.				
XVII sereid platiks				
Field blanks were identified in this SDG.			_	
Target compounds were detected in the field blanks.	·			,

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Phenoi**	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachiorophenoi**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenol**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C, 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH, 2,4-Dinitrophenoi*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II. 4-Nitrophenol*	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzoluran	YY. Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenoi**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	OOO, N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzyiphthaiate	PPP. Benzoic Acid
i. 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	OO. 4-Nitroanlline	DDD. Chrysene	SSS, Benzidine
L. Nitrobenzene	AA. 2-Chioronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	тт.
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	uuu,
N. 2-Nitrophenol**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthens	vw.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	www.

LDC #: 15	115 AZa
SDG #: J	H57

Blank extraction date:

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	_/of_	1
Reviewer:	15	
2nd Reviewer:	4	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>N N/A</u> Was a method blank analyzed for each matrix?

Y N N/A Was a method blank analyzed for each concentration preparation level?

Y N N/A Was a method blank associated with every sample?

Y/N N/A Was the blank contaminated? If yes, please see qualification below.

Blank analysis date:

Blank extraction date: 5 10 06 Blank analysis date: 5 16 06

Associated Samples: A 1									
Compound	Blank ID	·			Si	ample Identificat	ion		
	JH7MB51	19					,		
Å	110	73/U							
		<u> </u>							
								<u>.</u>	
						·			

Conc. units:	Associated Samples:									
Compound	Blank ID		Sample Identification							
					-					
			- "							
				_						
;										
				-				-		
		<u> </u>	 			1				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #::	5115	A2a
SDG #:	JH57	

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page:	
Reviewer:	
2nd Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? Y N N/A

Y/N N/A

#	Date	compound Sample IB	Finding	Associated Samples	Qualifications
	_	UU, YY, ZZ	exceeded cal Range		NA
		YY , ZZ	J ₄	12.21	NA
				12,21	
					·
	_				
					*
	•		· · ·		

Comments:	See sample calculation verification	on worksheet for recalculations	<u> </u>	 	•	
•	·		•	 		

LDC #: 15115 A20-SDG #: JH57

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	
Reviewer:	F7.
2nd Reviewer:	R
•	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N/A Was the overall quality and usability of the data acceptable?

#	Date	compol Sample-ID	Finding	Associated Samples	Qualifications
		uu , yy, zz	exceeded and fange	l	R/A
		all except above	diluted	2	F-/-A
		44 72	exceeded cal Range	12, 21	R/A
		all except above	di hi ted	13, 22	/º /-A
	-	D, CC	8270SIM - Lower ZLs	Jul greept DLS	

Comments: _						
_	,					
		 <u> </u>	•	_		

LDC#: 15115A2a SDG#: JH57

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1 of 1

METHOD: GC/MS SVOAs (EPA SW846 8270-SIM)
N NA
Were field duplicate pairs identified in t
Were target analytes detected in the field

Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs?

	Сопсепта	41D		
Compound	5	6	RPD	
Naphthalene	410	380	8	
2-Methylnaphthalene	63	82	26	
Acenaphthene	1000	710	34	
Dibenzofuran	380	280	30	
Fluorene	630	510	21	
Phenanthrene	1400	1300	7	
Anthracene	420	490	15	
Fluoranthene	3200	5000	44	
Pyrene	2600	4700	58	
Benzo (a) anthracene	610	780	24	
bis (2-Ethylhexyl) phthalate	56	65u	F7_200- N (_
Chrysene	560	900	47	
Benzo (b) fluoranthene	380	650	52	
Benzo (k) fluoranthene	250	440	55	
Benzo (a) pyrene	270	500	60	
Indeno (1,2,3-cd) pyrene	84	180	73	
Benzo (g,h,i) perylene	110	210	63	
1-Methylnaphthalene	76	110	37	

V:\FIELD DUPLICATES\15115A2a.wpd

	71 4	BINS LA	*
SDG	#:	1457	

VALIDATION FINDINGS WURKSHEET Initial Calibration Calculation Verification

	Page:	_/ot_/
	Reviewer:	
2nd	Reviewer	H

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF. = (A_{\star})(C_{\mathtt{b}})/(A_{\mathtt{b}})(C_{\star})$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_{\mathbf{h}}$ = Area of associated internal standard $C_{\mathbf{h}}$ = Concentration of internal standard

 A_x = Area of compound, C_x = Concentration of compound,

S = Standard deviation of the RRFs,

X = Mean of the RRFs

			·	Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (25 std)	RRF (>5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1.	ICAL	5/1/06	Phenoi (1st internal standard)	2.37598	2.37598	2.36768	2.368	4.927	4.93
·-		. 1	Naphthalene (2nd internal standard)	1-14679	1.14679	1.21274	1-213	3.929	3.93
			Fluorene (3rd internal standard)	1. 39425	1-39425	1.47019	1 - 470	3.742	3-74
	_ , •	/	Pentachlorophenol (4th internal standard)	0.15985	0.15985	0.16073	0.16]	6.886	6.89
		. (Bis(2-ethylhexyl)phthalate (5th internal standard)	0.53232	0.53232	0.52627	0.526	13.523	13-52
			Benzo(a)pyrene (6th internal standard)	1.24098	1.260918	1.26103	1.261	12.375	12.373
2		×	Anthra und Phonol (figi internal standard)	1.21962	1.2196	1.27420	1-274	5270	5-210
			Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)					· ·	
			Pentachlorophenol (4th Internal standard)				,		
		1	Bis(2-ethylhexyl)phthalate (5th internal standard)						
		<u> </u>	Benzo(a)pyrene (6th internal standard)	·					
з	,		Phenol (1st internal standard)						
,		1	Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
		1 ·	Pentachlorophenol (4th Internal standard)						
] .	Bis(2-ethylhexyl)phthalate (5th Internal standard)						
			Benzo(a)pyrene (6th Internal standard)				·		

Comments:	Refer to	Initial	Calibration	findings	worksheet	for	st of	qualif	<u>ication</u>	s and	associated	samples	when	reported	results.	<u>do not</u>	agree	<u>within</u>	<u>10.0% c</u>	of the
recalculated																		• •		
					•		٠.			•									•	

. INICLC.28

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:		<u>/</u>
	Reviewer:	19	
2nd	Reviewer:	4	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_{\bullet})(C_{\bullet})/(A_{\bullet})(C_{\bullet})$

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

A, = Area of compound,

C. = Concentration of compound,

A_h = Area of associated internal standard
C_h = Concentration of internal standard

					Reported	Recaiculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	cer	5/16/06	Phenol (1st internal standard)	2.36768	2.26787	2.26787	4.21517	4.215
	,	१०५४	Naphthalene (2nd internal standard)	1.21274	1.25 328	1.25328	3.34281	3.34
			Fluorene (3rd Internal standard)	1.47019	1.48023	1.48023	0.68266	0.683
			Pantachlorophenol (4th internal standard)	1.27420	1.30270	1-30270	2.23682	2.237
	,		Bis(2-ethylhexyl)phthalate (5th internal standard)	0.52627	0.54602	0-54002	2.6/343	2-613
			Benzo(a)pyrene (6th Internal standard)	1.26103	1.33976	1.33916	6.74301	6-24
2	act	5 17 06	Phenol (1st internal standard)		2.27244	2,212	4.0245	4.622
		11:35	Naphthalene (2nd internal standard)		1.21538	1-215	0.21746	0.217
			Fluorene (3rd internal standard)		1.44294	1.443	1.85319	1-854
			Rentachlorophenoi (4th Internal standard)		1.28802	1-248	1.08521	1.085
			Bis(2-ethylhexyl)phthalate (5th internal standard)		0.53760	0.538	2.15307	7.153
			Benzo(a) pyrene (6th internal standard)		1.29657	1.296	2.81807	2.818
3			Phenol (1st internal standard)					
-			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th Internal standard)					
			Bis(2-ethy!hexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)			,		

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

CONCLO.2S

LDC #:1	5	115	A20
SDG #:			

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	/ of _/_
Reviewer:	B
2nd reviewer:	W.

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	1631	1265	17.6	77.65	ь
2-Fluorobiphenyl	1631	1252	76.8	76.74	
Terphenyl-d14	1631	1087	66.8	66,6	
Phenol-d5	2447	1881	76.8	76.88	
2-Fluorophenol	2447	1810	76.5	76.44	
2,4,6-Tribromophenol	2447	1893	71.3	77.37	
2-Chlorophenol-d4	2447	1823	74.4	74.53	
1,2-Dichlorobenzene-d4	1631	1068	65.6	65.45	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5				` .	
2-Fluorobiphenyl					•
Terphenyl-d14				,	
Phenol-d5		,			
2-Fluorophenol			<i>:</i>		
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4				٠.	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					:
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5	. ,	,			
2-Fluorophenol					,
2,4,6-Tribromophenol					
2-Chlorophenol-d4				,	
1,2-Dichlorobenzene-d4					

SDG #: JHS

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

	Page:	<u>61 7</u>
	Reviewer:	75
nd	Reviewer:	4

METHOD: GC/MS BNA (EPA SW 848 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration

SC = Sample concentation

SA = Spike added

RPD = 1 MS - MSD 1 * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery

MS/MSD samples: 23 + 7

		ike	Sample		Sample	Matrix	Matrix Spike		Matrix Spike Duplicate		MS/MSD	
Compound	.II	ded (kg/)	Concentration (ug (Fg)		ntration	Percent I	Recovery	Percent Recovery		RPD		
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recaic.	Reported	Recalculated.	
Phenol	2460	2450		1530	1430	62.2	45.2	58.4	58.4	6.8	6.8	
2-Chlorophenol	2460	2450		1700	1590	69.1	69.1	64.9	64.9	6.7	6.7	
1,4-Dichlorobenzene		٠.					•					
N-Nitroso-di-n-propylamine												
1,2,4-Trichlorobenzene												
4-Chloro-3-methylphenol	2460	2450		1740	1660	70.7	70.1	61.8	67.8	4.7	4.7	
Acenaphthene	1640	1630		1160	1130	70.7	70.7	69.3	69.3	2.6	2.6	
4-Nitrophenol	2460	2450	·	2080	1980	84.6	84.6	જુ૦.૪	80.8	4.0	4.9	
2,4-Dinitrotoluene	1640	1630		1080	1030	65.9	65.9	63.2	63.2	4.7	4-7	
Pentachiorophenol		,								•		
Pyrene	1640	1630	134	1400	1450	77.2	77.2	80.7	.80.7	3.5	3.5	

Comments:	Refer to Matrix Spike/	Matrix Spike Duplicates	findings worksh	eet for list of quali	fications and associat	ted samples when reporte	d results do not	agree within
	recalculated results.							

LDC #:	151	5	A2a
SDG #:		5	<u> </u>

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:	/of_/
Reviewer:_	15
2nd Reviewer:_	Ø.

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = | LCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery.

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples:

		olke ded		lke ntration		28	ıc	SD	LCS/	LCSD
Compound		الجر)		Fed	Percent F	Recovery	Percent I	Recovery	R	י מי
	LCS	rcsD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
Phenol	1670	NA-	1100	NA	65.9	45. °I				
2-Chlorophenol		V	1090	J.	65-3	65.3				
1,4-Dichlorobenzene										/
N-Nitroso-di-n-propytamine				•						
1,2,4-Trichlorobenzene				,						
4-Chloro-3-methylphenol	1670	μA	1210	NA	12.5	12.5				
Acenaphthene.			1160		69.5	69.5				
4-Nitrophenol			1540		92.2	92.2				
2,4-Dinitrataluene			1140		68.3	68.3				
Pentachlorophenol		,		•						
Pyrene	1670	NA	1310	ND	78.3	78.3	NA			

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC	#:	5	115	AZa
SDG	#:	7	H5"	1

Dilution Factor.

Percent solids, applicable to soil and solid matrices

Factor of 2 to account for GPC cleanup

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

Page:_	<u>/</u> of /
Reviewer:	19
2nd reviewer:	**

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Υ	N	N/A
Y	N	N/A
J		

Ωf

2.0

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

 Conce	ntratio	$on = (A_{*})(1_{*})(V_{*})(DF)(2.0)$	Example:
, DOI 100		(A_)(RRF)(V_)(V)(%S)	
A _x ·	≝ ,	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. #1 , Naph thalene
Ą	=	Area of the characteristic ion (EICP) for the specific internal standard	
١,	=	Amount of internal standard added in nanograms (ng)	Conc. = $\frac{(97416)(20)(20)}{486348}(1-213)(30.6)$
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	700 340 1-17 30.6
V_t	=	Volume of extract injected in microliters (ul)	= 220 ug / fg
.,		Making of the appropriated - 1 - 1 - 1 - 12 - 13 1.10	0 '' /)

	#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
۱					••	
			: .			
					· · · ·	
	•					
ĺ				,		
ľ	<u> </u>					·
				·		
					·	
					<u> </u>	
•[[٠.					
					<u></u>	
1						
					<u>. · · · · · · · · · · · · · · · · · · ·</u>	
		_			<u> </u>	
						·
						· · · · · · · · · · · · · · · · · · ·
ŀ	_ ·					· ·
L						
E			•			

LDC#	15238A2a

VALIDATION COMPLETENESS WORKSHEET

SDG #: JL31/JL32/JL33/JL34 Laboratory: Analytical Resources, Inc. Level III

Reviewer

2nd Reviewer

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270%)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
i.	Technical holding times	Δ	Sampling dates: 1 9 06 - 2 22 06
11.	GC/MS Instrument performance check	A	
111.	Initial calibration	Δ	% RSD (Zo.990
IV.	Continuing calibration	۵	,
V.	Blanks	sw	
VI.	Surrogate spikes	Δ	
VII.	Matrix spike/Matrix spike duplicates	Α	
VIII.	Laboratory control samples /SRM	_sw	
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	۵	
XI.	Target compound identification	N_	
XII.	Compound quantitation/CRQLs	5\W	
XIII.	Tentitatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	#sw	
XVI.	Field duplicates	2	
XVII.	Field blanks	N	

Note:

A = Acceptable

ND = No compounds detected

D = Duplicate TB = Trip blank

N = Not provided/applicable SW = See worksheet

R = Rinsate FB = Field blank

EB = Equipment blank

Validated Samples

<u>sedi</u>ment

	Stat mare						
1	LDW-SC1-05	11	LDW-SC23-3-3.5	21	MB-061206	31	
2	LDW-SC15-1	12	LDW-SC23-3-3.5DL	22		32	
3	LDW-SC1-1-1.5	13	LDW-SC23-3.5-4	23		33	
4	LDW-SC1-1.5-2	14	LDW-SC23-3.5-4DŁ	24		34	
5	LDW-SC23-0-0.5	15	LDW-SC51-0-0.5	25		35	
6	LDW-SC23-0.5-1	16	LDW-SC51-0.5-1	26		36	
7	LDW-SC23-1-1.5	17	LDW-SC51-1-1.5	27		37	
8	LDW-SC23-1.5-2	18	LDW-SC51-1.5-2	28		38	
9	LDW-SC23-2-2.5	19	LDW-SC15-1MS	29	-	39	
10	LDW-SC23-2.5-3	20	LDW-SC15-1MSD	30		40	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Phenoi**	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachiorophenoi**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichloraphenol**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenoi*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chioroaniline	II. 4-Nitrophenoi*	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Anliine
G. 2-Methylphenol	V. 4-Chioro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	OOO. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chioropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzyiphthaiate	PPP. Benzoic Acid
I. 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzył alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenoi**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	CO. 4-Nitroanlline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chioronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	тт.
M. isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. DI-n-octylphthalate**	uuu.
N. 2-Nitrophenoi**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG, Benzo(b)fluoranthene	vvv.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	www.

LDC #:_	15238A29	
SDG #:_	1131 32/33/34	

VALIDATION FINDINGS WORKSHEET Blanks

Page:	of	
Reviewer:_	17	
2nd Reviewer:	a	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix?

Was a method blank analyzed for each concentration preparation level? Y N N/A

Y N N/A Was a method blank associated with every sample?

Y/N N/A Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 612 の Blank analysis date: 622 06

onc. units: ug kg	·		Associa	ated Sample:	s: <u>A</u>	1			
Compound	Blank ID					Sample Identifica	tion		
	MB-06120	6 1	5	. 6	15				
A	290	70 U	400 W	45 N	964				
					•				
							,	-	
			,						

Biank extraction date:	Blank analysis date:	
Conc. units:	Associated Samples:	

Compound	Blank ID	Sample Identification							
			· — -	_	•		_	·	
			· · · · · · · · ·						
		t .							
			· · · · · · · · · · · · · · · · · · ·						
·									
				-				- ,	
							•		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

	Page:		1
	Reviewer:		
2nd	Reviewer:	_ <	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N.N/A

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? N N/A

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		LCS-061206	T	38.9 (40-130)	(·)	()	All samples	1 m 18
			NNN	229 ()	(, .)	()	1 ,	V
				(<u>·</u>	()	()		
				()	(·)	()		:
				()	()	()		
				()	()	()		
				()	()	()		,
				().	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	(()		
		•		()	()	()		
-	 -			()	()	()		
		······································		()	()	()		
		,		()	(·)	()		
		· .		()	()	()		
		·		()	()	()		
				()	()	(')		
				·()	()	()		
<u> </u>				()	()	()		
				()	(')	()		
				()	(.)	()		
				()	()	()		
				()	()	(·)		
				. ()	()	()		
				()	. ()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	

LDC #: 15238 A200 SDG #: 153 | 32/53/34

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page:	
Reviewer:	15
2nd Reviewer:	d

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? Y N N/A

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Compound Gampte ID	Finding	Associated Samples	Qualifications
		UU, VV, YY, ZZ,	exceeded and range	11	NA
	_	ccc,000			
		44	4	13	J,
					·

Comments:	See sample calculation verification worksheet for recalculations	
1		

SDG #: 11 31 /32 / 33/34

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

	Page:	
	Reviewer:	
2nd	Reviewer:	4

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A

Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		uu, vv, yy, 22,	exceeded cal Range	11	R/A
	•	all except above	diluted	12	· · · · · · · · · · · · · · · · · · ·
		74	exceeded cal Range	13	R/A
		all except above	diluted	14	R/A
			·		
	-	· -			
-	., .			· ·	

Comments:			 	
		- ' '		

·OVR.2S

SDG	#:15115A2b #: JH57 ratory: Analytical Reso	_		N COMP L	LETE evel	ENESS WORKSHEET	-	Date: 6/22/06 Page: _/of_/ Reviewer:
MET	METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270/C-SIM)							
The		ere re			,	g validation areas. Validatio	on find	lings are noted in attached
	Validatio	n Ar	ea			Comm	nents	
ì,	Technical holding times			Δ	Sampli	ng dates: 1/9 -72 27/1	ota	2/25/04
11.	GC/MS Instrument perfor	mance	check	Δ				
111.	Initial calibration			Δ				
IV.	Continuing calibration			رسي				
V.	Blanks			Δ				
VI.	Surrogate spikes		<u>.</u>	ನ್ನು			,	
VII.	Matrix spike/Matrix spike	duplic	ates	4				
VIII	Laboratory control sample	es /	SRM	A	10	<u>-</u> S		
IX.	Regional Quality Assuran	се ап	d Quality Control	N		•		
X.	Internal standards			SW			_	
XI.	Target compound identific	cation		A				
XII.	Compound quantitation/C	RQLs		SW				_
XIII.	Tentitatively identified cor	npoun	ds (TICs)	N	ton	reported		
XIV.	System performance			Δ		J		
XV.	Overalt assessment of da	ta		RSW				
XVi.	Field duplicates			SW	D	=5+4		
XViI	. Field blanks			~				
Note:	A = Acceptable N = Not provided/applical SW = See worksheet		R = Rins FB = Fie	eld blank	detecte	D = Duplicate TB = Trip blank EB = Equipment blan	ık	
	ed Samples Sediment		fx leve	<u> </u>				1
1	LDW-SC26-6-8 ***	11	LDW-SC8-6-8		21	LDW-SC203-4-6	31	1 H57 MBS)
2	LDW-SC26-6-8DL * SX	12	LDW-SC8-6-8RI	<u> </u>	22	LDW-SC203-4-6RÈ ·	32	
3	LDW-SC37-5.3-6.9 ***	13	LDW-SC10-4-5		23	LDW-SC2-4-6	33	
†1 †2 +3 +4 +5 +6	LDW-SC28-5.5-7.5 **	<u>+</u> 14	LDW-SC16-4-6		24	LDW-SC2-10.7-12	34	
5	LDW-SC33-4-6**D	15	LDW-SC16-4-6E		25	LDW-SC17-6-8.2	35	
6	LDW-SC201-4-6		LDW-SC16-8-10	** /	26	LDW-SC17-6-8.2DL · /	36	
+ 7 +	LDW-SC41-4-6**	→ 17	LDW-SC23-4-6		27	LDW-SC37-5.3-6.9MS	37	
8	LDW-SC6-6-8	18	LDW-SC32-5.2-	<u> </u>	28	LDW-SC37-5.3-6.9MSD	38	

29

30

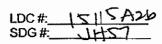
19 LDW-SC14-4.1-6

20 LDW-SC14-4.1-6RE

39

40

LDW-SC#-4-6

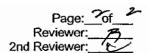

LDW-SC/5-4-6RE

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Phenoi**	P. Bis(2-chiorosthoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenoi**	III. Benzo(a)pyrene**
B. Bls (2-chloroethyl) ether	Q. 2,4-Dichlorophenoi**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenol*	WW. Carbazole	LLL. Benzo(g,h,l)peryiene
E. 1,4-Dichlorobenzene**	T. 4-Chioroaniline	II. 4-Nitrophenol*	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachiorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	Sod H. Nikrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP. Benzoic Acid
I. 4-Methylphenol .	X. Hexachiorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	OO. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	TIT.
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	ບບຍ.
N. 2-Nitrophenol**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluorenthene	wv.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	www.

VALIDATION FINDINGS CHECKLIST


Page: /of 2
Reviewer: //
2nd Reviewer: //

Method: Semivolatiles (EPA SW 846 Method 8270C)

Validation Area	Vac	Na	NA	Findings/Comments
Validation Area	Yes	No	NA	Pillolings Comments
All technical holding times were met.	V			
Cooler temperature criteria was met.		1		•
III GRAMS anstrument per damates called				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
III Angle i Angle and the second seco				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	V	-		
Was a curve fit used for evaluation?				
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?			V	
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?				
iv acontituing appraised to the second second				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?		/		
official and the second of				
Was a method blank associated with every sample in this SDG?	/			
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		i/	·	
Ve Surrogate spikes				
Were all surrogate %R within QC limits?	/			
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?	!			
VII Mahnaspike Mahnaspike dopicaless (1805 17 24 17 24 17 25 18 18 18 18				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			:
VIII Laboratory controls untiles of the second seco				
Was an LCS analyzed for this SDG?				

LDC#: 15115A2b SDG#: 1157

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?		,		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
(A. Regional Buality Assurance and Quality Compate the second sec				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?	THE STATE OF THE S			
Xaguerjai signolaries de la				
Were internal standard area counts within -50% or +100% of the associated calibration standard?		/	٠	
Were retention times within ± 30 seconds from the associated calibration standard?	\ \psi			
XI A angel conspound in dentifications and a second second in the second				
Were relative retention times (RRT's) within + 0.06 RRT units of the standard?		ļ.		
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII.4 Composited quantitation/CROES				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII-Teglatival/plentified.compagnas (TICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			_	
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			/	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
XIV.a.System the normanic certaining specific paper.				The Control of the Co
System performance was found to be acceptable.	. /	١		
W.C.A.C.III (assessing clear trade)				
Overall assessment of data was found to be acceptable.	/			
XVI i i i i i i i i i i i i i i i i i i i				
Field duplicate pairs were identified in this SDG.	V			
Target compounds were detected in the field duplicates.		-		<u> </u>
XVII Filed Garks:				
Field blanks were identified in this SDG.		/		<u> </u>
Target compounds were detected in the field blanks.			_	

LDC #:	15115A2b
	JH57

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	of	_
Reviewer:	7	•
2nd Reviewer:		*

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Y N N/A Y (N) N/A Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <25.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	5/18/06	CCV	9	35.72017		14-79,11	A) LN/L
	1043				·	14, 16-219,	
						21, 25	
		•				<u>'</u>	
			<u> </u>				· · · · · · · · · · · · · · · · · · ·
						· · ·	
<u> </u>	1 1 1 1		1			10 10 5	MAIP
_	5 19 06	cov	7	32.5		2, 10, 12, 15	JUJP
	11.56		R y (ccc)	89.9	-	20 22, 26	· · · · · · · · · · · · · · · · · · ·
			<u>u (cec)</u>	26.2 (2) 19.7	Ψ. <i>J</i>		-
	:		R	[7.1	0.03227	 	ALUIL
					0,0 920		3/3/7
		, ,					
				. ,			
					·		
					· .	· · · · · · · · · · · · · · · · · · ·	·
				· -			
<u></u>			<u> </u>				<u> </u>
ļ <u>.</u>						· ·	
			·				-
							
						•	

LDC #:	10112 1700
SDG #:	1457

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

	Page:_	1	<u>01</u>	1
	Reviewer:		17	
nd	Reviewer:		KS	,

METHOD: GC/MS BNA (EPA SW 846 Method 8270)
Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

YNN/A

Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Date	Sample ID	Surrogate	%R	(Limits)	Qualifications	
		11	FBP	183	(40-130)	no our	
			789	196	(1)	j	<u>. </u>
					()		
					(.)		
		·			()		
			L00	10.			
		14	FBP	186	()		
			TBP	167	'		
J			- -				
						, ·	
ļ						· · · · · · · · · · · · · · · · · · ·	
		28	FBP	138	()	1	
			TBP	171	(),)	J	
-					()		
					(
					(.)		
					()		
		<u> </u>		<u></u>	()		·····
					()	·····	
					()	····	
					()		
					()		
					()		

* QC limits are advisory	QC Limits (Soil)	QC Limits (Water)		QC Limits (Soil)		QC Limits (Water)
S1 (NBZ) = Nitrobenzene-d5	23-120	35-114	S5 (2FP)= 2-Fluorophenol	25-121		21-100
S2 (FBP) = 2-Fluorobiphenyl		43-116	S6 (TBP) = 2,4,6-Tribromophenol	19-122		10-123
	18-137	33-141	S7 (2CP) = 2-Chlorophenol-d4	20-130*		33-110*
S4 (PHL) = Phenof-d5	24-113	10-94	S8 (DCB) = 1,2-Dichlorobenzene-d4	20-130*	•	16-110*

LDC	#:	5115 A2b
SDG	#:	JH57

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	1	of_	1
Reviewer:		17	
2nd Reviewer:		<i>x</i>	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please, see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within -50 to +100 of the associated calibration standard?

Y N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		25	ANT	276496 (286380-114	522)	JIMI/A qual CC
			cry	611047 (147566-59		1/Adut AAA
		<u> </u>		·		
		-	•			
		14		261575 (1.)		- 1/us/A cc
			V	702517 ()	•	J/Adut AAA
		·				• • • • • • •
		19	CRY	685000 (V)		1/Adit AAA
			PRY	720075 (178804-7	(15218)	V- KKK, 000
	_				•	
			201		·	1 / / / / / / / / / / / / / / / / / / /
		2]	CRY	708757 (1)	\ 	J/Adut AAA
				-	<u> </u>	
		<u>a</u>		1)I	1 1 / A 1 +-
		<u> </u>	-	715010 (1	<u> </u>	J/Adt AAA
				 		
	_	11	CRY	923397 (1)		J/A lit AAA
_			PRY	746730 ()	 	7/7/200 KKK. 000
			.	1		7 227
		1	1	763575 (1)		1/A dut AAA
			. V	733567 ()		V KKF 600

* QC limits are advisory

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

LDC #: 15115 A26 SDG #: 1457

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

	Page:		1
	Reviewer:	B	
2nd	Reviewer:	A	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Đ	lease see	qualifications	below for all	guestions ansv	wered "N". No	t applicable d	uestions are	identified as "N/A".

Y N N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	compound Sample-ID	Finding	Associated Samples	Qualifications
		77	Exceeded cal Range	1	NΑ
			·		
				·	
					·

Comments: _	See sample calculation verification worksheet for recalculations			
		-	-	

LDC #: 15115 A216 SDG #: JHS7

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

	Page:	
	Reviewer:	75
2nd	Reviewer:	1

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A

Was the overall quality and usability of the data acceptable?

#	Date	Compal Sample ID	Finding	Associated Samples	Qualifications
		TŢ	exceeded cal Range	1	R/A
		1 1 1	11 1 1	2	0.70
		all except above	dilu ted		R/A
		AAA B	45 out	9	R/A
		KKK TT	lower Result higher RL		
		१९ '	higher RL		
		all except AAA, KKK,	-T 06	10	R/A
			, , , , , , , , , , , , , , , , , , ,	70	~ /A
		KKK, ooo G, TT	15 pailed Jones result higher RL	11	R/A
		G, TT	lower result		. ,
		AQ, X	higher RL	<u> </u>	J
		11 - 1 - T A1 - 1		12	P/A
		all except Above			<u> </u>

Comments:		 	
		 _	

LDC #: 15 N 5 A25 SDG #: 1457

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	1 of 1
Reviewer:	<u></u>
2nd Reviewer:	_A

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

#	Date	compound	Finding	Associated Samples	Qualifications
_		ae.	15 out + nigher RL	J4 ~	R/A_A
		All except ce		15	*/A 6-
		KKK, AAA	15 out, lamed result	19	R/A
		66	higher RL	1	
		All excep EKK, AAA,		20	R/A
		kKK	Jouer result	21.	R/A
	_	AAA	is out		1
	-	Q 6 &	higher RL		
		.0	cev out	<i>S</i>	
		All except KKK, AAA, &	Q 0	22	R/A
			,		
		All cools		15,26	

Comments:	 	<u> </u>		<u> </u>	
		·	 <u> </u>		_
<u>- </u>					

LDC#: 15115A2b	VALIDATION FINDINGS WORKSHEET	Page: <u>/</u> of/			
SDG#: JH57	Field Duplicates	Reviewer: P			
		2nd Reviewer:			
METHOD: GC/MS SVOA(EPA SW 846 Method 8270C-SIM)					
_					

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentration (ug/Kg)		4/150	
Compound	5	6	RPD	
Dibenz (a,h) anthracene	57	100	55	
1,4-Dichlorobenzene	5.9	3.9	41	
Pentachlorophenol	36	36	0	
2,4-Dimethylphenol	6.5u	6.5	57 200- NC	,

V:\FIELD DUPLICATES\11025_PAHs\15115A2b.wpd

VALIDATION FINDINGS WURNSHEET Initial Calibration Calculation Verification

	Page:	/_of_/
	Reviewer:	
2nd	Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_h)/(A_k)(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_x = Area of compound,$

A_a = Area of associated internal standard C_a = Concentration of Internal standard

 C_x = Concentration of compound, C_u = Concentration of i S = Standard deviation of the RRFs, X = Mean of the RRFs

						r			
				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF	RRF (> ≤ std)	Average RRF (Initial)	Average RRF (Initial)	%RSD	%RSD
		1 414	Thenol (1st internal standard)	<u>-</u>					
1'	1CAL - N72	5/17/06	Phenol (1st internal standard)	1.941	1.941	1.749	1-749	8.1	8
			Naphthalane (2nd internal standard)	0.354	0.354	0.308	0.308	9.7	. 7.7
	,		filtiorene (3rd internal standard)	0.720	0.720	0.656	0.656	5.5	5-5
			Renthehicrophenel (4th Intelnal standard)	0.223	0.223	0.201	0.201	6.3	6.3
			Blo(2, ath) hexyl price day (5th internal standard)	0.606	0.606	0.477	0.417	19.7	19.7
		·	Bio(2 ch) (Foxy) printed and (bit internal standard) Benzota pyrene (bit internal standard)	0	0.75-1	0=143	0=143	927	927
2			Phenol (1st Internet standard)	0.993	0.993	0.864	0.864	8.9	8.9
			Naphthalene (2nd Internal standard)						
			Fluorene (3rd Internal standard)						
-	· ·		Pentachlorophenol (4th Internal standard)						
			Bis(2-ethylhexyl)phthalate (5th Internal standard)						
			Benzo(a)pyrene (6th internal standard)						
3			Phenol (1st internal standard)						
			Naphthalene (2nd Internal standard)						
		•	Fluorene (3rd Internal standard)						
		•	Pentachlorophenol (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th internal standard)						
		*	Benzo(a) pyrene (6th Internal standard)						

Comments:	Refer to	<u>Initial</u>	Calibration	findings	worksheet	for list o	f qualification	ns and	associated	samples wher	reported	results do	not agree	within 10.0	% of the
<u>'ecalculated</u>	<u>r</u> esuits.						_		<u> </u>			<u> </u>			
·															

. INICLO,2S

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	of	<i>J</i>
	Reviewer:_	17	
2nd	Reviewer:		

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_{\star})(C_{\star})/(A_{\star})(C_{\star})$

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

A = Area of compound,

. A = Area of associated internal standard

C. = Concentration of compound, Ck = Concentration of internal standard .

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	5 14 06	10:43	Phono! (1st internal standard)	174897	1.39401	1-394	20.295	20.3
	cov	5/18/06	Naphthalena (2nd Internal dtardard)	0.30845	019827	0.198	35.12	35.7.
			Fluorene (3rd Kjernal standard)	0.655 98	061271	0.613	6.597	6.59
			Discontineary) philade (5th Internal standard)	0.20113	0.20528	0.205	2.06167	2.06
			tis(z-etrylinexyl)phibalate (5th Internal standard) .	6.47767	0-51244	0.512	7.27913	7.27
			Benzela)pyreper (6th internal standard)	0.86422	7. 10 2202	1.06	22.03518	2203
2	5/19/06	1156	Phonol. (1st Internal standard)	. 1	1.45912	1.46	6.5127	16.5
	cev	10:43	Naphinalene (2nd internal standard)		0.74803	0.248	19.58851	19.6
			Fluorene (3rd internal standard)		1.17868	1.178	79.68	79.7
			Pentechlorophenol (4th Internal standard)		0.19596	0.196	7-57199	2.6
			Bis(2 ethythexyl)phthalate (5th internal standard)		0.56385	0-564	18.04170	18,0
			Benzo(a)pyrene (6th Internal standard)	<u> </u>	0.91377	0-914	5.6932	5-7
3			Phenoi (1st internal standard)					
			Naphthalene (2nd Internal standard)					-
			Fluorene (3rd internal standard)					
		•	Pentachlorophenol (4th Internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th Internal standard)					

Comments: Refer to Continuing	Calibration findings	s worksheet fo	r list of qualific	ations and associated	d samples when re	eported results de	<u>not agree</u>	within 10.0	% of the
recalculated results.	· ,					<u> </u>	<u> </u>		

CONCLC.28

LDC #:	S115 A26
SDG #:	

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	101
Reviewer:	19
2nd reviewer:	#

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270)

percent recoveries.						

% Recovery: SF/SS * 100 .

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:_

	Surrogate .Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	1628	1683	103	103	0
2-Fluorobiphenyl	1628	. 2162	133	133	1.
Terphenyl-d14	1628	947.9	58.4	58.2	
Phenol-d5	2442	1684	69.1	. 69.0	
2-Fluorophenol	2442	1581	64.8	64.74	
2,4,6-Tribromophenol	2442	2607	107	107	. 1
2-Chlorophenol-d4	2442	1534	62.9	62.81	
1 2-Dichlorohenzene-d4	1628	agu 1	101.2	61.1	

Sample ID:

Sattible 181	·								
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference				
Nitrobenzene-d5			•						
2-Fluorobiphenyl		·							
Terphenyl-d14									
Phenot-d5									
2-Fluorophenol			: .						
2,4,6-Tribromophenol				· ·	-				
2-Chlorophenol-d4									
1,2-Dichlorobenzene-d4				· · · · · ·					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	-	<u> </u>			:
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol		· · · · · · · · · · · · · · · · · · ·			
2,4,6-Tribromophenol		-			
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LUU #: 10 113 1500 SDG #: JHS

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

	Page:_	1	of	7
	Reviewer:		15	
2nd	Reviewer:		(A)	_

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = IMS - MSD | * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recover

MS/MSD samples:

•		pike	Sample Spiked Sample			Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
Compound	·II .	dded 3 Kw	Concentration (uex) ax	Concentration							
	MS	MSD	0.0	Ms	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
Phenol				· .	,	:				,	
2-Chiorophenol											
1,4-Dichlorobenzene	162	163	ND	113	103	69.8	69.8	63.2	63.2	9.3	9.3
N-Nitroso-di-n-propylamine	162.	163	. ND	123	106	75.9	75.9	ر. د کیا	65.0	14.8	14-8
1,2,4-Trichlorobenzene	162	163	NO	121	123	78.4	78.4	75,5	75.5	3.2	3-2
4-Chloro-3-methylphenol							·	,			
Acenaphthene		· .	<u>.</u>								
4-Nitrophenol	i :								,		
2,4-Dinitrotoluene											
Pentachlorophenol	243	245	ND	259	262	107	107	107	107	1-2	1.2
Pyrene					T				,	,	

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

	4	
100 #4	7 ~~ !	115 47/12
	1.3	1 2 4 2 2
		115 A2b

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: / of /
Reviewer:
2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = ILCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery.

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: _

LCS - 05 1006

		pike dded		Spike Concentration		LCS		LCSD		LCS/LCSD	
Compound		glago.		I Key	Percent	Percent Recovery		Percent Recovery		PD .	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated	
Phenol			1								
2-Chlorophenol											
1,4-Dichlorobenzene	167	NA	117	NA	10.1	20.1					
N-Nitroso-di-n-propylamine	167		124.		74-3	74.3	,				
1,2,4-Trichlorobenzene	167	V	137	4	82.0	82.0					
4-Chloro-3-methylphenol											
Acenaphthene.			· ·		1	,		' /			
4-Nitrophenol											
2,4-Dinitrotoluene		: `									
Pentachlorophenol -	167	VA	155	hÞ.	92.8	92.0	NA				
Pyrene											

Comments:	Refer to Labora	tory Control S	ample/Laboratory	Control Samp	le Duplicates	findings works	sheet for list of a	ualifications and	<u>i as</u> sociated s	amples when	reported
results do n	ot agree within.	10.0% of the I	recalculated resu	lts			· ·		-		
TOURIS GO II	Ot ad Foo. Within	10.0 /0 01 110 1	TOUR TOUR	101	<u>-</u>			 _			

LDC #:	15 115 A2b
SDG #·	1457

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	. / of /
Reviewer:	F
2nd reviewer:	1/

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

		לס ובס מסומסווו סויס וויס וויס וויס סבו סך	•
(Y)	N N/A N N/A	Were all reported results recalculated an Were all recalculated results for detected	d verified for all level IV samples? I target compounds agree within 10.0% of the reported results?
Ço	ncentratio	n = (<u>A.)(I.)(V.)(DF)(2.0)</u> (A.)(RRF)(V.)(V)(%S)	Example:
A _x	. =	Area of the characteristic ion (EICP) for the compound to be measured	sample 1.D. #1. Dibenzo(qh) anthraune
. A _k	= .	Area of the characteristic ion (EICP) for the specific internal standard	
l,	· _	Amount of internal standard added in nanograms (ng)	Conc. = (195 9848) (2 1/2 1/1000)(
V.	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	0.846
· V,	=	Volume of extract injected in microliters (ul) .	=
V,	=	Volume of the concentrated extract in microliters (ul)	1100
Df	=	Dilution Factor.	400 ug/kg
% S	-	Percent solids, applicable to soil and solid matrices only.	
2.0	=	Factor of 2 to account for GPC cleanup	

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration	Qualification
				• .	
1					
· 					
.				• • • • • •	
 					· ·
<u> </u>					
				•	
			,		
					·
				<u>.</u>	
			· · · · · · · · · · · · · · · · · · ·		
				· .	

SDG # Labora METH The sa	e: JL31/JL32/JL33/JL34 atory: Analytical Resources, Inc. OD: GC/MS Semivolatiles (EPA SW 846	Method 8	PLETENESS WORKSHEET Level III Page: _/of _/ Reviewer: 2nd Reviewer: care procession of the page in t
	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 2906 - 212206
fi.	GC/MS Instrument performance check	A	
III.	Initial calibration	Δ	% RSD, 12 Zo. 990
iV.	Continuing calibration	یں	
V.	Blanks	Α	
VI.	Surrogate spikes	(ښې	
VII.	Matrix spike/Matrix spike duplicates	s₩	
VIII.	Laboratory control samples /SRM	A	VC7
ix.	Regional Quality Assurance and Quality Control	N	
X	Internal standards	SW	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	SW N	
XIII.	Tentitatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	
Note:	N = Not provided/applicable R = Rin	compounds sate eld blank	s detected D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples

	sedimens						
1	LDW-SC1-05	11	LDW-SC23-0.5-1	21	LDW-SC51-0-0.5	31	MB-061206
2	LDW-SC1-05DL	12	LDW-SC23-0.5-1DL	22	LDW-SC51-0.5-1	32	
3	LDW-SC15-1	13	LDW-SC23-1-1.5	23	LDW-SC51-1-1.5	33	
4	LDW-SC15-1DL	14	LDW-SC23-1-1.5DL	24	LDW-SC51-1.5-2	34	
5	LDW-SC1-1-1.5	15	LDW-SC23-1.5-2	25	LDW-SC15-1MS	35	
6	LDW-SC1-1-1.5DL	16	LDW-SC23-1.5-2DL /	26	LDW-SC15-1MSD	36	
7	LDW-SC1-1.5-2	17	LDW-SC23-2-2.5	27		37	
8	LDW-SC1-1.5-2DL	18	LDW-SC23-2.5-3	28		38	
9	LDW-SC23-0-0.5	19	LDW-SC23-3-3.5	29		39	
10	LDW-SC23-0-0.5DL	20	LDW-SC23-3.5-4	30		40	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Pheno(**	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenoi**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenol*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II. 4-Nitrophenol*	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachiorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	OOO. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP. Benzolc Acid
I. 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	OO. 4-Nitroaniline	DDD. Chrysene	SSS, Benzidine
L. Nitrobenzene	AA, 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	тт.
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octy/phthalate**	UUU.
N. 2-Nitrophenol**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	vv.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	www.

LDC #: 152 38 A26 SDG #: 157 38 /33/

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: /	_of	/
Reviewer:	B	•
2nd Reviewer:	4	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Y N N/A Y N N/A Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 25.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	6 20 06	CC0620	G	51.8		17-724	ALVIL
	-1- 1		9	29.6		24,6,8,10.	
	_		R	26.3		12.14	
		-			· · · · · · · · · · · · · · · · · · ·		<u> </u>
	` '		-		-		-
		:	•	·			<u> </u>
			· · ·	· ·	· 		
		·				<u> </u>	
			•	•			
						<u> </u>	
<u> </u>	, <u>.</u>		_ ·				
ļ					<u>. </u>		
<u></u>	<u> </u>	· .				<u>-</u>	
<u> </u>			<u> </u>				
ļ					·	<u> </u>	
ļ						<u> </u>	·
	<u> </u>				· ·		
<u></u>				·			
_				<u>.</u>			
				,		,	
				_			-
	,,		_				
		-				<u> </u>	
					· ,	-	
				<u> </u>		-	· · · · · · · · · · · · · · · · · · ·
	·			· · <u>-</u>	· ·		/
L	<u> </u>			<u></u>		<u></u>	·

VALIDATION FINDINGS WORKSHEET

Page:		1
Reviewer:) .
2nd Reviewer:_	4	

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Date	Sample ID	Surrogate	%R (L	lmits)	Qualifications
		3	N85	37.8	(40-130)	NO OMAL
_					()	·
		5	V	37.0	(1)	<u> </u>
		7		24/ 2	()	
			<u> </u>	24.0	()	<u> </u>
		39	J	29,3	(1)	
					()	
		N.	V	29.3	(1)	Ţ.
					()	
		13	1	8.8	(1)	
		15	1.	29.6	()	1/41/6 (A) All 265
		1	FBP	38.4	())	JUNJ /A GUAL AN BASE
			1 1 1	28,7	()	8, E F QQQ, J, R, U, K, QQ, S
		19	FBP	33.5	(40-130)	1ALLO ON
			TBP	37.1	(1)	V
					()	
		10	FBP	33.0	()	no ou Az
					()	
					,	
		<u> </u>			1	
					()	·
	L			<u> </u>	()	

* QC limits are advisory QC Limits (Soil)	QC Limits (Water)	_	QC Limits (Soil)		QC Limits (Water)
S1 (NBZ) = Nitrobenzene-d5 23-120	35-114	S5 (2FP)= 2-Fluorophenol	25-121		21-100
S2 (FBP) = 2-Fluorobiphenyl 30-115	43-116	S6 (TBP) = 2,4,6-Tribromophenol	19-122		10-123
S3 (TPH) = Terphenyl-d14 18-137	33-141	S7 (2CP) = 2-Chlorophenol-d4	20-130*		33-110*
S4 (PHL) = Phenol-d5 24-113	10-94	S8 (DCB) = 1,2-Dichlorobenzene-d4	20-130*	•	16-110*

LDC #:	153	39	<u>3 A</u> :	ط	
SDG #:_	مال	31	37	33	134

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Reviewer: 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y/N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an

associated MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		25 + 26	R	28.5 (40-130)	32.8 (40-130)	()	3. A.	JIN1/A
			3	0 (40-130)		()	T. V	MJ/X/A
				()	(' ')	()		
				(')	(.)	()		· 1744
				()	()	()		
				()	()	(
				. ()	()	()		
				()	()	()		
				(.)	()	()		
				(,)	()	()		
				()	. (()		
				()	()	()		
				(,)	()	()		
			· · · · · · · · · · · · · · · · · · ·	()	()	()		
				()	()	()		
			· ·	()	()	()		
				()	()	()		

	Compound	QC Limits (Soil)	RPD (Soli)	QC Limits (Water)	RPD (Water)		Compound	QC Limits (Soil)	RPD (Soil)	QC Limits (Water)	RPD (Water)
Α.	Phenol	26-90%	<u><</u> 35%	12-110%	≤ 42%	GG.	Acenaphthene	31-137%	<u><</u> 19%	46-118%	<u><</u> 31%
C.	2-Chlorophenol	25-102%	≤ 50%	27-123%	<u><</u> 40%	11.	4-Nitrophenol	11-114%	<u><</u> 50%	10-80%	≤ 50%
E.	1,4-Dichlorobenzene	28-104%	<u><</u> 27%	. 36-97%	<u><</u> 28%	KK.	2,4-Dinitrotoluene	28-89%	<u><</u> 47%	24-96%	<u><</u> 38%
J,	N-Nitroso-di-n-propylamine	41-126%	<u><</u> 38%	41-116%	<u><</u> 38%	TT.	Pentachlorophenol	17-109%	<u><</u> 47%	9-103%	≤ 50%
R.	1,2,4-Trichlorobenzene	38-107%	≤ 23%	39-98%	≤ 28%	ZZ.	Pyrene	35-142%	<u><</u> 36%	26-127%	<u><</u> 31%
V.	4-Chloro-3-methylphenol	26-103%	<u><</u> 33%	23-97%	≤ 42%	,			•		

LDC #:	53	<u>. </u>	ادبح	0	
SDG #:_	<u>ساڏ</u>	31	<u>/32</u>	33	34

VALIDATION FINDINGS WORKSHEET Internal Standards

	Page:	1	of_	<u>/</u>
	Reviewer:		ħ	
2nd	Reviewer:	•	4	
	-			

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN/A Were all internal standard area counts within -50 to +100 of the associated calibration standard?

Y/N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample (D	internal Standard	Area (Limits)	RT (Limits)	Qualifications
		1	CRY	596-175 (126152-504606)		LAAA) A/EDILL
			PRY	683744 (145432-581726)	<u> </u>	-(KKK)
		3	PRY	683648 (¥)		(KKK)
					<u> </u>	
			PHN	661632 (160778-64310)		QQ, 55 TT
			CRY	638406 (126152 - 504606)		And
	_				<u> </u>	
		1	SHN	647040 (-1)		
			cay	615323 () /	_ 	<u> </u>
			PRY		<u> </u>	<u> </u>
	· ·	9	0.07	55 6060 (126152 -504606)		AAA
		-1	PRY			
				618937 (145432-581726)		<u>kkk</u>
<u> </u>		1/1	CRY	619712 ()		
			PRY	620519 ()		- •
	. ,	13	CRY	592829 ()		. 1
			PRY	593044 (1)		1
				·		
				<u> </u>		
		hor # 12 - 12	tandard . Di-n-	ectylphthalate -dy (no ass	ociated compd)	

 QC limits are advis 	sorv
---	------

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

iS6 (PRY) = Perylene-d12

SDG #: JL 31 /32 /33/34

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

	Page:	
	Reviewer:	
2nd	Reviewer:	- les

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable?

#	Date	compound Sample-ID			Qualifications		
		All	diluted	2, 4, 6, 8, 10,	R/A		
				12, 14, 16			
			·				
		· · · · · · · · · · · · · · · · · · ·		·			
	,						
		·		<u> </u>			
				·			
	-	<u>. </u>					
			· -				
			· · ·				
					·		

Comments:	 			
			•	
				•

LDC #: 15115A3b VAL	IDATION COMPLETENESS WORKSHEET	Date: 6/22/06
SDG #: JH57	Level IV /	Page: / of 2
Laboratory: Analytical Resources, Inc.	<u>,</u>	Reviewer:
METHOD: GC Polychlorinated Biphe	nyls (EPA SW 846 Method 8082)	2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached

	Validation Area		Comments				
l.	Technical holding times	Δ	Sampling dates: 2/6 - 2/25/06				
11,	GC/ECD Instrument Performance Check	NA					
III.	Initial calibration	4					
IV.	Continuing calibration	A					
V.	Blanks	A					
VI.	Surrogate spikes	SW					
VII.	Matrix spike/Matrix spike duplicates	ςW					
VIII.	Laboratory control samples /SRM	Δ	Les				
IX.	Regional quality assurance and quality control	N					
Ха.	Florisil cartridge check 15	N _	All internal Std OF				
Κb.	GPC Calibration	N_	<u>R</u>				
XI.	Target compound identification	Δ_					
XII.	Compound quantitation and reported CRQLs	<i>-</i> ≤₩					
CIII.	Overall assessment of data	SWA	Sulfur + Acid clean-up surformed				
αv.	Field duplicates	ŚW	D = 9+11 10+12				
cv.	Field blanks	N					

Note: A = Acceptable ND = No compounds detected D = Duplicate $N = Not \ provided/applicable$ R = Rinsate TB = Trip blank EB = Equipment blank

Validated Samples:

validation findings worksheets.

	Sedement						
1 3	LDW-SC26-6-8 **	111	LDW-SC201-4-6 0 **	21)1	LDW-SC39-4-6	SIJ3	LDW-SC16-4-6
2 1	LDW-SC26-11.1-12.1	12	LDW-SC201-4-6DL D** 10X	22	LDW-SC39-4-6DL 10	32	LDW-SC16-4-6DL 3 ×
3	LDW-SC26-11.1-12.1DL +5X	13 [[]	LDW-SC41-4-6	23)1	LDW-SC12-4-6.7	(33)	LDW-SC16-8-10
4 1	LDW-SC51-3.8-5.8 **	14	LDW-SC41-4-6DL** 10 X	24	LDW-SC12-4-6.7DL 10	X 34)1	LDW-SC23-4-6 **
5 1	LDW-SC37-5.3-6.9	15 l	LDW-SC45-5-6 **	25 l	LDW-SC6-6-8		LDW-SC23-4-6DL 6 20 X
6 3	LDW-SC28-5.5-7.5 **	16	LDW-SC45-5-6DL ** 3 *	263	LDW-SC#-4-6		LDW-SC21-4-6.2 10 fc
7 1	LDW-SC1-4-6 **	Ι.	LDW-SC15-4-6	27 3	LDW-SC8-6-8	37	LDW-SC32-5.2-8 **
	LDW-SC4-4-6	18	LDW-SC15-4-6DL 50 X	28	LDW-SC8-6-8DL 3×	38 1	LDW-SC14-4.1-6 **
9 1	LDW-SC33-4-6	19)	LDW-SC20-4-6	29 1	LDW-SC10-4-5	39	LDW-SC14-4.1-6DL * 10 X
10	LDW-SC33-4-6DL P. 10X	20	LDW-SC20-4-6DL 10 X	30	LDW-SC10-4-5DL 5	40 1	LDW-SC203-4-6 4 sk

LDC #: 15115A3b	VALIDATION COMPLETENESS WORKSHEET	Date: 6/22/06
SDG #: JH57	Level IV	Page: 2 of 2
Laboratory: Analytical Resource	ces, Inc.	Reviewer:
METHOD: GC Polychlorinated	d Biphenyls (EPA SW 846 Method 8082)	2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times		Sampling dates:
11.	GC/ECD Instrument Performance Check		
In.	Initial calibration		
IV.	Continuing calibration		
ν.	Blanks		
VI.	Surrogate spikes		
VII.	Matrix spike/Matrix spike duplicates		
VIII.	Laboratory control samples /5RM		
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification		
XII.	Compound quantitation and reported CRQLs		
XIII.	Overall assessment of data		
XIV.	Field duplicates		
XV.	Field blanks		

Note:

ND = No compounds detected R = Rinsate FB = Field blank

A = Acceptable N = Not provided/applicable SW = See worksheet

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

[_		_	
41 2	LDW-SC25-4-6		512	LDW-SC49-4-6 ~	61	JH57MBS1	71	5/4/04
42	LDW-SC25-4-6DL	20%	52	LDW-SC49-4-6DL ~	62 7	JH57MB53	72	5/5/06
43 2	LDW-SC2-4-6		53 [LDW-SC4-4-6MS	63 3	JH57 MBS2	73	
44	LDW-SC2-4-6DL	10%	54 i	LDW-SC4-4-6MSD	64		74	
45 2	LDW-SC2-10.7-12		55 3	LDW-SC16-4-6MS	65		75	
462	LDW-SC17-6-8.2		56 う	LDW-SC16-4-6MSD	66		76	
47 2	LDW-SC19-4-6		57 ~	LDW-SC2-10.7-12MS	67		77	
48	LDW-SC19-4-6DL	γυγ	58 2	LDW-SC2-10.7-12MSD	68		78	
49 %	LDW-SC46-4-6.8		59		69	-	79	
50	LDW-SC46-4-6.8DL	5 X	60		70		80	

LDC#: 15115A3b SDG#: 1H57

VALIDATION FINDINGS CHECKLIST

Page: /of 2
Reviewer: 7
2nd Reviewer: 7

	/		
Method:		GC	HPLC

Method: C GC HPLC	_			
Validation Area	Yes	No	NA	Findings/Comments
fest of inical rigiding sinces				
All technical holding times were met.		•		-
Cooler temperature criteria was met.	/			·
Hamital Calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	~			
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < 20%?	/			
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?		V		·
Did the initial calibration meet the curve fit acceptance criteria?			_	
Were the RT windows properly established?		1	NIPKWAII.	
IV/ Continuing calibrations () - 1				
What type of continuing calibration calculation was performed?%D or%R	/			
Was a continuing calibration analyzed daily?	_			
Were all percent differences (%D) ≤ 15%.0 or percent recoveries 85-115%?	_			
Were all the retention times within the acceptance windows?			/V	
W Blanks				
Was a method blank associated with every sample in this SDG?				· .
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		_		
VIPSonogate spikes				
Were all surrogate %R within the QC limits?		-		
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?	_	_		
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?			•	
VIIIsMatrix spike/Matrix spike/duplicates/				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/	.		
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
Will state or atolyce of the learning test				
Was an LCS analyzed for this SDG?	_			
Was an LCS analyzed per extraction batch?				,

LDC#: 15115 A3b SDG#: 1457

VALIDATION FINDINGS CHECKLIST

Page: 2of 2 Reviewer: 2 2nd Reviewer: 4

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X pregional Guality Assurance and Guality Gantrol				(1977) (1977)
Were performance evaluation (PE) samples performed?			•/	·
Were the performance evaluation (PE) samples within the acceptance limits?		ni primarina ili		
on Parget control red deministration				
Were the retention times of reported detects within the RT windows?	000000000000000000000000000000000000000	er i man a a a a a a a	-2000 - 200 00	
XII. Germanina quantijation/CROEsir				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII Systemicensurances				
System performance was found to be acceptable.	/	;		_
XII) Overall assessment old ala				
Overall assessment of data was found to be acceptable.	/			
AlV, Field duplicates				
Were field duplicate pairs identified in this SDG?		/		22222222
Were target compounds idetected in the field duplicates?			_	
W. Regiólaris				
Were field blanks identified in this SDG?		سنمد	_	•
Were target compounds detected in the field blanks?				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	I. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG.
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	нн.
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	u.
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Arocior-1260	1).
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. DB 608	кк.
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. DB 1701	LL.
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE.	мм.
H. Endosuífan I	P. Methoxychlor	X. Aroclor-1232	FF.	NN.

Notes:		 	

SDG #: 145

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

2nd Reviewer:

METHOD: __GC HPLC

Are surrogates required by the method? Yes___ or No_______
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were surrogates spiked into all samples and blanks?

YN N/A Did all surrogate recoveries (%R) meet the QC limits?

#	Sample ID	Detect Çolun	or/ in	Surrogate Compound			%R (Limit	s)			Qualifications
	10, 12, 18, 20, 22			DCB	NR	· .		(50-	150)	No	QUAL 72x. DIL
	24 32, 35, 39							(
	42						_	()		
								()		
	17	圣马	5	DCB	4	1		(50.	- 150)	7	/Adt
								()		
	19	ZB*	35	. 1		9.9		()		<u> </u>
								()		
								()		
	21	78	25	PCB	23	32.8		()	7	ALN
		1		TCMX	4	3,8				ĵ	
							_	()		
	23	287	, <	DCB	6	49.5		()	7	A\ LN
		23	5	TCMX		42.2		()		
								()		
	33	28	35	DCB		195		()	1	I/P det
								()	ļ <u></u>	
	34	<u>7-B</u>	-5	<u> </u>		207		.()	<u></u>	/A dot
						_	(\)		
	38	<u> </u>	-5	V		736	0 (<u>/</u>		1/A dut
							()		
	Surrogate Compo	ound		Surrogate Compo	ound		Suri	ogate Com	pound		Surrogate Compound
Α	Chiorobenzene (C	BZ)	G	Octacosane		М		Benzo(e)Py	rene	s	1-Chloro-3-Nitrobenzene
В	4-Bromofluorobenzen	4-Bromofluorobenzene (BFB) H		Ortho-Terpheny	enyl N			Terphenyl-D	14	Т	3,4-Dinitrotoluene
C	a,a,a-Trifluorotoluene		1	Fluorobenzene (FE	3Z)	0		fluorobipheny		U	Tripentyltin
D	Bromochlorobene		J	n-Triacontane		- Р		methylnaphth		V	Tri-n-propyllin
E	1,4-Dichlorobutar		K	Hexacosane		Q	Dichlorop	henyl Acetic /		W	Tributyl Phosphate
F	1,4-Difluorobenzene	(DFB)	L	Bromobenzene		R		4-Nitrophen	or	Х	Triphenyl Phosphate

LDC #:_	15115A3b
SDG #:_	JH57

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

	Page:_	<u>of</u>
	Reviewer:_	B
2nd	Reviewer:_	~

GC ___ HPLC METHOD:

Rlease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y)N N/A

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits? Y/N N/A Y/N N/A

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	55 LSV	V	143 (50-159)	163 (50-159)	()	31, 32	no out 3x of
	(3)		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
		<u> </u>	()	()	().	<u> </u>	
			()	()			-
			()	()	()		
L			()	()	()		
			()	_ ()	()		
			()	()	()		
			()	()	()		
			()	()	()		_
			()	()	().		
			()	()	()		
			()	()	()		
		_	()	()	()		
			()		()		
				1	, ,		
			()	()	()		
		-	()	()	()		
			()	()	. ()		
			()	()	()		
			()	()	()		

LDC #: 15115 A35 SDG #: 1457

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: 1 of 1
Reviewer: 2 2nd Reviewer: 4

METHOD: __GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

,Level IV/D Only

YN N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Y/N N/A Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

#	Compound Name	Finding	Associated Samples	Qualifications
	AA BB	exceeded cal Range	29, 11, 13, 19, 23, 34,	A N
			36, 43, 49	
	AA	4	15, 27, 31	NA
				·
	Y, AA, BB	V	17, 29, 41, 47, 51	NA
	ВВ	4	21	NA
	· ·			

Comments:	See sample calculation ve	erification worksheet for recalculations		
		,	·	

LDC #:	15	115	439
SDG #:	Ĺ	45	7

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: _	of	_
Reviewer:	-	
2nd Reviewer:	М	_

METHOD: __GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

Y N N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Y/N N/A Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

		% RPD But column		
#	Compound Name	Finding 440	Associated Samples	Qualifications
	AΔ	53	(3	J/Adat
	BB	51		<u> </u>
	ВВ	61	15	
	ВВ	46	43	
	·			

Comments:	See sample calculation ver	ification worksheet for recalc	ulations		

LDC #: 15115 A-3b SDG #: 1457

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	
Reviewer:	
2nd Reviewer:	

METHOD: GC _ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was th

Was the overall quality and usability of the data acceptable?

#_	Compound Name	Finding	Associated Samples	Qualifications
	AA, BB	Exceeded cal pange	2, 9, 11, 13, 19, 23, 34	R/A
	All except above	diluted	3, 10, 12, 21, 39, 44	R/A
	y	- NO	13, 19, 34	R/A
	All except AA, BB, \$	Nb diluted	14, 20, 35	R/A
	AA	exceeded col zonge	18, 27, 31	P/A
	All except AA	diluted	No. 28, 32	R/A
	Y, AA, BB	exceeded cal range	17, 29, 41, 49, 51	R/A
	all except Above	dilutel	18 30, 42, 48,52	R/A

Comments:			 		

LDC #: 15115 A36 SDG #: 1815

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

	Page:	<u>/</u> of_	1
<i>.</i>	Reviewer:		
2nd	Reviewer:		

METHOD: __GC __HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N/A Was the overall quality and usability of the data acceptable?

#	Compound Name	Finding	Associated Samples	Qualifications
	ВВ	exceeded cal range	21	P/A
	All except Above	diluted	22	R/A
			·	

Comments:	 •	

LDC #: 15/15 A 35 SDG #: JH57

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	of
Reviewer:	
2nd Reviewer:	

METHOD: __ GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable?

#	Compound Name	Finding	Associated Samples	Qualifications
ļ				
	ueathered amote	peaks on detected samples	al by the	Text
	blooratory on			
	J	<u> </u>		
	-		<u> </u>	

Comments:		

LDC #:_	15/15F	135
SDG #:_	JH57	

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:/_	_of/
Reviewer:	127
2nd reviewer:	26

METHOD: _

GC __HPLC

Were field duplicate pairs identified in this SDG?

Were target compounds detected in the field duplicate pairs? Y/N N/A

Compound	Concentra	Concentration (ug kg		Qualification Parent only / All Samples	
	9 11		Limit <u>≛∕15</u> ©	Parent Only / An Samples	
A A	140	110	24		
B B	120	240	67		
·					
	 				
				<u> </u>	

Compound	Concentration	Concentration (ug kg		Qualification	
Compound	10 12		Limit = 750	Parent only / All Samples	
AA	150	120	22		
338	130	220	51		
			<u> </u>		
			-		

LDC #:	Ś	liz	ABb
SDG #:			

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	1 of 1
	Reviewer:	7
2nd	Reviewer:	1

		,		
METHOD:	GC		HPLC	

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

A = Area of compound, C = Concentration of compound, S = Standard deviation of the CF X = Mean of the CFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF (2/5/std)	CE (25 std)	Average CF (initial)	Average CF (initial)	%RSD_	%RSD
1_1_	ical ZBS	419106	Arocher 1260	0.0530	0.0530	0.0540	0.0540	¥.5	8.5
2	1LAL 7635	4/19/06	<u> </u>	0.0571	0.0571	0.0573	0.0573	7-7	7-7
					·				
3									
								<u> </u>	
4									

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree	within 10.0	% of the recald	<u>culated</u>
results.	<u> </u>		

LDC #:	151	15A7	ط
SDG #:		457	

VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

	Page:_	1 of 1
	Reviewer:	15
2nd	Reviewer:	of

METHOD: GC	HPLC
	

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

#	Standard ID	Calibration Date	Co	mpound	Average CF(Ical)/ CCV Conc.	Reported CF/Conc. CCV	Recalculated CF/Conc. CCV	Reported %D	Recalculated %D
1	CW 1025	5/8/06	1260-1	285 2835	\$700 V	421.7	421.7 4688	15.6	15.6 6.2
2	cev 1708	5/8/06	1240-1		<u>\</u>	430.1	430.1	14.0	14.0
3	CEY 1032	5/9/06	1260-1		<u> </u>	482.4 450. 3	482.4 482.3	3.5	3.5
4	cev 1621	5 9 06	120-1	<u> </u>	V	513.0 488.5	513.0 486.5	7.6	7.6 7-3

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 15115A3b

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page	: <u>/of/</u>
Reviewe	r: <i></i>
2nd Reviewe	r: /

METHOD: GC	_/.	_HPLC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave, CF - CF)/ave, CF

Where: ave, CF = Initial calibration average CF

CF = A/C

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compo	und	Average CF(ical)/ CCV Conc.	CF/Conc.	CF/Cone. CCV	%D	%D
1_	W 1020	2 100/06	1260-1	28-5	220	501.3	507.3	1.5	1-5
				ZB 35	<u> </u>	516.5	516.5	3.3	3.3
								<u> </u>	
2	cev 1941	5/10/06	1240		V	498.9	498.9	0.2	0.2
				<u> </u>	4	513.7	513-7	2-7	2.7
		<u> </u>						<u> </u>	
3									
							· ·		
4								•.	
									;

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

CONCLC.1S

LDC #:	ls	115	A	3	6
SDG #:	1	H5	7		

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

1 of 1
19
<u> </u>

METHOD: __GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	. Recalculated	
PCB	ZB 35	40	41.6	104	104	0
TCMX	7:35	40	29.8	74.5	14.5	Ü
	,					

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
	· .					
		_			•	

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

LDC#: 15115436 SDG#: JH57

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: __of _/_ Reviewer: ______ 2nd Reviewer: _____

METHOD:	∕GC	HPLC
11 m 11 1 C D .		THE FO

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked concentration SA = Spike added SC = Sample concentration.

RPD =(((SSCMS - SSCMSD) * 2) / (SSCMS + SSCMSD))*100

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery

MS/MSD samples: 53 + 54

	Sp	oike Ided	Sample	Spike S	Sample	Matri:	x spike	Matrix Spik	e Duplicate	MS/N	1SD
Compound	1 20	ded 2 Fgt	rug Figy	Concentration		Percent Recovery		Percent Recovery		RPD	
	MS	MSD		Ms	MSD	Reported	Recalc,	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)											
Diesel (8015)									_		
Benzene (8021B)											
Methane (RSK-175)											
2,4-D (8151)											
Dinoseb (8151)											
Naphthalene (8310)											
Anthracene (8310)											
HMX (8330)											
2,4,6-Trinitrotoluene (8330)											
Arodor 1240	19.8	19.5	NO	14.6	13.1	13.1	73.7	61.2	67.2	10.8	10.0
			ļ <u> </u>								
						<u> </u>	_	-			
	-							-			

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:_	de <u>A 21121</u>
SDG #	1457

Laboratory Control

VALIDATION FINDINGS WORKSHEE!	•
Sample/Laboratory Control Sample Duplicate	e Resulte Verification

Page:_	10f /
Reviewer:	17
2nd R	eviewer

METHOD:

~~	IMI	_
GC	 ΗPί	_(:
	 ••	

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where SSC = Spiked concentration SA = Spike added

SC = Sample concentration

RPD =(((SSCLCS - SSCLCSD) * 2) / (SSCLCS + SSCLCSD))*100

LCS = Laboratory Control Sample percent recovery

LCSD = Laboratory Control Sample duplicate percent recovery

LCS - 05 0406 LCS/LCSD samples:

		Spi Add	ke led	Sample Conc.	Spike S	Sample ntgation	LC	cs	LCS	SD	LCS/L	.CSD
Compo	ound	Ing	ed (Fg)	conc.	(No	1FTL	Percent Recovery Percent Recovery		ecovery	RPD		
		LCS	LCSD	<u> </u>	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)				:							
Diesel	(8015)											
Benzene	(8021B)											
Methane	(RSK-175)					_						
2,4-D	(8151)											<u> </u>
Dinoseb	(8151)											
Naphthalene	(8310)								· · · · · · · · · · · · · · · · · · ·			
Anthracene	(8310)											
HMX	(8330)											
2,4,6-Trinitroto	luene (8330)											
Arodar 1	260	20.2	NA		14.7	NA	72.8	72-8	NA			
						·	1					

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Duplicate	findings worksheet for list of	qualifications and associat	ed samples when reported
esults do not agree within 10.0% of the recalculated results.				

LCSCLCNew.wpd

LDC #:_\S	5115A3	b
SDG #:	1457	

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

	Page:	/of/
	Reviewer:	ħ
2nd	Reviewer:	-

METHOD:

	<u> </u>		
/	Y	N	N/A
/	Y	Ŋ	N/A
		/	

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results?

Concentration=	(A)(Fv)(Df)	
	(RF)(Vs or Ws)(%S/100)	Ξ.

Example:

1260 Sample ID. Compound Name

A= Area or height of the compound to be measured

Fv= Final Volume of extract

Df= Dilution Factor

RF= Average response factor of the compound

In the initial calibration

Vs= initial volume of the sample

Ws= Initial weight of the sample

%S= Percent Solid .

Concentration =

#	Sample ID		Sample ID Co		Compound		,	Reported Concentrations	Recalculated Results Concentrations	Qualifications
33	1260-1		961(0.0573	= 28).	7				
	1240-1	42434	445=	281.7 +	487.4+	27.9	+ 289,9 + <u>30</u> 3	3.1 = 358		
					<u> </u>	:	<u>_</u>			

Comments:	 <u>_</u>	<u>.</u>	 <u>.</u>			
				_		

LDC #: 15238A3b	VALIDATION COMPLETENESS WORKSHEET	
SDG #: JL31/JL32/JL33/JL34	Level III	
Laboratory: Analytical Resource	es Inc	R

Reviewer: 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	۵	Sampling dates: 2 9 -7 2 2 2 1 0 6
11.	GC/ECD Instrument Performance Check	NA	
III.	Initial calibration	A	
IV.	Continuing calibration	Δ	
V.	Blanks	٨	
VI.	Surrogate spikes	SM	
VII.	Matrix spike/Matrix spike duplicates	چس	
VIII.	Laboratory control samples /5RM	Ą	LC>
IX.	Regional quality assurance and quality control	N	Infernal str. Acceptable Sulfur + Acid clean up performed
Xa.	Florisil cartridge check	N	Sulfur + Acid clean up performed
Xb.	GPC Calibration	N	1 1 1
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	S\₩	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	Ŋ	
XV.	Field blanks	Ν	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

	<u>carner</u>								
1 1	LDW-SC1-05	- 11	LDW-SC6-3-3.5		21 2	LDW-SC135-1	•	31 ⁷ LDW-SC27-2-2.5	ا :
2 1	LDW-SC15-1	. 12	LDW-SC6-3.5-4	_,	22 2	LDW-SC13-1-1.5		32 2 LDW-SC27-2.5-3	•
3 1	LDW-SC1-1-1.5	. 13	LDW-SC6-4-4.5	<u> </u>	23 2	LDW-SC13-1.5-2		33 ² LDW-SC27-3-3.5	•
4 1	LDW-SC1-1.5-2	14	LDW-SC33-0-0.5		24 2	LDW-SC13-2-2.5		34 2 LDW-SC27-3.5-4	
5	LDW-SC6-0-0.5	. 15	LDW-SC33-0.5-1	,	25	LDW-SC13-2.5-3		35 ℃ LDW-SC27-4-4.5	
6	LDW-SC6-0.5-1 .	16	LDW-SC33-1-1.5		26 %	LDW-SC13-3-3.5		36 3 LDW-SC12-0-5	
7 }	LDW-SC6-1-1.5	. 17	LDW-SC33-1.5-2	✓	27 2	LDW-SC27-0-0.5	٠	37 ³ LDW-SC125-1	
8 }	LDW-SC6-1.5-2	. 18	LDW-SC33-2-2.5	•	28 2	LDW-SC27-0.5-1		38 ³ LDW-SC12-1-1.5	
9 1	LDW-SC6-2-2.5	- 19	LDW-SC33-2.5-3	•	3	LDW-SC27-1-1.5		39 ³ LDW-SC12-1.5-2	
10	LDW-SC6-2.5-3	20 -	LDW-SC13-05		302	LDW-SC27-1.5-2		40 3 LDW-SC12-2-2.5	

LDC #: 15238A3b	VALIDATION COMPLETENESS WORKSHEET	Date: 7/24/01
SDG #: JL31/JL32/JL33/JL34	Level III	Page: 2 of 2
Laboratory: Analytical Resource	es, Inc.	Reviewer:
		2nd Reviewer: / /

METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times		Sampling dates:
II.	GC/ECD Instrument Performance Check		
111.	Initial calibration		
_IV.	Continuing calibration		
V.	Blanks		
VI.	Surrogate spikes		
VII.	Matrix spike/Matrix spike duplicates		
VIII.	Laboratory control samples		
IX.	Regional quality assurance and quality control	N _	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data		
XIV.	Field duplicates		
XV.	Field blanks		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

41 3	LDW-SC12-2.5-3		51 1	LDW-SC33-2-2.5MS	61 4	1443-106130G	71	
42 3	LDW-SC12-3-3.5		52 \	LDW-SC33-2-2.5MSD	62	JL3/MBS)	72	
43 3	LDW-SC12-3.5-4	•	53 2	LDW-SC13-05MS	63 7	- 1132 MBS/	73	
44 3	LDW-SC44-05	,	54 N	LDW-SC13-05MSD	64 ³	1 L 33 M BS 1	74	
45 7	LDW-SC445-1	/	55 3	LDW-5012-0- 0.5 MS	65		75	
46 ³	LDW-SC44-1-1.5		56 3	LOW -SC12-0-0.5 MSD	66		76	
47 3	LDW-SC44-1.5-2		57		67		77	
48 3	LDW-SC44-2-2.5		58		68		78	
49 3	LDW-SC44-2.5-3		59		69		79	
50 Z	LDW-SC44-3-3.5	,	60		70		80	

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A alpha-BHC	1. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG.
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Arocior-1248	нн.
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	it.
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. DB 608	кк.
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. DB 1701	LL.
G. Heptachior epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE.	MM.
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF.	NN.

Notes:			
			<u>·</u>

LDC #:_	15238	AZb	
SDG #:	7131	32, 33	+ > V

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

Page: /of_	_
Reviewer:	_
2nd Reviewer: 🔍	

Tri-n-propyltip

Tributyl Phosphate

Triphenyl Phosphate

METHOD: **HPLC**

#	Sample ID	Detecto Colum		Surrogate Compound			%R (Limits)			Qualific	ations
	22	not spec	فهنباذ	DCB	PZ	2	(50 -)	SD)	۲	no our	- 10 X DIL
		,	V	TCMX	49	,5	(1				
	22	¥		PCB	PC)	\			107	
	23	1		V	D	0	(V 10,	×
	28		_	<u> </u>	5	00	())		1 100/	Κ
	29	V		7		00	(<u> </u>		10 10	0×
	30	1		1		<u> </u>	(7)) ×
	3	*		1		V	()		√ St	×
	31.	V		V	17	2	(1) /)		y 2	o ×
	3349	1		# TKMX	H	0 1	19.5 (<u> </u>		4	XO
							()			
							()			
	Surrogate Com	npound		Surrogate Compo	ound		Surrogate Comp	ound		Surrog	ate Compound
А	Chlorobenzene	(CBZ)	G	Octacosane)	М	Benzo(e)Pyre	ne	ş	1-Chloro-3	Nitrobenzene
В	4-Bromofluorobenz	ene (BFB)	Н	Ortho-Terpheny	ı	N	Terphenyl-D14		T		Dinitrotoluene
С	a,a,a-Trifluoroto	oluene	1	Fluorobenzene (FE	3Z)	0	Decafluorobiphenyl (DCB) U Tripentyltin		<u>ripentyltin</u>		

Q

R

1-methylnaphthalene

Dichlorophenyl Acetic Acid (DCAA)

4-Nitrophenol

w

х

n-Triacontane

Hexacosane

Bromobenzene

κ

L

E

F

Bromochlorobenene

1,4-Dichlorobutane

1,4-Difluorobenzene (DFB)

LDC #: 15 238 A36 SDG #: 1 L 31, 1 L 32, 1 L 33 + 1 L 34

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

Page: _/of__ Reviewer: _/5_ 2nd Reviewer: _-<__

METHOD: __GC __ HPLC

Are surrogates required by the method? Yes____ or No___

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were surrogates spiked into all samples and blanks?

Did all surrogate recoveries (%R) meet the QC limits?

#	Sample ID	Detecto Colum		Surrogate Compound			%R (Limits)				Qualifications
	4	not spec	idied	PCB	D	δ	(50-150)	~0	our 100x Pi
		\\	V				(<u>)</u>		
	<u> </u>	*		TCMX	4	4.6	(50-15	<u>)</u>		V 2× 9)2
							(
		··· • • •		4.	42	.8		50-15	ل)		\
	<u> </u>	<u> </u>		- V	11-						1 0-1
		Y		<u> </u>	44	10		90-150			
	11	1		V.	. 14	-	(90-152	2)	-	J 20 X
	14	1		DCB	1-	13	(50-150)	,	10%
	15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1	16	,9	(4)		V 25X
	16	1		DCB	P	 _	. (1	<u>}</u>		X COJ X
				TCMX	D	Ũ	(4)		V
		ļ ,		 			(1
		<u> </u>		DCB	<u> </u>	0	()		\ XX
	2)	1,		1	1.	10		7.)	<u> </u>	J 20X
		<u> </u>			'	10)		<u> </u>
	Surrogate Con	pound		Surrogate Compo	ound		Surro	gate Compound			Surrogate Compound
A	Chlorobenzene	(CBZ)	G	Octacosane	•	М	· ·	Benzo(e)Pyrene		S 1-Chloro-3-Nitrobenzene	
В	4-Bromofluorobenz	ene (BFB)	н	Ortho-Terpheny	1	2	ī	erphenyl-D14		T 3,4-Dinitrotoluene	
С	a,a,a-Trifluorote			Fluorobenzene (Fl		0			Tripentyltin		
D	Bromochlorobe		J	n-Triacontane		P 1-methylnaphthalene V		<u>Tri-n-propyltin</u>			
E	1,4-Dichlorobt		К	Hexacosane		Q	Dichlorophenyl Acetic Acid (DCAA) W			Tributyl Phosphate	
F	1,4-Difluorobenze	ne (DFB)	L	Bromobenzene		R		1-Nitrophenol		x	Triphenyl Phosphate

LDC #: 152 38 A3b SDG #: \$3 JL 31, 32, 33 + 3 4

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

	Page:_	<u>/</u> of_	
	Reviewer:		<u>_</u>
2nd	Reviewer:	d	

METHOD: _GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Y/N/N/A Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	51462	V	180 (50-159	217 (50-159	()	18	no ourl 57di
		BB	0 (50-152)	0 (50-170)	()	1	V
			()	()	()		
			()	()	()		
			()	()	()		
		+	()	()	()		
\vdash	53 ⊦54	V	174 (90-150)		()	20	no out 2X d
\vdash		ВВ	0 (1)	0 (1)	()	<u> </u>	V
			()	()	()		
			()	()	()	·	·
			()	()	()		
			().	()	().		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
		-	()	` ;	()		
\vdash			/ /	1 1	()	-	
				1 (, ,		
\vdash			, ,	, ,			
			()	()	()		
\square		<u> </u>	()	()	()		
			()	()	()		
			(_)	().	(
			()	()	()		
					(

LDC #:_	15230	A3.	6	
SDG #:_	1131	/32	/33	/3 Y

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page:	
Reviewer:	
2nd Reviewer:	

A 15

METHOD: ____GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Level IV/D Only
Y N N/A V

Y N N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

		% RPD Bot. column				
#	Compound Name	Finding ±40	Associated Samples	Qualifications		
	Arodor 1260	46	17	1 12 /A dit		
	J	42	40	1/A det		
		46	45	J/A dut		
				, , , , , , , , , , , , , , , , , , ,		
	The choice	of Arodors reported u	ere based on	Text		
	choice of "b	est fit" por peaks the	at could be due			
	to other	wegthered Arochers or	might be more			
	complex mix	ture)			
	<u> </u>					

Comments:	See sample calculation verification worksheet for recalculations	
-		······································

LDC #: 15115A19	_ VALIDATION COMPLETENESS WORKSHEET	Date: 6/21/06
SDG #: JH57	Level IV	Page: 1 of 1
Laboratory: Analytical Resou	rces, Inc.	Reviewer: 1 2nd Reviewer:
METHOD: GC/MS Butyltins	(Krone/(EPA SW 846 Method 8270D-SIM))	2nd Reviewer: C

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

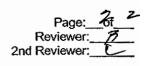
	Validation Area		Comments
1	Technical holding times	*	Sampling dates: 2/17/06 - 2/25/QL ·
11.	GC/MS instrument performance check	A	
10.	Initial calibration	4	
IV.	Continuing calibration	Ą	
V.	Blanks	4	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	SW _	
VIII.	Laboratory control samples /Seu	+	Les .
IX.	Regional Quality Assurance and Quality Control	N	·
X.	Internal standards	Ā	
XI.	Target compound identification	4	
XII.	Compound quantitation/CRQLs	\$₩	
XIII.	Tentitatively identified compounds (TICs)	į)	
XIV.	System performance	<u> </u>	
XV.	Overall assessment of data	1	
XVI.	Field duplicates	L	
XVII.	Field blanks	N	

Note: A = Acceptable ND = No compounds detected D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: Ill schinente

	<u> </u>				
1	LDW-SC26-6-8**	11	21	31	
2_	LDW-SC26-6-8DL**	12		32	
3	LDW-SC28-5.5-7.5	13	23	33	
4	LDW-SC28-5.5-7.5DL	14	24	34	
5	LDW-SC15-4-6	15	25	35	
6	LDW-SC23-4-6	16	26	36	
7	LDW-SC25-4-6	17	27	37	
8	LDW-SC25-4-6DL	18	28	38	
9	LDW-SC28-5.5-7.5MS	19	29	39	
10	LDW-SC28-5.5-7.5MSD	20	30	40	

LDC#: 15115A19 SDG#: 1457


VALIDATION FINDINGS CHECKLIST

Page: /of _2 Reviewer: __/5 2nd Reviewer: __/5

Butyltin France Gens/S Mathod: Samiyolatilas (FDA CW/840 Mathod 8270C)	IM			2nd Reviewer:
Method: Semivolatiles (EPA SW-840 Method 8270G)				
Validation Area	Yes	No	NA	Findings/Comments
I Ass Top althodoughuses as a second				
All technical holding times were met.				
Cooler temperature criteria was met.		220000000000000000000000000000000000000	WOOD ST	
Ill SCM susmineitoetomanse cieck	<u> </u>			
Were the DFTPP performance results reviewed and found to be within the specified criteria?	~			
Were all samples analyzed within the 12 hour clock criteria?	y	SEAHANNES.	**************************************	
Illegation and the second seco			l e	
Did the laboratory perform a 5 point calibration prior to sample analysis?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	1/		<u>~</u>	
Was a curve fit used for evaluation?		~	٠	
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?			<u>~</u>	
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?	L			
IV Contibuling calibration.				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	~			
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?	'			
V/Blaffig ffisch 0.5				
Was a method blank associated with every sample in this SDG?	/			
Was a method blank analyzed for each matrix and concentration?	/		<u>. </u>	
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		V		
VisConogale Spices				
Were all surrogate %R within QC limits?		1		
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?		•		
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?			20 m	
VIP Matrix spike Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	-	. ,		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			<u> </u>	
Villatacoratory control scripts				
Was an LCS analyzed for this SDG?				

LDC#: 15||5A|9 SDG#: 1457

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	_	_		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		·		
IX F(B) mai Buality Assurance and Quality control (
Were performance evaluation (PE) samples performed?			~	
Were the performance evaluation (PE) samples within the acceptance limits?	375 ST.	die outlisie		
Capitarial Standards (1997) was a larger of the control of the con				
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds from the associated calibration standard?				
XEXT and encourage of the control of				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	1	<u></u>		
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?	02000			
XII Scompound againtilation/CR0IE				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	4			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	_		•	
XIII Tentatively identified comounds (IICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			_	,
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			/	_
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?			_	
AVESVERIBLE from the 1972 and the second state of the second seco				
System performance was found to be acceptable.				
We could be a provided				
			5	
Overall assessment of data was found to be acceptable.				
YVERIED SUPERIOR SET STATEMENT OF STATEMENT	l		L.	
Field duplicate pairs were identified in this SDG.			Ĺ	
Target compounds were detected in the field duplicates.				AND THE RESIDENCE OF THE PROPERTY OF THE PROPE
KV/II FIEld banks Target and the second and the sec				
Field blanks were identified in this SDG.	,			·
Target compounds were detected in the field blanks.				

LDC #: 15115A19 SDG #: 1457

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

Reviewer: 2nd Reviewer: 4

METHOD: GC HPLC CCMS/SIM Butyltin krone
Are surrogates required by the method? Yes or No
passe see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were surrogates spiked into all samples and blanks?

VIN	N N/A Did all surrogate recoveries (%R) meet the QC limits?										
#	Sample ID	Detector Column	/	Surrogate Compound			%R (Limits)			Qualifica	tions
	2			Tripropyl Tin	D	0	- 1	20 - 130)	ท	0 ours	-40x DIL
				Tripenty! Tin	D	0		4)			
							(
	3			1		<u> </u>		1)		1	20x Dil
				1		y		J ,		7	
)	-	<u> </u>	
				· -							
											_
									- }		
									1	-	
		_									
				 							
\vdash											
\vdash		_									
				_					+		
-											
									-		
											
										_	
											
<u> </u>	Surrogate Com	pound		Surrogate Compo	und		Surro	gate Compound			te Compound
_ A	Chiorobenzene		<u> </u>	Octacosane		M		Benzo(e)Pyrene	S		Vilrobenzene
В	4-Bromofluorobenze		н	Ortho-Terpheny		N		erphenyl-D14	<u> </u>		initrotoluene
<u></u>	a,a,a-Trifluoroto		-	Fluorobenzene (FE	BZ)	0		rorobiphenyl (DCB)	U		ipentyltin
<u></u>	Bromochlorobe		J K	n-Triacontane		Q		ethvinaphthalene	W		n-propyltin yl Phosphate
E	1,4-Dichlorobu 1,4-Difluorobenzer		L L	Hexacosane Bromobenzene		R		nyl Acetic Acid (DCAA) -Nitrophenol	×		yi Phosphate
	I 14-DIIIICI-PI I	10 (DFD)	ب				<u> </u>	-Midophesioi	^_	- I ripher	IVI FIIOSPIIAIE

LDC #:	<u>15115</u> 419
	1457

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

	_/
1	5
Ź	
	of

METHOD: ____GC__ HPLC GCMS/SIM Buty hin krone
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for cash Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

YN N/A Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits? Y N N/A

#	MS/MSD ID	Compound	ME	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	90+10	Tributytin	0 (20-130)	0 (20-130	()	3	no owar 2x DIL
		Compound Tributy'tin	4	0 (1)	()	1	1
		Butyl Tin	0 (1)	0 ()	()	1	V
			()	()	()		
			()	()	()		
			()	()	()		
				()	()		<u> </u>
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
-	<u> </u>		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	(()		
			()	()	()		
			()	()	()		
-			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

LDC #: 15115 A 19 SDG #: 1457

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page:	/_of/_
Reviewer:	Þ
2nd Reviewer:	
	_

Butyl tin knone GCMS/SIM

METHOD: GC/MS BNA (EPA-SW 848 Method 8270)-

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? Y N N/A Y N N/A

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Compound Sample ID	Finding	Associated Samples	Qualifications
		Treibutyl Tin Ion	exceeded cal Panage	1, 7	NA
		Tributyl Tin For		3	VA.
		Tributy Tin For Pibuty Tin Ion		7	J
				<u> </u>	
					
		·			
					·
					<u> </u>

Comments:	See sample calculation verification worksheet for recalculations	<u>, </u>

LDC # 15115A19 SDG #: 1 H57

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	of	<u>/</u>
Reviewer:		
2nd Reviewer:	-(-	

METHOD: GC _ HPLC GCMS/SIM Butyltin knone

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

N N/A Was the overall quality and usability of the data acceptable?

#	Compound Name	Finding	Associated Samples	Qualifications
	Tribuly Tin In	exceeded cal pange	1, 7	R/A
	All except Above	di lutrol	2,8	R/A
	Tributy 1 Tin Tan	exceeded cal range	3	R/A
	Dibutyl Tin Ion			
	All except Above	di luted	4	R/A
.			T · · · ·	
		· · · · · · · · · · · · · · · · · · ·		

Comments:			

LVV	m	1-	٠.	Ţ	<u>'</u> ~	ı	Į	
SDG	#:	74	45	7				

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page	: 1 of 7
Reviewe	r:
2nd Reviewe	r:

SIM Butyltin (Krone)

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_{s})(C_{h})/(A_{h})(C_{s})$

A_x ≈ Area of compound,

A_k = Area of associated internal standard

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

C_x = Concentration of compound,

C_b = Concentration of internal standard

S = Standard deviation of the RRFs, X = Me

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#		oration ate	Compound (Reference internal Standard)	RRF (1/2 std)	RRF (リン std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1.	NTI-ICAL 3 15	5/06	Phenoi (1st internal standard)	0.600	0.600	0.586	0.586	3.0	3.0
•		, ,	Nephthalene (2nd internal standard)	0.043	0.043	0.042	0.042	6-1	6.1
	·	Ī	Fluorene (3rd internal standard)		,				
			Pentachiorophenoi (4th internal standard)						
		. [Bis(2-ethylhexyl)phthalate (5th Internal standard)				1		
			Benzo(a)pyrene (6th internal standard)						
2			Phenol (1st internal standard)						
			Naphthalene (2nd Internal standard)						
			Fluorene (3rd internal standard)	-				·	
		. [Pentachiorophenol (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th Internal standard)						
		· <u> </u>	Benzo(a) pyrene (6th internal standard)		·				
3			Phenol (1st internal standard)						
			Naphthalene (2nd internal standard)						
		• .	Fluorene (3rd Internal standard)						
<u> </u>		ĺ	Peritachlorophenol (4th internal standard)		•				
			Bis(2-ethylhexyl)phthalate (5th internal standard)		•				1
			Benzo(a)pyrene (6th internal standard)						

Comments:	Refe	<u>r to Initlal</u>	Calibration	<u>findings</u> v	<u>vorksheet for</u>	list of	qualifications	<u>and</u>	associated	samples v	<u>vhen reporte</u>	<u>d results do</u>	<u>not agree</u>	within	<u> 10,0%</u> (of the
recalculated	resul	ts			<u> </u>							<u> </u>	·	· .		
		,	• • •		· <u>· </u>	_ ·	•	-								
	٠						· · ·		• •			,		•	:	

INICLC.2S

LDC #: 15115410 SDG #: 1457

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	of_	1
	Reviewer:		2
2nd	Reviewer:	- 4	

SIM Butyl Ti'n Krone

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave: RRF - RRF)/ave. RRF RRF = $(A_{\nu})(C_{\nu})/(A_{\nu})(C_{\nu})$

Where:

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

A_x = Area of compound, C_x = Concentration of compound, . A_k = Area of associated internal standard

= Concentration of compound, C_{is} = Concentration of internal standard

		, .			Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	car	5/10/06	-Phono (1st Internal standard)	0.586	6.550	0.550	6.1	6.1
			Naprithalene (20d internal standard)	0.042	0.045	0.045	7-1	7-1
·		•	Fluorene (3rd internal standard)					
			Pentachiorophenol (4th Internal standard)		-			
			Bls(2-ethylhexyl)phthalate (5th internal standard)	. ,				
			Benzo(a)pyrene (6th internal standard)		·			
2	cer	5/n 06	Phenol (1st Internal standard)	١	0.582	0.582	0.7	0.7
		, , , , , , , , , , , , , , , , , , , ,	Naphthalene (2nd internal standard)	V	0.042	0.042	0	<i>O</i> -
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th Internal standard)					·
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th Internal standard)					
3			Phenoi (1st Internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th Internal standard)					
			Bis(2-ethylhexyl)phthalate (5th Internal standard)	,				
			Benzo(a)pyrene (6th Internal standard) .	, , , , , , , , , , , , , , , , , , , ,	,		•	

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC	#:	5	115	٨	19
SDG	#	1	#5	7	

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	/_of/
Reviewer:	13
2nd reviewer:	λ
	,

SIM Butyl Tin Knowne METHOD: GC/MS Semivalatiles (EPA SW 846 Method 8270)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: #]

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene d5	47-27	12.37	26.16 (8508)	27.25	_
2-Fluorobiphenyl Pentul	↓	رح. 34	32-45 (. 4809)	28.58	0
Terphenyl-d14			= 28.5	-	
Phenot-d5					
2-Fluorophenoi		_			
2,4,6-Tribromophenol		_			
2-Chlorophenol-d4			<u> </u>		
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4	_				

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					,
2,4,6-Tribromophenol					
2-Chiorophenol-d4					
1,2-Dichlorobenzene-d4					

LUC	#:	1	5 II	<u>></u>	A	١	1
SDG						•	

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

	Page:	1	_of_	1
	Reviewer:		13	
nd	Reviewer:	•	R	

Butyl Tin (Knone).

METHOD: GC/MS BNA (EPA SW 848 Method 8270) -

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I MS - MSD I * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery

MS/MSD samples:

		pike.	Sample	Spiked	Sample	Matrix Spike		Matrix Spike	Duplicate	MS/MSD RPD	
Compound		dod	Concentration	Concer (v.	Tration .	Percent F	Recovery	Percent Recovery			
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated.
tributal Lin	44.4	44.1	3920	3300	3690	0	٠ .	0	_O	11.2	11-2
2-Chlorophenol											· · · · · · · · · · · · · · · · · · ·
1,4-Dichlorobenzene								, .			
N-Nitroso-di-n-propylamine									<u> </u>		
1,2,4-Trichlorobenzene							,,,				
4-Chlord-3-methylphenol		<u> </u>	<u> </u>	<u> </u>							
Acenaphthene											
4-Nitrophenol		,									
2,4-Dinitrotoluene							• •				
Pentachiorophenol											
Pyrene											

Comments:	Refer to Matrix Spike/Matrix	Spike Duplicates	findings	worksh	neet for li	st of qualifications and	associated	samples when report	ed results do	not agree within
10.0% of the	recalculated results.			<u>:</u>	•			<u> </u>	· · ·	

LDC #	: 151	15 A10	1
SDG #	#: J'H	57	

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

	Page:_	_/of_/
	Reviewer:	79
2nd	Reviewer:	A

•	SIM	Butyl	Tin	krone
METHOD: GC/MS	BNA-(EPA-	SW-846 N	Aethod-	8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = ILCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery .

LC5 LCS/LCSD samples:

		olke	Spike		LCS		LC	SD	LCS/LCSD	
Compound	. (vg	ded (\a_)		oncentration Ag \ \ \ Percei		Percent Recovery		Percent Recovery		-p .
	LCS	LCSD	LCS	LCSD	Reported	Recaic.	Reported	Recaic.	Reported	Recalculated
tribulg! Tin	44.6	NA	28.6	AU	64-)	64.)	NA-			
2-Chlorophenoi				· -						
1,4-Dichlorobenzene										-
N-Nitroso-di-n-propylamine		,								
1,2,4-Trichlorobenzene				-, -				,		
4-Chloro-3-methylphenol		· <u>.</u>								
Acenaphthene.									٠,	
4-Nitrophenol										
2,4-Dinitrotoluene		: /								
Pentachlorophenol			,							
Pyrene									,	

Comments: Refer to Laboratory Control Sample/Laboratory Conf	<u>trol Sample Duplicates f</u>	<u>indings worksheet for list of</u>	qualifications and ass	ociated samples whe	n reported
results do not agree within 10.0% of the recalculated results.		<u> </u>	· · ·		
,	•				

LDC #:_	15/15 A19
SDG #:	1457

only.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:	· 17
2nd reviewer:	of

SIM Butyl Tin knone.
METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Percent solids, applicable to soil and solid matrices

Factor of 2 to account for GPC cleanup

Y N N/A Y N N/A

2.0

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	on = $(A_*)(I_*)(V_*)(DF)(2.0)$ $(A_*)(RRF)(V_*)(V_*)(%S)$	Example:
A _x .	= .	Area of the characteristic ion (EICP) for the compound to be measured	Semple I.D. # Di buly I to
Ą	=	Area of the characteristic ion (EICP) for the specific internal standard	
í,	· <u>·</u> .	Amount of internal standard added in nanograms (ng)	Conc. = (169919)(0.2)(0.5)(2)(0.519)(pa
V.	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	169950 "0.042 "5.29 "
\mathbf{V}_{i} .	=	Volume of extract injected in microliters (ul)	= 520 up La
V _t	=	Volume of the concentrated extract in microliters (ul)	= 520 ng kg
Df	=	Dilution Factor.	

#	Sample ID	Сотроина	Reported Concentration ()	Calculated Concentration ()	Qualification
				•	· .
			· ·		. •
``,					,
-		•	•		
			•	•	
٠.					
		· · · · · · · · · · · · · · · · · · ·			
	1 . 1			_	
			* *,*		
,					

SDG	#: <u>15115A4</u> i #: <u>JH57</u> oratory: <u>Analytical Resourc</u>				PLETENESS Level IV /	WORKSHE		Date: 6/>אלי Page: 1 of 1 Reviewer: אַאַ
MET	HOD: Metals (EPA SW 8	46 M	ethod 6010l	3/7000)			2	nd Reviewer:d
The valid	samples listed below were ation findings worksheets.	e revie	ewed for ea	ch of the	following valida	tion areas. Valid	dation findings	are noted in attached
	Validation	Area				Co	mments	
J,	Technical holding times			A	Sampling dates:	219106-	2/25/06	->/27/06V
H.	Calibration			Â			, ,	
BI.	Blanks			SW				_
IV.	ICP Interference Check San	nple (II	CS) Analysis	A				
V.	Matrix Spike Analysis			sW				
VI.	Duplicate Sample Analysis			A				
VII	. Laboratory Control Samples	(LCS)	·	A	Lus, s	PM		
VIII	. Internal Standard (ICP-MS)			N	> N.+	World		
IX.	Furnace Atomic Absorption	QC		~] "3" / "	1		
X.	ICP Serial Dilution			N	p.t per	Jone L		
XI.	Sample Result Verification			A		1		
XII.	Overall Assessment of Data			A				
XIII	. Field Duplicates			μ				
XIV	. Field Blanks			N				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet ted Samples:		R = Rin	compound sate eld blank	s defected	D = Duplicate TB = Trip blank EB = Equipment	blank	
		Τ						
1	LDW-SC26-6-8 **	11	LDW-SC16-8	3 <u>-10 * * * </u>	21		31	
2	LDW-SC26-11.1-12.1	12	LDW-SC14-4	<u>l.1</u> -6	22		32	
3	LDW-SC37-5.3-6.9XX	13	LDW-SC25-4	I-6	23		33	
4	LDW-SC28-5.5-7.5 **	14	LDW-SC2-4-	6	24	_	34	
5	LDW-SC33-4-6	15	LDW-SC2-10).7-12	25		35	
6	LDW-SC12-4-6.7	16	LDW-SC17-6	5-8.2_	26		36	
7	LDW-SC6-6-8	17	LDW-SC26-6	5-8MS	27		37	
8	LDW-SC\$-4-6	18	LDW-SC26-6	5-8DUP	28		38	
9	LDW-SC10-4-5	19	pB.		29		39	
10_	LDW-SC16-4-6	20			30		40	
Notes	3:							

VALIDATION FINDINGS CHECKLIST

Page: of Reviewer. 44

Method: Metals (EPA SW 846 Method 6010/7000/6020)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times 12 and 12 and 12 bronders as a				
All technical holding times were met.	\ <u>'</u>			
Cooler temperature criteria was met.		Day of Marie 1981 1981	newske	
II Calibrations				
Were all instruments calibrated daily, each set-up time?	\ <u>'</u>			
Were the proper number of standards used?	_			
Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury and 85-115% for cyanide) QC limits?	/			
Were all initial calibration correlation coefficients ≥ 0.995? (Level IV only)		Course where	THE PARTY BEAUTY	
III Blanks				
Was a method blank associated with every sample in this SDG?	\ <u>'</u>			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	V			
WeICP Interference Crieck Sample state to the state of th				
Were ICP interference check samples performed daily?	·v			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?				
IV: Matrix spike/Matrix spike duplicates (m. 12)				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.		/		
Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were ≤ 5X the RL, including when only one of the duplicate sample values were < 5X the RL.		.		
Milliaboralo y/control samples				
Was an LCS anayized for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			
7/L Furnace Atomic Absorption OC 1/2 # - S 1/2 1/2				
f MSA was performed, was the correlation coefficients > 0.995?			4	
Do all applicable analysies have duplicate injections? (Level IV only)				
For sample concentrations > RL, are applicable duplicate injection RSD values <			/	
Were analytical spike recoveries within the 85-115% OC limits?				

VALIDATION FINDINGS CHECKLIST

Page: Vof Y Reviewer: M 2nd Reviewer: Y

		_		
Validation Area	Yes	No	NA	Findings/Comments
Will ICE Serial Dilution, 2015			a di	
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the IDL?		V		
Were all percent differences (%Ds) < 10%?		<u> </u>	1	
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.			V	
Milk Internal Standards (ERA SW/846 Method 8020)				
Were all the percent recoveries (%R) within the 30-120% of the intensity o			7	
If the %Rs were outside the criteria, was a reanalysis performed?				
IX. Regional Quality Assurance and Quality Confrol				
Were performance evaluation (PE) samples performed?			1	
Were the performance evaluation (PE) samples within the acceptance limits?		Wind Change 1		
X :Sample idesuit Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XI) Overall assessment of data				
Overall assessment of data was found to be acceptable.	1			
XI Field diplicates of the transfer of the second s				
Field duplicate pairs were identified in this SDG.		V		·
Target analytes were detected in the field duplicates.			1	
XIII Fjagbanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			1	

VALIDATION FINDINGS WORKSHEET SDG #: THSY Sample Specific Element Reference

Page: Reviewer: 2nd reviewer:

en entre con

All circled elements are applicable to each sample.

	Sample ID	Matrix	Target Analyte List (TAL)
<i></i>	1-5,7.8,10	Selent	AI, &b. As) Ba, Be, &d Ca, &r. Co. Cu, Fe, Pb, Mg, Mn, Hg (N) K, Se (Ag) Na. TI. V. Zn, Mb, B, Si, CN,
	1467-12	161	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, (Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
·	217.18	15	Al, Sb, As, Ba, Be, Cd, Ca, Ca, Co, Cly, Fe, Pb, Mg, Mn, Hg, Ni) K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN;
			Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, NI, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		<i>i d</i> :	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	*:		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu; Fe, Pb, Mg, Mn, Hg, Ni, K, Se; Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
1 4 4 4 4	11. 4		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
, 1		: .	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	a. 1. 1 a.	뇄	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
10, 10,	$x_{ij}(t) = -\epsilon_{ij}$.t 150	Al, Sb, As, Be, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, St, CN.
	en de la companya de	Aur Ford	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		1 1.00	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
. 4, A. Ca.	3. TO 1. DO	$\Delta r_{s} (\hat{y} - s_{s})$	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
2	a Maria	35 3.85	Al, Sb. As, Ba, Be, Cd, Ca, Cr. Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V; Zn, Mo, B, Si, CN,
5 N. Sw	ari ti di ta	70. ta 84.	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
, 1 to \$200	A. 5, 7, 25	/- P %	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	A	e	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	:	٠	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN;
		t. 1 1	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
			Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	· • ·		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
·			Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
			Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
٠			Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
			Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
			Analysis Method
	ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	ICP Trace		AI,(Sb, As,)Ba, Be,(Cd) Ca, Cr, Co, Cu) Fe, Ph, Mg, Mn, Hg, Ni) K, Se, Ag,) Na, (T, V, Zn, Mo) B, Si, CN,
	ICP-MS	-	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,

Mercury by CVAA if performed Comments:__

DC #:_ SDG #:_ METHOR Sample (: Trace M	ETA (EPA ion units, u	SW 846 Me nless other	ethod 6010 wise noted	0/7000) S	P	B/ICB/CCB tion factor a Assoc	QUALIFIED pplied:_ iated Sample		<u> </u>		(Page:_ Reviewer:_ Reviewer:_ > (0	of
									Sa	mpie identific	ation	 	VA,	
Analyte	Maximum PB* (mg/Kg)	Maximum PB* (ug/L)	Maximum ICB/CCB* (ug/L)	Blank Action Limit					<u> </u>					
Al														Al
\$b						Vo	que	1		10 X	1)			Sb
As										,				As
Ba														Ba
Se :									i Ti				,	Ве
Cd	_													Cd
Ca														Ca
Cr					-									Cr
Cc			_											co
Си	_													Qu
Fe	_											 		Fe
Pb														Pb
Mg														Mg
Mn	_													Mn
Hg														Hg
Ni i						_								NI
κ .												 	_	К
Se												 		Sa
Ag														Ag
Na												 		Na.
TI :							_						_	TI
v	_													v
Zn .	[-]								_					Zn
В														В
140									_		,	 · · · · · · · · · · · · · · · · · · ·		8/0

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

•	. 1
LDC #:	15115A4
SDG #:	JH57

VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis

	Page:_	tot
	Reviewer:	lmy '
2nd	Reviewer:	M

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG? (Y) N N/A

Y (N) N/A Were matrix spike percent recoveries (%R) within the control limits of Z5-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. of 4 or more, no action was taken.

70 - (30)

Was a post digestion spike analyzed for ICP elements that did not meet the required criteria for matrix spike recovery?

Y N N/A

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. YN N/A

#	Matrix Spike iD	Matrix	Analyte	%R_	Associated Samples	Qualifications
1	17	Selimit	5 b	29.9	10-1-16-18	Juj/A (post spile 9/10) No good (nound If to) 15.
_			CV	69.5	¥	No good (round of to)
	-				1-5.7.8 10.11 13-16	18.
					, , , , ,	
<u> </u>						
<u> </u>		<u> </u>		<u> </u>		
Ţ.						
_						
_					· · · · · · · · · · · · · · · · · · ·	
1						
٠.						
- -						· · · · · · · · · · · · · · · · · · ·
٠,						
+						
					-	
		-				
+		 				
+						· · · · · · · · · · · · · · · · · · ·
+						
+	-			<u> </u>		

Comments:		
	•	

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page:_	of/_
Reviewer:	us.
2nd Reviewer:	A ,
_	

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True

Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

True = concentration (in ug/L) of each analyte in the ICV or CCV source

Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	Recsiculated %R	Reported %R	Acceptable (Y/N)
IcV	ICP (Initial calibration)	As	1979	20.0	99-0	98-9	Y
	GFAA (Initial calibration)						
IN	CVAA (Initial calibration)	17	8.70	8.0	(02-5	102.5	Υ
CoV	ICP (Continuing calibration)	2 y	(025	(000	7.50)	(02-5	. <i>V</i>
	GFAA (Continuing calibration)						
CeV	CVAA (Continuing calibration)	Hg	3.70	4.0	92.5	92.5	7
	Cyanide (initial calibration)	U					
;	Cyanide (Continuing calibation)						

Comments:	Refer to Calibration	Verification findings w	vorksheet for list o	of qualifications an	d associated samp	les when reported	results do not agre	e within 1	0.0% of the
recalculated	results				+				

LDC #: 13115A4 SDG #: JH57

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: of Reviewer: www.

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recaluculated using the following formula:

%R = Found x 100

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = \frac{|S-D|}{(S+D)/2} \times 100$

Where, S = Original sample concentration

D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = II-SDR! \times 100$

Where, I = Initial Sample Result (mg/L)

SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	Recalculated %R / RPD / %D	Reported %R / RPD / %D	Acceptable (Y/N)
TUSAR	ICP interference check	Se	(00)	(000	(00,7	11012	4
Les	Laboratory control sample	Tl	203.4	200	107	(02	
17	Matrix spike	V	(SSR-SR)	83.4	94.7	94.7	
. 18	Duplicate	5b	272	282	3.5	}-6	
LA	ICP serial dilution						×

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results

LDC #:	1511544
SDG #:	JHM

Detected analyte results for

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	1012
Reviewer:	MID
2nd reviewer:	N.

were recalculated and verified using the

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

	aifications below for all questions answered "N". Not applicable questions are identified as "N/A".
(Y) N N/A	Have results been reported and calculated correctly?
~ N N N N N N N N N N N N N N N N N N N	A

SY N N/A Are results within the calibrated range of the instruments and within the linear range of the ICP?

Are all detection limits below the CRDL?

following equation: Concentration = (RD)(FV)(Dil) Recalculation: (In. Vol.)(%S) RD FV Raw data concentration Final volume (ml)

In. Vol. Initial volume (mi) or weight (G) Dil Dilution factor = 14. >6 m/y %S Decimal percent solids

Sample ID	Analyte	Reported Concentration (M/u _f)	Calculated Concentration (W / 4)	Acceptable (Y/N)
	5b	270	270	У
	As	1740	1740	
	cd	٤ .	3	
	Gr	163	(63	
·	Co	(0)	103	
	Cu	1950	1950	
	Pb	1350	02.5)	
	tg	4.03	4.03	
	Mo	(53	(5)	
		60	60	
	Aay	<u>3</u>	3	
	V	69	69	
		3800	उक्ट	
(1	As	14	14	
	cd	1,2	1,2	
	Gy	34.9	350	
	lo	7. 3	2.3	
	Cu	53-9	<i>5</i> ′3.9	
	Pb	19	79	
	Hg	0.35	0.35	,
	Mo	1-3	1.3	1

LDC #:	15115A4
SDG #:	045M

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	$\mathcal{V}_{or}\mathcal{V}$
Reviewer:	ин
2nd reviewer:	11
,	·

METHOD: Tra	ce Metals (EPA	SW 846 Method 6010/7000)		
Please see quarter N N/A Y N N/A Y N N/A	Have results it Are results wit	w for all questions answered "N". Not app seen reported and calculated correctly? hin the calibrated range of the instrument on limits below the CRDL?	slicable questions are identified as "N/A".	
Detected analy following equal		<u>l,h</u>	were recalculated and verified using the	>
Concentration ==	(RD)(FV)(Dil) (In. Vol.)(%S)	Recalculation:		

Raw data concentration Final volume (ml), initial volume (ml) or weight (G) Dilution factor Decimal percent solids

Sample ID	Analyte	Reported Concentration (w//w)	Calculated Concentration (// / -/)	Acceptable (Y/N)
11	Vi	20	20	У
	Aq	0.5	0.5	
		63.9	63-9	
	- 2 n	137	(37	
	· · _	. 7	1.4 11.11.11	
· ·			,	٠
·			. ,	
•			-	
				-
				<u> </u>
	<u>-</u>			
· .				
		·		
, .				•

SDG#	: 15238A4 t: JL31 /JL32/JL33/JL34 atory: <u>Analytical Resourc</u>	- m			PLETENES Level III	S WORKSHEE		Date: 7/24/00 Page:of // Reviewer:wm_ 2nd Reviewer:
METH	OD: Lead & Mercury (El	PA SI	N 846 Meth	od 6010B	/7471A)			Zild NOVIOIO
	amples listed below were ion findings worksheets.	revie	ewed for ea	ch of the f	ollowing valid	dation areas. Valida	ation findings	s are noted in attached
	Validation	Агеа	_			Con	ments	
1.	Technical holding times			A	Sampling date	s: 2/9/06 -	2/11/06	
₹I.	Calibration			SW				
111.	Blanks			<i>A</i>				
IV.	ICP Interference Check Sam	ple (i	CS) Analysis	A				
V.	Matrix Spike Analysis			A) h.s.	hus	_	
VI.	Duplicate Sample Analysis		_	A	, ,			
VII.	Laboratory Control Samples	(LCS)		A	Les SI	RM		
VIII.	Internal Standard (ICP-MS)			N	2 mt-	Wiliped		
IX.	Furnace Atomic Absorption	<u> </u>		N				
X.	ICP Serial Dilution			N	(v.+ p	enformed		
XI.	Sample Result Verification			N				
XII.	Overall Assessment of Data			A				
XIII.	Field Duplicates			, V				
XIV.	Field Blanks			<u> </u>				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet		R = Rin	o compound sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	llank	
Validate	d Samples:			_				
	_DW-SC1-05	11	LDW-SC1-0-	.5MS	21		31	
2 1	DW-SC15-1	12	LDW-SC1-0-	.5DU <u>P</u>	22		32	
3 !	DW-SC1-1-1.5	13	LDW-SC33-0	0-0.5MS	23		33	
4 L	.DW-SC1-1.5-2	14	LDW-SC33-0	0-0.5DUP	24		34	
5 L	-DW-SC33-0-0.5	15	PB		25		35	
6 ι	DW-SC33-0.5-1	16	_		26		36	
7 1	.DW-SC33-1-1.5	17			27		37	
8 l	.DW-SC33-1.5-2	18			28		38	
9 L	DW-SC33-2-2.5	19			29		39	
10 [.DW-SC33-2.5-3	20			30		40	
Notes:								

LDC #: (お3844) SDG #: エレシ

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:_	1_of
Reviewer:	MH
2nd reviewer:_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL).
1-4	Selut	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, (Hg, Ni, K, Se, Ag, Na, П, V, Zn, Mo, B, Si, CN,
5-10	V	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb/Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
11,12		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, (lg) Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
13,14	<i></i>	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al. Sb. As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al. Sb. As. Ba. Be. Cd. Ca. Cr. Co. Cu. Fe. Pb. Mg. Mn. Hg. Ni. K. Se. Ag. Na. Tl, V. Zn, Mo. B. Si. CN.
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al. Sb. As. Ba, Be, Cd. Ca, Cr. Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
<u> </u>	<u> </u>	Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb) Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
ICP Trace		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,

Comments: Mercury by CVAA if performed

LDC #:	15238A4
SDG #:_	JL3/

VALIDATION FINDINGS WORKSHEET Calibration

Page:_	
Reviewer:	MH
2nd Reviewer:	<u>u</u>

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Piesse see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all instruments calibrated daily, each set-up time, and were the proper number of standards used?

N N/A ON N/A Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110% for all analytes except mercury (80-120%) and cyanide (85-115%)?

LEVEL IV ONLY:

Y N N/A Was a midrange cyanide standard distilled?

Are all correlation coefficients ≥0.995? Y N N/A

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recalculation Worksheet for recalculations.

14106	CRIL			Associated Samples	Qualification of Data
- 1	<u> </u>	1+9	140 (70-130)	1-4	No good (An) > 1x at R
				·	
					·
					70
_					
					· · · · · · · · · · · · · · · · · · ·

Comments:			

SDG # Labora	LDC #: 15063A6 VALIDATION COMPLETENESS WORKSHEET SDG #: JK31 Level III / IV Laboratory: Analytical Resources, Inc. Date: 6/8/0 Reviewer: 6/8/0 Reviewer: 4/2 2nd Reviewer: 4/2							
METH	METHOD: Total Organic Carbon (Plumb), Total Solids (EPA (60.3)							
The sa	amples listed below were raion findings worksheets.	eviewed for ea	ch of the fo	ollowii	ng va	alidation areas. Validation	on fi	ndings are noted in attached
	Validation A	rea				Comn	<u>ient</u>	rs
ı.	Technical holding times		A	Samp	ling d	ates: 2/6/06 - >	-/2	5/03
lla.	Initial calibration		A					
lib.	Calibration verification		A					
III.	Blanks		Ä					·
IV	Matrix Spike/Matrix Spike Dupl	icates	ASK					
V	Duplicates		A	T	ر زما تسان	liate		
VI.	Laboratory control samples		A	1	_ci,	SRM		
VII.	Sample result verification		N					
VIII.	Overall assessment of data		A					
IX.	Field duplicates		SW	(2	8.9). DK		
x	Field blanks		N	<u> </u>				
Note: Validate	Note: A = Acceptable ND = No compounds detected D = Duplicate N = Not provided/applicable R = Rinsate TB = Trip blank SW = See worksheet FB = Field blank EB = Equipment blank Validated Samples:							
1/ LD	W-SC26-6-8 ##- 1	1 LDW-SC45-5	-6 ##	T	21	LDW-SC16-8-10	31	LDW-SC19-4-6
1 1 2	1		<u> </u>	\dashv		4D11-0010-0-10	۲,	

_							
1/	LDW-SC26-6-8	11	LDW-SC45-5-6	21	LDW-SC16-8-10	31	LDW-SC19-4-6
2	LDW-SC26-11.1-12.1	12	LDW-SC15-4-6	22	LDW-SC23-4-6	32	LDW-SC46-4-6.8
3	LDW-SC51-3.8-5.8	13	LDW-SC20-4-6	23	LDW-SC21-4-6:2	33	LDW-SC49-4-6
4	LDW-SC37-5.3-6.9	14	LDW-SC39-4-6	24	LDW-SC32/5.2-8	34	LDW-SC26-6-8MS
5	LDW-SC28-5.5-7.5	15	LDW-SC12-4-6.7	25	LDW-SC14-4.1-6	35	LDW-SC26-6-8DUP
6	LDW-SC1-4-6	16	LDW-SC6-6-8	26	LDW-SC203-4-6	36	LDW-SC16-8-10MS
7	LDW-SC4-4-6	17	LDW-SC8-4-6	27	LDW-SC25-4-6	37	LDW-SC16-8-10DUP
82	LDW-SC33-4-6	18	LDW-SC8-6-8	28	LDW-SC2-4-6	38	LDW-5026-6-8 TRP
9	LDW-SC201-4-6	19	LDW-SC10-4-5	29	LDW-SC2-10.7-12		LDW-Sc16-8-10 TRP
10	LDW-SC41-4-6	20	LDW-SC16-4-6	30	LDW-SC17-6-8.2	40	MB

votes:				
			_	
		_	 	

LDC #: \\ \SOG #: \(\frac{1}{1} \) \(\frac{1}{3} \)

VALIDATION FINDINGS CHECKLIST

Page: 1 of Reviewer: 44

Method:Inorganics (EPA Method See WY

Method:Inorganics (EPA Method) LL WY			,	
Validation Area	Yes	No	NA	Findings/Comments
(stephnical holding times at a state of the				
All technical holding times were met.	<u>/</u>			
Cooler temperature criteria was met.	V			
(Position) (1995) The second of the second o				
Were all instruments calibrated daily, each set-up time?	1			
Were the proper number of standards used?	1	<u> </u>		
Were all initial calibration correlation coefficients ≥ 0.995?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/			
Were titrant checks performed as required? (Level IV only)	ļ		~	
Were balance checks performed as required? (Level IV only)		Water A Sheet	77.34.34.15	
III Blanks rack 2 december 2 1 2 1 3 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
IV Matrix spike/Matrix spike duplicates and Diuplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	1			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	1			
Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL.	/			
W. Laboratory control samples; (4)				
Was an LCS anayized for this SDG?	۲			
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoverles (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/			
Wi, Regional Quality Assurance and Quality Control (2) (1) (1) (1)				
Were performance evaluation (PE) samples performed?			/	
Were the performance evaluation (PF) samples within the acceptance limits?			_	

LDC #: (5 63 A6 SDG #: (7 K3)

VALIDATION FINDINGS CHECKLIST

Page: of Reviewer: N 4 2nd Reviewer: N

	_			
Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Vernication				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	^			
Were detection limits < RL?	/			
Will Overall assessment product as 2.15 and 4.15 and 4.15 and 5.15 feet				
Overall assessment of data was found to be acceptable.	1			
X sergiplicate				
Field duplicate pairs were identified in this SDG.	1			
Target analytes were detected in the field duplicates.	/			
X Fried plants in Transport in the State of				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.				

LDC #: |5063A b SDG #: TK3

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:	l_of
Reviewer:	10y
2nd reviewer:	A

All circled methods are applicable to each sample.

ſ		
	Sample ID	Parameter
	. -3}	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN (TOC) CR°+ (TS)
Au	34,36	ph tds ci f no₃ no₂ so₄ po₄ alk cn nh₃ tkn toc cr³+
(S)	35.37-39	ph tds cl f No ₃ No ₂ So ₄ Po ₄ ALK CN NH, TKN (OC) CR ⁶⁺ (TS)
1	55,5/-/	pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR°+
		ph tds ci f no ₃ no ₂ so ₄ po ₄ alk cn nh ₃ tkn toc cr ⁶⁺
-		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
		pH TDS CLF NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
ŀ	·	pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
ļ		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁸⁺
- 1		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁹⁺
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
-[,	pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁸⁺
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
]		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁸⁺
Ì		pH TDS CLF NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
		pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR°+
		pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR"+
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
		pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR*+

Comments:	**
	·

LDC#:_\S SDG#:1	VALIDATION FINDINGS WORKSHEET Field Duplicates Method See core	Page:of Reviewer:wu 2nd Reviewer:
XN NA XN NA	Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?	

	Concent			
Analyte	8	9	RPD	
Total Solids	60.40	57.10	6	(を20)
тос	2.10	2.13	1	(430)

V:\FIELD DUPLICATES\FD_inorganic\15063A6.wpd

LDC #:_	15063A6
SDG #:	7K3

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

	Page:_	l of l
	Reviewer:	My
2nd	Reviewer:	
		_

METHOD: Inorganics,	Method .	See wer
The correlation coeffici	ent (r) fo	or the calibration of was recalculated. Calibration date:
An initial or continuing	calibratio	on verification percent recovery (%R) was recalculated for each type of analysis using the following formula:
%R = <u>Found</u> x 100	Where,	Found a concentration of each analyte measured in the analysis of the ICV or CCV solution

					Recalculated	Reported	
Type of Analysis	Analyte		(units)	(units)	r or %R	r or %R	Acceptable (Y/N)
initial calibration		Blank					
Calibration verification		Standard 1					
		Standard 2					
		Standard 3					
		Standard 4					
		Standard 5					
		Standard 6					
		Standard 7					
Calibration verification	780	5,000	4.984		99.68	99.86	4
Calibration verification	1	2000	4942		98.84	98.84	1
Calibration verification							

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:_	15063A6
SDG #:_	TK31

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

- Page:of
Reviewer: Mm
2nd Reviewer:

METHOD: Inorganics.	Method	SR	cover

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found</u> x 100 True Where,

Found =

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True =

concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = 1S-D1 \times 100$ Where,

S =

Original sample concentration

(S+D)/2

D =

Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated	Reported %R / RPD	Acceptable (Y/N)
Les	Laboratory control sample	Toc	O, to 8	0.5	1-1.6	(-/-6	Υ
34	Matrix spike sample	J	(SSR-SR)	1-91	(00-5	(00.5	
1.75,38	Duplicate sample	TS	62.9	61.8 62.5	0.9	0-9	

Comments: results	Refer to appropriate worksheet for list of qua	alifications and associated	d samples when	reported results do r	not agree within 10	.0% of the recalculated
•						
		,	1			
	·					

TOTCLC.6

LDC #:_	(563 AG
SDG #:	11831

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:	
Reviewer:	
nd reviewer:	- 4

·		2nd reviewer:
METHOD: Inorganics, Method See a	wer	
Please see qualifications below for all question (Y) N N/A Have results been reported an Are results within the calibrated Are all detection limits below the	d calculated correctly? I range of the instruments?	are identified as "N/A".
Compound (analyte) results for		orted with a positive detect were
Concentration =	Recalculation:	
TOC= TOC X TS (TOC) TS (SOUTH)	Recolculation: $ \frac{1}{7} _{70C} = \frac{17798 \text{mg/kg X}}{61.8}$	64.96 =18731 m/y

#	Sample (D	Analyte	Reported Concentration	Calculated Concentration (70)	Acceptable (Y/N)
,	1	TS	6/.8	61.8	Y
	·	TS TOC	1.87	1.87	1
2	U	7S TOC	0.2/2	80.0	
		TOC	0.2/2	0.272	<i>\</i>
		· · · · · · · · · · · · · · · · · · ·			
			•		
					1
	-			 	

Note:	
*	

VALIDATION COMPLETENESS WORKSHEET LDC #: 15238A6

Level III

Reviewer

SDG #: JL31/JL32/JL33/JL34 Laboratory: Analytical Resources, Inc.

2nd Reviewer:

METHOD: Total Solids (EPA Method 160.3), TOC (Plumb)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ł.	Technical holding times	A	Sampling dates: 2/9/06 - >>=>/06
Ila.	Initial calibration	A	
IIb.	Calibration verification	A	
<u>III.</u>	Blanks	A_	
IV_	Matrix Spike/Matrix Spike Duplicates	À	Hs.+ Tuzbente. Triplicates
V	Duplicates	A	Triplicates
VI.	Laboratory control samples	A	LCS, SRM
VII.	Sample result verification	N	,
VIII.	Overall assessment of data	A	
IX.	Field duplicates	N.	
x	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

Validated Samples:

	100-1						
1	LDW-SC1-05	11	LDW-SC6-3-3.5	21	LDW-SC135-1	31	LDW-SC27-2-2.5
2	LDW-SC15-1	12	LDW-SC6-3.5-4	22	LDW-SC13-1-1.5	32	LDW-SC27-2.5-3
3	LDW-SC1-1-1.5	13	LDW-SC6-4-4.5	23	LDW-SC13-1.5-2	33	LDW-SC27-3-3.5
4	LDW-SC1-1.5-2	14	LDW-SC33-0-0.5	24	LDW-SC13-2-2.5	34	LDW-SC27-3.5-4
5	LDW-SC6-0-0.5	15	LDW-SC33-0.5-1	25	LDW-SC13-2.5-3	35	LDW-SC27-4-4.5
6	LDW-SC6-0.5-1	16	LDW-SC33-1-1.5	26	LDW-SC13-3-3.5	36	LDW-SC12-05
7	LDW-SC6-1-1.5	17	LDW-SC33-1.5-2	27	LDW-SC27-0-0.5	37	LDW-SC125-1
8	LDW-SC6-1.5-2	18	LDW-SC33-2-2.5	28	LDW-SC27-0.5-1	38	LDW-SC12-1-1.5
9	LDW-SC6-2-2.5	19	LDW-SC33-2.5-3	29	LDW-SC27-1-1.5	39	LDW-SC12-1.5-2
10	LDW-SC6-2.5-3	20	LDW-SC13-05	30	LDW-SC27-1.5-2	40	LDW-SC12-2-2.5

Notes:				

LDC #: 15238A6 **VALIDATION COMPLETENESS WORKSHEET**

Level III

SDG #: JL31/JL32/JL33/JL34 Laboratory: Analytical Resources, Inc.

Reviewer: 2nd Reviewer:

METHOD: Total Solids (EPA Method 160.3), TOC (Plumb)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	Comments
ı.	Technical holding times	Sampling dates:
lla.	Initial calibration	
Ilb.	Calibration verification	
ĦI.	Blanks	
IV	Matrix Spike/Matrix Spike Duplicates	1
v	Duplicates	- poqu
VI.	Laboratory control samples	Sec
VII.	Sample result verification	N
VIII.	Overall assessment of data	
IX.	Field duplicates	
х	Field blanks	

Note:

A = Acceptable
N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank

Validated Samples:

41	LDW-SC12-2.5-3	51	LDW-SC23-3.5-4	61	LDW-SC51-1-1.5	71	LOW-301-1-15TRP
42	LDW-SC12-3-3.5	52	LDW-SC44-05	62	LDW-SC51-1.5-2	72	4PW-SC 13-,5-1 TRP
43	LDW-SC12-3.5-4	53	LDW-SC445-1	63	LDW-SC1-1-1.5MS	73	LOW-SC12-0-, 5 TRP
44	LDW-SC23-0-0.5	54	LDW-SC44-1-1.5	64	LDW-SC1-1-1.5DUP	74	LOW-SC44-0-5TKP.
45	LDW-SC23-0.5-1	55	LDW-SC44-1.5-2	65	LDW-SC135-1MS	75	MB
46	LDW-SC23-1-1.5	56	LDW-SC44-2-2.5	66	LDW-SC135-1DUP	76	
47	LDW-SC23-1.5-2	57	LDW-SC44-2.5-3	67	LDW-SC12-05MS	77	
48	LDW-SC23-2-2.5	58	LDW-SC44-3-3.5	68	LDW-SC12-05DUP	78	
49	LDW-SC23-2.5-3	59	LDW-SC51-0-0.5	69	LDW-SC44-0-,5MS	79	
50	LDW-SC23-3-3.5	60	LDW-SC51-0.5-1	70	LDW-SC44-05DUP	80	

Votes:				

LDC #:	52381	<u>46</u> ,
SDG #:_	Sec	wer

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:_	of
Reviewer:	MY
2nd reviewer:	d.
-	_

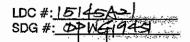
All circled methods are applicable to each sample.

Sample ID	Parameter
1-62	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOO CRO+ (TE)
6471 66.726	TBH TOSYCI F NO, NO, SO, PO, ALK ON NH, TKN (TOO CRO+ (TS)
63 65,67.69	
	PH TDS CLF NO, NO, SO, PO, ALK CN' NH, TKN TOC CR°+
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	PH TDS CLF NO, NO, SO, PO, ALK CN NH, TKN TOC CR8+
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR8+
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR®+
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR°+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CRS+
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk Cn' Nh ₃ TKN TOC CR ⁵⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk Cn' Nh ₃ TKN toc CR ⁵⁺
	PH TDS CLF NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+
	pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR5+
	ph tds ci f no, no, so, po, alk cn nh, tkn toc cro+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CLF NO, NO, SO, PO, ALK CN' NH, TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR5+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CIF NO, NO, SO, PO, ALK CN' NH, TKN TOC CR8+
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CRS+
	pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR8+

Comments:		 <u> </u>					
		_					
-	•				•		

SDG	#: 15145A21 #: DPWG19451/WG19 ratory: AXYS Analytical S	107	ALIDATIO		PLET Level		ESS WOF	RKSHEET	•	Date: 6/22/0.0 Page: /of/ Reviewer: 9— 2nd Reviewer:
MET	HOD: HRGC/HRMS Diox	ins/D	ibenzofuran	s (EPA Me	ethod	161	3 B)			70
The s valida	amples listed below were ation findings worksheets.	revi	ewed for ea	ch of the fo	ollowir	ng va	alidation are	eas. Validati	on find	lings are noted in attached
	Validation	Area	-					Comp	nents	
l.	Technical holding times			♦	Sampl	ling d	ates:	715-22	106	
II.	HRGC/HRMS Instrument pe	rform	ance check	A						
111.	Initial calibration			A	カヤ	S D	= 20/3	o (Nasti	ue/	Zabelled)
IV.	Routine calibration			*			im its			
V.	Blanks			W						
VI.	Matrix spike/Matrix spike du	plicate	s/DUP	N/A						
VII.	Laboratory control samples		\	Á	10	<u>s</u> _	. CRY.			
VIII.	Regional quality assurance	and qu	ality control	N						
IX.	Internal standards	₼	ļ							
X.	Target compound identificat	⋪								
XI.	Compound quantitation and	CRQI	.s	#	ļ					
XII.	System performance			♦						
XIII.	Overall assessment of data			AW						
XłV.	Field duplicates			1/4						
XV.	Field blanks			V						
Note: Validat	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:		R = Rins	o compounds sate eld blank	s detec	ted	TB = 1	uplicate Frip blank Equipment blar	nk	
1	LDW-SC26-6-8 ** Sed	11	WG 1910	7-10 1		21			31	
2	LDW-SC20-4-6 ** J	12	7	, , , ,		22			32	
3	LDW-SC20-4-6 DUP	13				23			33	
4		14				24			34	
5		15				25			35	
6		16				26			36	
7		17			:	27			37	
8		18			:	28			38	
9		19			:	29			39	
10		20				30	···		40	

Notes:	_		


LDC #: 15/45/A> / SDG #: 07/19/19/157

VALIDATION FINDINGS CHECKLIST

Page: __/of _____ Reviewer: ______ 2nd Reviewer: ___(_____

Method: Dioxins/Dibenzofurans (EPA SW-846 Method 8296)16/3/

Validation Area	Yes	No	NA	Findings/Comments
E Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.				,
II: GC/MS Instrument performance check				
Was PFK exact mass 380.9760 verified?				
Were the retention time windows established for all homologues?	/			
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25%?	/			
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?				· -
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?		***************************************		
lif, initial calibration				
Was the initial calibration performed at 5 concentration levels?		-		
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled standards and \leq 30% for labeled standards?		•		
Did all calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound \geq 2.5 and for each recovery and internal standard \geq 10?	/			
IV. Continuing calibration				
Was a routine calibration performed at the beginning and end of each 12 hour period?	/			
Were all percent differences (%D) <20% for unlabeled standards and <300% for labeled standards?				
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
V. Bianks				
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?				
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		oup
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
VII. Laboratory control samples Was an LCS analyzed for this SDG?	V			

VALIDATION FINDINGS CHECKLIST

Page: 20f2 Reviewer: 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	/			:
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
VIII. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
IX. Internal standards				
Were internal standard recoveries within the 40-135% criteria?	/			<u> </u>
Was the minimum S/N ratio of all internal standard peaks ≥ 10?				
X Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?				
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?				
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	1			
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound and labeled standard \geq 2.5?	/			
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?				
For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in the corresponding PCDPE channel?				
Was an acceptable lock mass recorded and monitored?	10			
XI. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIL System pedormanae				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	Δ			
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.	0			

LDC #: 1514512 SDG #: DDW&19451

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Target compounds were detected in the field duplicates.				
XV. Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.		,	/	

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) - 1613/

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	1. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X, Total HxCDF
E. 1,2,3,7,6,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:	 <u> </u>	 	 	_
	 	 		_

LDC #:	15145A-1
SDG #:	OFWG1945/

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	
Reviewer:	\sim
2nd Reviewer:	

	METHOD: HRO	GC/HRMS Dioxins/Dibenzofurans (EPA Method 8 290) /どろう	Zna F
,	Please see qua	lifications below for all questions answered "N". Not applicable questions are identified as "N/A".	
	7 1	Were all samples associated with a method blank?	
		Was a method blank analyzed for each matrix?	

Was a file file of the file of MA Associated Samples:

			secolated Campies,			 	
Compound	Blank ID			San	nple Identification	 	
NG	9107-101	411					
F	0.000).					
4	0.118						
<u> </u>	0.076	(13)					
и	0.070					 	
		, <u> </u>					

Blank extraction date: Conc. units:	_ Blank analy	ysis date:	 Associa	ted Samples:			 		
Compound	Blank ID		Sample Identification						
			-						
,									

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

dloxin_blank.wpd

LDC #:<u>15145A</u>2/ SDG #: <u>*DPAG 19</u>45/

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

	Page:	
٠.	Reviewer:	9
2nd	Reviewer:	~

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) 1613 おう

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

TYN N/A

Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		A 1	Hon DB-5	-AII	R/A
	,				
		,			
	-				
				<u> </u>	
			`		
					,

Comments:		 ·	
	 		·
	 •	 _	

LDC #:<u>15145A3/</u> SDG #:<u>15145A3/</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:	
	Reviewer:	<u>q</u>
2nd	Reviewer:	l

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_h)/(A_h)(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

A_x = Area of compound,

A_b = Area of associated internal standard C_b = Concentration of internal standard

 $C_x = Concentration of compound,$

S = Standard deviation of the RRFs, X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (CS 3 std)	RRF	%RSD	%RSD
1	ICAZ	\$16/06	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	.22, .0 09 1.07	1.22 1.01 0.91 1.07	1.17 1.01 0.89 1.02	1.17	7.35 4.01 6.59 9.41	7.36 4.12 6.49 9.35
			CCDF (15C-OCDD)	1.55	1.55	1.42	1.42	9.23	9.20
2	ICAL	4/27/06	2,3,7,8-TCDF (¹² C-2,3,7,8-TCDF) 2,3,7,8-TCDD (¹² C-2,3,7,8-TCDD) 1,2,3,6,7,8-HxCDD (¹² C-1,2,3,6,7,8-HxCDD) 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) CCDF (¹³ C-OCDD)	0.99	0.99	0.9T	0.97	11.9	11.7
3			2,3,7,8-TCDF (¹⁹ C-2,3,7,8-TCDF) 2,3,7,8-TCDD (¹⁹ C-2,3,7,8-TCDD) 1,2,3,6,7,8-HxCDD (¹⁹ C-1,2,3,6,7,8-HxCDD) 1,2,3,4,6,7,8-HpCDD (¹⁹ C-1,2,4,6,7,8,-HpCDD)						
			OCDF (15C-OCDD)						

Comments: _	Refer to Init	al Calibration	findings	worksheet	for list	of qualification	s and	associated	samples	when	reported	results	do no	t agree	with <u>in</u>	10.0%	of the
recalculated	<u>res</u> ults.												_				

VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) /6/3/3)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_{\star})(C_{\star})/(A_{\star})(C_{\star})$

RRF = continuing calibration RRF A, = Area of compound,

A. = Area of associated internal standard

C, = Concentration of compound,

C_{it} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRESMOT (CC)	ANF SW	%D	%D
	DX622305.7 5	-//	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	1.22	10.9	10.9		
		121/06 [2,3,7,8-TCDD (¹⁹ C-2,3,7,8-TCDD)	1.61	11.8	(1.8		
		[1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.91	55.5	55.6		
		. [1,2,3,4,6,7,8-HpCDD (¹⁸ C-1,2,4,6,7,8,-HpCDD)	1.07	51.0	51.0		
			OCDF (¹³ C-OCDD)	1.55	106	106		
2	7363-1471X	, , ,	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	0.99	9.17	9.11		
	الم الم	120/06 [2,3,7,8-TCDD (13C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDF (19C-OCDD)					
3	7862-253		2,3,7,8-TCDF (¹⁹ C-2,3,7,8-TCDF)	1.22	10.4	10.4		
11 1	31	5/6/06	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.01	il.	11-7		
	'	′ ′ [1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.91	52.7	52.5		
		[1,2,3,4,6,7,8-HpCDD (¹⁹ C-1,2,4,6,7,8,-HpCDD)	1.07	50.5	50.4	/	
			OCDF (13C-OCDD)	1.55	107	107	/	

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification

	Page:	
	Reviewer:	9-
2nd	Reviewer:	W.

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) -1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_x)/(A_x)(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

A, = Area of compound,

A. = Area of associated internal standard

C, = Concentration of compound,

C_k = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RAEAWA (CC)	ARFSWL (CC)	%D	%D_
1	00162_2315:1	-122/11	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	.22	10.6	10.6		
		5/2406	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.01	11.4	11.5		· ·
		,	1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	0.91	51.4	51-5		
			1,2,3,4,6,7,8-HpCDD (¹⁹ C-1,2,4,6,7,8,-HpCDD)	1.07	48.6	48.6		
			OCDF (1°C-OCDD)	1.55	107	107		
2			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)		,	1		
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹⁹ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDD)					
3			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)		- 1			
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (1°C-OCDD)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 15145A-2/
SDG #: 600161945

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:ot	_
Reviewer: '9-	_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8200) (6/38)

2nd Reviewer:

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation;

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = ILCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboractry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: W5 19107-102

	Δ.	ded	Spiked S Concent	ample	LC	es	Los	SD .	LCS/I	LCSD
Compound	(02	ml	(h5/		Percent P	Recovery	Percent R	ecovery	RI	PD
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
2,3,7,8-TCDD	10	NA	11.1	N A -	117	11)				
1,2,3,7,8-PeCDD	50		53.0		106	106				
1,2,3,4,7,8-HxCDD	ν		53.2		106	106				
1,2,3,6,7,8-HxCDD										
1,2,3,7,8,9-HxCDD										
1,2,3,4,6,7,8-HpCDD										
OCDD										
2,3,7,8-TCDF	_					-				
1,2,3,7,8-PeCDF							_			
2,3,4,7,8-PeCDF		_		_						
1,2,3,4,7,8-HxCDF										
1,2,3,6,7,8-HxCDF										
2,3,4,6,7,8-HxCDF										
1,2,3,7,8,9-HxCDF						:	,			
1,2,3,4,6,7,8-HpCDF										
1,2,3,4,7,8,9-HpCDF	50		50.5		10 /	101				
OCDF	100		105		105	105				

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Ions Monitored for HRGC/HRMS Analysis of PCDDs/PCDFs

Descriptor	Accurate mass ^(a)	Ion ID	Elemental Composition	Analyte	Descriptor	Accurate Mass ^(e)	ion ID	Elemental Composition	Analyte
1	303.9016 305.8987 315.9419 317.9389 319.8965 321.8936 331.9368 333.9338 375.8364 [354.9792]	M M+2 M M+2 M M+2 M+2 M+2 LOCK	C ₁₂ H ₄ ⁴⁵ Cl ₄ O C ₁₂ H ₄ ⁴⁵ Cl ₃ ³⁷ Cl0 ¹³ C ₁₂ H ₄ ⁴⁵ Cl ₄ O ¹³ C ₁₂ H ₄ ⁴⁵ Cl ₃ ⁴⁷ ClO C ₁₂ H ₄ ⁴⁵ Cl ₄ O ₂ C ₁₂ H ₄ ⁴⁵ Cl ₄ O ₂ ¹³ C ₁₂ H ₄ ⁴⁵ Cl ₅ ³⁷ ClO ₂ C ₁₂ H ₄ ⁴⁵ Cl ₅ ³⁷ ClO C ₅ F ₁₃	TCDF TCDF (S) TCDF (S) TCDD TCDD TCDD (S) TCDD (S) TCDD (S) HxCDPE PFK	4	407.7818 409.7788 417.8250 419.8220 423.7767 425.7737 435.8169 437.8140 479.7165 [430.9728]	M+2 M+4 M+2 M+2 M+4 M+4 M+4 M+4 LOCK	C ₁₂ H ³⁵ Cl ₂ a'Cl ₂ O C ₁₂ H ³⁵ Cl ₃ a'Cl ₂ O ¹³ C ₁₂ H ³⁵ Cl ₃ a'Cl ₂ O ¹³ C ₁₂ H ³⁵ Cl ₃ a'ClO C ₁₂ H ³⁵ Cl ₃ a'ClO ₂ C ₁₂ H ³⁵ Cl ₃ a'Cl ₂ O ₂ ¹³ C ₁₂ H ³⁵ Cl ₃ a'Cl ₂ O ₂ ¹³ C ₁₂ H ³⁵ Cl ₃ a'Cl ₂ O ₂ C ₁₂ H ³⁵ Cl ₃ a'Cl ₂ O ₂ C ₁₂ H ³⁵ Cl ₃ a'Cl ₂ O ₃ C ₉ F ₁₇	HpCDF HpCDF (S) HpCDF HpCDD HpCDD HpCDD (S) HpCDD (S) NCDPE PFK
2	339.8597 341.8567 351.9000 353.8970 355.8546 357.8516 367.8949 369.8919 409.7974 [354.9792]	M+2 M+4 M+2 M+4 M+2 M+4 M+2 M+4 M+2 LOCK	C ₁₂ H ₃ scCl ₄ srClO C ₁₂ H ₃ scCl ₃ srCl ₂ O 1°C ₁₂ H ₃ scCl ₃ srCl ₂ O 1°C ₁₂ H ₃ scCl ₃ srCl ₂ O C ₁₂ H ₃ scCl ₃ srCl ₂ O C ₁₂ H ₃ scCl ₃ srCl ₂ O ₂ 1°C ₁₂ H ₃ scCl ₃ srCl ₂ O ₂ 1°C ₁₂ H ₃ scCl ₃ srCl ₂ O ₂ C ₁₂ H ₃ scCl ₃ srCl ₂ O ₂ C ₁₂ H ₃ scCl ₆ srClO C ₉ F ₁₃	PeCDF PeCDF (S) PeCDF (S) PeCDD PeCDD PeCDD (S) PeCDD (S) PeCDD (S) PeCDD (S) PeCDPE PFK	5	441.7428 443.7399 457.7377 459.7348 469.7780 471.7750 513.6775 [422.9278]	M+2 M+4 M+2 M+4 M+2 M+4 M+4 LOCK	C ₁₂ ³⁵ Cl ₇ ³⁷ ClO C ₁₂ ³⁵ Cl ₈ ³⁷ Cl ₂ O C ₁₂ ³⁵ Cl ₇ ³⁷ ClO ₂ C ₁₂ ³⁵ Cl ₇ ³⁷ ClO ₂ ¹³ C ₁₂ ³⁵ Cl ₇ ³⁷ ClO ₂ ¹³ C ₁₂ ³⁵ Cl ₈ ³⁷ Cl ₂ O ₂ C ₁₂ ³⁵ Cl ₈ ³⁷ Cl ₂ O	OCDF OCDF OCDD OCDD (S) OCDD (S) OCDPE PFK
3	373.8208 375.8178 383.8639 385.8610 389.8156 391.8127 401.8559 403.8529 445.7555 [430.9728]	M+2 M+4 M M+2 M+2 M+4 M+2 M+4 M+4	C ₁₂ H ₂ ssCl ₂ srClO C ₁₂ H ₂ ssCl ₄ srCl ₂ O ¹³ C ₁₂ H ₂ ssCl ₅ O ¹³ C ₁₂ H ₂ ssCl ₅ O C ₁₂ H ₂ ssCl ₅ O C ₁₂ H ₂ ssCl ₂ O C ₁₂ H ₂ ssCl ₃ O ¹³ C ₁₂ H ₂ ssCl ₃ O ¹³ C ₁₂ H ₂ ssCl ₃ O C ₁₂ H ₂ SSCl ₅ O C ₂ F ₁₇	HxCDF HxCDF (S) HxCDF (S) HxCDD (S) HxCDD HxCDD HxCDD (S) HxCDD (S) OCDPE PFK					

(a) The following nuclidic masses were used:

H = 1.007825 C = 12.000000 ¹⁸C = 13.003355 O = 15,994915 ²⁵Cl = 34,968853 ³⁷Cl = 36,965903

⁸⁷Cl = 36.9659

F = 18.9984

S = internal/recovery standard

C:\WPDOC\$\WRK\DIOXIN90\TCl90.21

LDC #: <u>15/45A=/</u> SDG #: <u>OP NG 1945/</u>

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page: /of/ Reviewer: 2nd reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) 1613B)

	Ŷ	N	N/A
ı	>	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $\frac{(A_{\bullet})(I_{\bullet})(DF)}{(A_{\bullet})(RRF)(V_{\circ})(\%S)}$

A_x = Area of the characteristic ion (EICP) for the compound to be measured

A_k = Area of the characteristic ion (EICP) for the specific internal standard

I_s = Amount of internal standard added in nanograms (ng)

V_o = Volume or weight of sample extract in milliliters (ml) or grams (g).

RRF = Relative Response Factor (average) from the initial calibration

Df = Dilution Factor.

%S = Percent solids, applicable to soil and solid matrices only. Example:

Conc. = (1.14e+06) (2000) () (6.47e+6) (1.01)(10.4)()

= 3.36 ns/=8

Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
-				
	·			
		-		_
_				
	<u> </u>			_
	_			
			Sample ID Compound ()	Sample ID Compound () ()