Appendix E. Preliminary LDW clam sampling results, August 8, 2003

Beach 8-1st Ave South bridge, W side of LDW

Sample	Abundance
1	0
2	0
3	0
4	0
5	6
6	0
7	2
8	0
9	0
10	5
11	1
12	8
13	0
14	0
15	2
16	0
17	0
18	0
19	3
20	1
21	0
22	2
23	0
24	1
25	0
26	0
27	0
28	3
29	0
30	0
31	0
32	0
33	0
34	1
35	1
36	0
37	1
38	0
39	0
40	0
41	0
42	0
43	0
44	6
45	0
46	1

Each sample covered 1 square foot
Approximate area of beach sampled (N) in square feet
54000 (area will be verified later, does not affect variability calcs)

Mean number of clams per square foot sample 0.94

Total population estimate (equation 1 from QAPP)

$$
50694 \quad \hat{T}=N \hat{\mu}
$$

One-half the 95\% confidence interval (B; equation 2 from QAPP)

$$
27887 \quad B=2 \sqrt{N^{2} \frac{\sigma^{2}}{n}}
$$

Ratio of B to T
0.55

Is B more than 30% of T ?
yes
number of samples needed for B to be 30% of T
(i.e., set B equal to 0.3 of T; equation 3 from QAPP)

165

$$
n=\frac{N^{2} \sigma^{2} 4}{B^{2}}
$$

Beach 8-1st Ave South bridge, W side of LDW

47	1
48	1
49	0

Beach 1a	Terminal 105	
Sample	Abundance	Each sample covered 1 square foot Approximate area of beach sampled (N) in square feet 57000
50	1	
51	0	
52	0	
53	0	Mean number of clams per square foot sample
54	0	0.28
55	0	
56	0	Total population estimate (equation 1 from QAPP)
57	1	$15675 \quad \hat{T}=N \hat{\mu}$
58	0	
59	0	One-half the 95\% confidence interval (B; equation 2 from QAPP)
60	0	10790
61	0	$B=2 \sqrt{N^{2}} \frac{\sigma}{n}$
62	0	n
63	0	Ratio of B to T
64	0	0.69
65	0	
66	0	Is B more than 30\% of T?
67	0	yes
68	0	
69	0	number of samples needed for B to be 30% of T
70	0	(i.e., set B equal to 0.3 of T; equation 3 from QAPP)
71	2	211
72	0	$n=\frac{B^{2}}{B^{2}}$
73	0	- B^{2}
74	0	

