

LOWER DUWAMISH WATERWAY BASELINE SURFACE SEDIMENT COLLECTION AND CHEMICAL ANALYSES - QUALITY ASSURANCE PROJECT PLAN

FINAL

Prepared for

Lower Duwamish Waterway Group

For submittal to

US Environmental Protection Agency

May 31, 2018

Prepared by: Wind

200 West Mercer Street, Suite 401 • Seattle, Washington • 98119

TITLE AND APPROVAL PAGE SURFACE SEDIMENT COLLECTION AND CHEMICAL ANALYSES QUALITY ASSURANCE PROJECT PLAN

Windward Project Manager	tatus offe	5/31/18	
	Name	Date	
Windward Field Coordinator	All	5/31/18	
	Name	Date	
Windward QA/QC Manager	Amara Varderset	5/31/18	
-	Name	Date	
EPA Project Manager	ELLEN HALE	Digitally signed by ELLEN HALE Date: 2018.05.31 11:08:12 -07'00'	
	Name	Date	
EPA QA/QC Manager	Don Matheny	Digitally signed by Don Matheny Date: 2018.05.31 12:12:57 -07'00'	
	Name	Date	

Distribution List

This list identifies all individuals who will receive a copy of the approved quality assurance project plan, either in hard copy or electronic format, as well as any subsequent revisions.

- Elly Hale, EPA Project Manager
- Kathy Godtfredsen, Windward Project Manager
- Susan McGroddy, Windward Task Manager
- Thai Do, Windward Field Lead
- Donald Brown, EPA QA/QC Manager
- Amara Vandervort, Windward QA/QC Manager
- Chemistry Project Managers:
 - Sue Dunnihoo (Analytical Resources, Inc.)
 - Georgina Brooks (Axys)
 - Jeff Grindstaff (ALS Environmental-Kelso)
- Lower Duwamish Group:
 - Brian Anderson, Joe Flaherty (The Boeing Company)
 - Dave Schuchardt, Allison Crowley, Pete Rude (City of Seattle)
 - Jeff Stern, Debra Williston (King County)
 - Joanna Florer (Port of Seattle)

Table of Contents

Distribution	List	ii
Table of Cor	ntents	iii
Tables		v
Figures		vi
Maps		vi
Acronyms		vii
Acknowledg	jements	xi
1 Introduct	tion	1
2 Project C 2.1 D 2.1.1 2.1.2 2.1.3 2.2 PR	Objectives and Description ATA QUALITY OBJECTIVES Surface sediment (0–10-cm) samples Targeted source-related sampling Intertidal surface sediment (0–45 cm) samples OJECT APPROACH AND SCHEDULE	3 3 12 13 16
 3 Project C 3.1 PR 3.2 FIF 3.3 QU 3.4 LA 3.5 DA 3.6 SPI 3.7 DC 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 	Drganization and Responsibilities OJECT MANAGEMENT ELD COORDINATION JALITY ASSURANCE/QUALITY CONTROL BORATORY RESPONSIBILITIES ATA MANAGEMENT ECIAL TRAINING/CERTIFICATION OCUMENTATION AND RECORDS Field observations Laboratory records Data reduction Data report Data storage and backup	19 21 22 23 24 25 25 25 25 25 25 26 29 29 30
4 Data Ger 4.1 SA 4.1.1 4.1.2 4.1.3 4.2 SA 4.2.1 4.2.2	MPLING DESIGN MPLING DESIGN Surface sediment samples (0–10 cm) Targeted source-related sampling Intertidal surface sediment samples (0–45 cm) MPLING METHODS Sample identification Surface sediment sampling methods	31 31 34 52 56 56 56 58

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018

iii

	4.3 SAN	MPLE HANDLING AND CUSTODY REQUIREMENTS	75
	4.3.1	Sample handling procedures	75
	4.3.2	Sample custody procedures	75
	4.3.3	Shipping requirements	76
	4.3.4	Decontamination procedures	77
	4.3.5	Field-generated waste disposal	78
	4.4 LA	BORATORY METHODS	78
	4.4.1	Laboratory sample handling	78
	4.4.2	Analytical methods	81
	4.5 <i>Ex</i>	Situ Porewater Investigation Methods	86
	4.5.1	Passive sampler preparation	86
	4.5.2	Porewater exposure batch tests	87
	4.5.3	Passive sampler analysis	88
	4.5.4	Calculation of freely dissolved PCB congener concentrations fro	m
		PE concentrations	89
	4.6 AN	ALYTICAL DATA QUALITY OBJECTIVE AND CRITERIA	90
	4.6.1	Precision	90
	4.6.2	Accuracy	91
	4.6.3	Representativeness	91
	4.6.4	Comparability	91
	4.6.5	Completeness	91
	4.6.6	Sensitivity	92
	4.7 QU	ALITY ASSURANCE/QUALITY CONTROL	96
	4.7.1	Field quality control samples	96
	4.7.2	Laboratory quality control	97
	4.8 INS	TRUMENT/EQUIPMENT TESTING, INSPECTION, AND MAINTENANCE	103
	4.9 INS	TRUMENT/EQUIPMENT CALIBRATION AND FREQUENCY	103
	4.10 INS	PECTION/ACCEPTANCE OF SUPPLIES AND CONSUMABLES	104
	4.11 DA	TA MANAGEMENT	104
5	Assessm	ent and Oversight	105
	5.1 Co	MPLIANCE ASSESSMENTS AND RESPONSE ACTIONS	105
	5.1.1	Compliance assessments	105
	5.1.2	Response actions for field sampling	105
	5.1.3	Corrective action for laboratory analyses	105
	5.2 Rei	PORTS TO MANAGEMENT	106
6	Data Vali	dation and Usability	107
	6.1 DA	TA VALIDATION	107
	6.2 Red	CONCILIATION WITH DATA QUALITY INDICATORS	108
7	Referenc	es	109

Surface Sediment QAPP May 31, 2018 iv

Appendix A. Health and Safety Plan

Appendix B. Field Forms

Appendix C. Analytical Methods and Reporting Limits

- Appendix D. Standard Operating Procedures for Passive Samplers and Subsampling Sediment
- Appendix E. Reconnaissance Survey Notes

Tables

Table 2-1.	DQOs for surface sediment samples (0–10 cm)	4
Table 2-2.	DQOs for intertidal surface sediment samples (0–45 cm)	14
Table 4-1.	Overview of 0–10-cm surface sediment sampling approach	32
Table 4-2.	Location and rationale for 0–10-cm grab samples to be analyzed individually	33
Table 4-3.	Summary of screen to determine which areas to sample for sediment near outfalls	37
Table 4-4.	Evaluation of exposed bank areas	51
Table 4-5.	Number of proposed discrete samples per bank	52
Table 4-6.	Overview of intertidal 0–45-cm surface sediment sampling approach	53
Table 4-7.	Number of sampling locations per potential clamming subarea	54
Table 4-8.	Number of sampling locations per beach play area	55
Table 4-9.	Surface sediment sampling location target coordinates for baseline 0–10-cm samples	58
Table 4-10.	Target coordinates for near-outfall surface sediment samples	67
Table 4-11.	Target coordinates for bank samples	68
Table 4-12.	Sediment analyses to be conducted at each analytical laboratory	82
Table 4-13.	Analytical methods and sample handling requirements for surface sediment samples	83
Table 4-14.	Analytes for composites samples (0–10-cm and 0–45-cm samples)	85
Table 4-15.	Analytes for each individual sediment sample (0–10-cm samples)	85
Table 4-16.	Analytes for near-outfall and bank samples	86
Table 4-17.	Analytical methods and sample handling requirements for the <i>ex situ</i> porewater passive samplers	88
Table 4-18.	Data quality indicators for laboratory analyses	92
Table 4-19.	RAO 1, 2, and 4 COCs and associated RLs and cleanup levels for baseline sediment samples	93
Table 4-20.	RAO 3 COCs and associated RLs and cleanup levels for individual 0–10-cm sediment samples	94
Table 4-21.	Sediment mass required per analysis	96
Table 4-22.	Laboratory quality control sample analysis summary	98

Figures

Figure 2-1.	Relationship between total PCBs as sum of Aroclors and as sum of congeners, linear-scaled axes	10
Figure 2-2.	Relationship between total PCBs as sum of Aroclors and as sum of congeners, relative to analytical variance	11
Figure 2-3.	Timeline showing target schedule for the two surface sediment sampling events and the <i>ex situ</i> porewater laboratory exposure period	16
Figure 3-1.	Project organization and team responsibilities	20
Figure 4-1.	Selection criteria for sampling sediment near active outfalls	35
Figure 4-2.	Selection criteria for sampling banks	49
Figure 4-3.	Schematic of intertidal sediment transect and sampling locations	70
Figure 4-4.	Schematic of spacing between intertidal sediment sampling locations in	
-	beach play areas	71
Figure 4-5.	Compositing approach for 0–10-cm surface sediment samples	79
Figure 4-6.	Compositing approach for 0–45-cm potential clamming area samples	80
Figure 4-7.	Compositing approach for beach play sediment samples	81
Figure 4-8.	Calculation method for freely dissolved PCB congeners in porewater from passive sampler	89

Maps

Мар 4-1.	Baseline surface sediment (0–10 cm) composite areas
Мар 4-2.	Baseline surface sediment (0–10 cm) sampling locations with technology assignments
Мар 4-3.	Baseline surface sediment (0–10 cm) sampling locations and sample uses
Мар 4-4.	Active outfalls within the LDW identified by Leidos (2014) for potential near-outfall sediment sampling
Мар 4-5.	Outfalls for near-outfall sediment sampling
Мар 4-6.	Existing dioxin/furan sediment data and source-related sampling locations
Мар 4-7.	Bank classifications and existing bank sample locations
Мар 4-8.	Bank sample locations
Мар 4-9.	Baseline potential clamming area surface sediment (0–45 cm) sampling locations
Мар 4-10.	Baseline beach play area surface sediment (0–45 cm) sampling locations

Acronyms

%RSD	percent relative standard deviation	
95UCL	95% upper confidence limit for the mean	
ac	acre	
ALS	ALS Environmental-Kelso	
AOC	Administrative Order on Consent	
ARI	Analytical Resources, Inc.	
Axys	Axys Analytical Services Ltd.	
CFR	Code of Federal Regulations	
City	City of Seattle	
CLT	Central Limit Theorem	
COC	contaminant of concern	
COPC	contaminant of potential concern	
сРАН	carcinogenic polycyclic aromatic hydrocarbon	
CRM	certified reference material	
СТО	chemothermal oxidation	
CV-AFS	cold vapor-atomic fluorescence spectrometry	
DCM	dichloromethane	
DGPS	differential global positioning system	
DL	detection limit	
DQI	data quality indicator	
DQO	data quality objective	
dw	dry weight	
Ecology	Washington State Department of Ecology	
EDL	estimated detection limit	
EIM	Environmental Information Management	
ENR	enhanced natural recovery	
EPA	US Environmental Protection Agency	

FC	field coordinator	
GC/ECD	gas chromatography/electron capture detection	
GC/MS	gas chromatography/mass spectrometry	
GPC	gel permeation chromatography	
GPS	global positioning system	
НРАН	high-molecular-weight polycyclic aromatic hydrocarbon	
HpCDD	heptachlorodibenzo- <i>p</i> -dioxin	
HpCDF	heptachlorodibenzofuran	
HRGC/HRMS	high-resolution gas chromatography/high-resolution mass spectrometry	
HSP	health and safety plan	
HxCDD	hexachlorodibenzo-p-dioxin	
HxCDF	hexachlorodibenzofuran	
ICP-MS	inductively coupled plasma-mass spectrometry	
ID	identification	
IR	infrared spectroscopy	
ISO	International Organization for Standardization	
LCS	laboratory control sample	
LDW	Lower Duwamish Waterway	
LDWG	Lower Duwamish Waterway Group	
LLOQ	lower limit of quantitation	
LMCL	lower method calibration limit	
LPAH	low-molecular-weight polycyclic aromatic hydrocarbon	
MDL	method detection limit	
мннw	mean higher high water	
MLLW	mean lower low water	
MNR	monitored natural recovery	
MS	matrix spike	
MSD	matrix spike duplicate	

NIST	National Institute of Standards and Technology	
NOAA	National Oceanic and Atmospheric Administration	
OCDD	octachlorodibenzo-p-dioxin	
OCDF	octachlorodibenzofuran	
OSHA	Occupational Safety and Health Administration	
РАН	polycyclic aromatic hydrocarbon	
PARCCS	precision, accuracy, representativeness, completeness, comparability, and sensitivity	
РСВ	polychlorinated biphenyl	
PCP	pentachlorophenol	
PE	polyethylene	
PeCDD	pentachlorodibenzo- <i>p</i> -dioxin	
PeCDF	pentachlorodibenzofuran	
РМ	project manager	
PPE	personal protective equipment	
PRC	performance reference compound	
PSEP	Puget Sound Estuary Program	
QA	quality assurance	
QAPP	quality assurance project plan	
QC	quality control	
RAL	remedial action objective	
RAO	remedial action objective	
RI/FS	remedial investigation/feasibility study	
RL	reporting limit	
RM	river mile	
RME	relative margin of error	
ROD	Record of Decision	
RPD	relative percent difference	
SCO	sediment cleanup objective	

SD	storm drain
SDG	sample delivery group
SIM	selected ion monitoring
SM	Standard Methods
SMS	Washington State Sediment Management Standards
SOP	standard operating procedure
SoundEarth	SoundEarth Strategies, Inc.
SPU	Seattle Public Utilities
SRM	standard reference material
SVOC	semivolatile organic compound
SWAC spatially weighted average concentration	
SWPPP	stormwater pollution prevention plan
T-107	Terminal 107
TCDD	tetrachlorodibenzo-p-dioxin
TCDF	tetrachlorodibenzofuran
TEF	toxic equivalency factor
TEQ	toxic equivalent
ТМ	task manager
тос	total organic carbon
UCT-KED	universal cell technology-kinetic energy discrimination
WAC	Washington Administrative Code
Windward	Windward Environmental LLC
ww	wet weight

Acknowledgements

Windward Environmental LLC wishes to acknowledge the contributions of Dr. Jose Gomez-Eyles (Integral Consulting Inc.) in the preparation of *ex situ* porewater investigation elements, and Lorraine Read (Terrastat Consulting) in the statistical design of the surface sediment sampling.

1 Introduction

This quality assurance project plan (QAPP) describes the quality assurance (QA) objectives, methods, and procedures for collecting surface sediment¹ from the Lower Duwamish Waterway (LDW) for chemical analyses, with a subset of the samples also being used for an *ex situ* porewater investigation for polychlorinated biphenyls (PCBs). As described in the *Pre-Design Studies Work Plan* (Windward and Integral 2017b), hereafter referred to as the Work Plan, these data are being collected and analyzed to address the third amendment to the Administrative Order on Consent (AOC) (EPA 2016c).

The Work Plan presents the data quality objectives (DQOs) and conceptual study design for the surface sediment collection and associated analyses (Windward and Integral 2017b). This QAPP includes these DQOs and presents the detailed study design, including specifics on project organization, field data collection, laboratory analyses, and data management.

US Environmental Protection Agency (EPA) guidance for QAPPs was followed in preparing this document (EPA 2002). The remainder of this QAPP is organized into the following sections:

- Section 2 Project Objectives and Description
- Section 3 Project Organization and Responsibilities
- Section 4 Data Generation and Acquisition
- Section 5 Assessment and Oversight
- Section 6 Data Validation and Usability
- Section 7 References

Appendix A to this QAPP is a health and safety plan (HSP) designed to protect on-site personnel from physical, chemical, and other hazards posed by the field sampling effort. Field collection and analysis forms are included as Appendix B. Laboratory methods and the associated reporting limits (RLs) are provided in Appendix C. Appendix D presents standard operating procedures (SOPs) for the *ex situ* porewater investigation and subsampling sediment. Appendix E contains reconnaissance survey notes.

¹ Bank samples are also being collected; they are included in the general discussion of surface sediment except where specifically noted otherwise.

2 Project Objectives and Description

EPA issued a Record of Decision (ROD) for the LDW Superfund site on November 21, 2014 (EPA 2014b). The ROD describes the selected sediment remedy for the LDW, and identifies monitoring activities, including baseline sampling of LDW media for comparison to post-remedial data. This QAPP addresses baseline sampling of surface sediment as well as an *ex situ* assessment of PCBs in porewater.

2.1 DATA QUALITY OBJECTIVES

Per the third amendment to the AOC (EPA 2016c), the collection of surface sediment data is required to characterize baseline conditions prior to implementation of the sediment remedy, and to support source control efforts. As described in the Work Plan (Windward and Integral 2017b), which includes the porewater addendum (Windward and Integral 2017a), 10 DQOs have been identified for the collection and analysis of baseline surface sediment samples, including an *ex situ* porewater investigation for PCBs as well as source-related samples. These DQOs are presented in Sections 2.1.1 through 2.1.3.

2.1.1 Surface sediment (0-10-cm) samples

Surface sediment samples (0–10-cm) will be collected to establish site-wide baseline concentrations, to determine location-specific concentrations in monitored natural recovery (MNR) areas, to collect additional PCBs porewater data through an *ex situ* investigation, and to collect source-related data near outfalls and from banks. Six DQOs have been identified for 0–10-cm sediments; these DQOs are summarized in Table 2-1.

 DQO 6	Additional bank and near-outfall sediment data are needed to fill data gaps from earlier source control sampling efforts.	Collect bank and near-outfall sediment data to assist Ecology in source control efforts.	Existing source data were reviewed in consultation with EPA and Ecology to determine where additional data are needed.
DQO 5	Additional co-located bulk sediment-porewater data are needed over the range of PCB concentrations in MNR/ENR areas to assess the potential effects of sediment concentrations on biota exposure and tissue concentrations. If the relationship is predictive, porewater data may not be needed to predict whether reductions in sediment concentrations will reduce tissue concentrations in biota.	Investigate baseline porewater PCB concentrations in MNR/ENR areas to assess the predictability of the relationship between porewater and sediment PCB congener concentrations.	Existing sediment data and ROD Figure 18 (EPA 2014b) were used to estimate the range of PCB concentrations in preliminary MNR/ENR areas.
DQO 4	iment concentrations are time, additional sediment om MNR areas ^a are needed < on natural recovery ^b prior to to compare to RAO 3 ertebrate) cleanup levels.	Collect site-specific sediment data to support future trend assessment and comparison to predicted concentrations in MNR areas. ^b	ta were used to identify eedances in preliminary igure 18 (EPA 2014b).
DQO 3	Because surface sedi likely to change over t concentration data fro for a qualitative check the sediment (benthic invi- sediment (benthic invi-	Compare (on a point-by-point basis) concentrations in baseline samples collected from within MNR areas to RAO 3 (benthic) cleanup levels. ^b	Existing sediment dat locations of SMS exce MNR areas in ROD F
DQO 2	vide sediment ed to assess the on prior to of the sediment	Establish a baseline, site- wide SWAC to serve as the foundation for assessing temporal trends for RAOs 1, 2, and 4 risk drivers.	nt data from the to determine the ple size needed to le statistical site-wide mean. ^c
 DQO 1	A synoptic site- dataset is need baseline conditi implementation remedy.	Establish baseline, site- wide 95UCL concentrations of RAOs 1, 2, and 4 risk drivers.	Existing sedime LDW were usec appropriate sam achieve desirab precision for the
DQO Step	STEP 1: State the problem.	STEP 2: Identify the goals of the study.	STEP 3: Identify the information inputs.

Table 2-1. DQOs for surface sediment samples (0–10 cm)

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 4

DQO 6	The boundary of the study has been defined by the ROD.	Data from 24 near-outfall sediment locations, as well as from 6 banks, will be collected and submitted to Ecology to assist in source control efforts.	. DQIs for laboratory
DQO 5	were established in Figure	Paired sediment-porewater data will be combined with existing paired sediment- porewater data from the LDW to evaluate the regression relationships.	s and laboratory QC samples
DQO 4	eliminary MNR and ENR areas	Data from 10 reoccupied RI locations will be used on a point-by-point basis over time to assess changes in surface sediment quality.	4.6, including field QC sample 14.6.
DQO 3	lefined by the ROD. Pr	Individual sample results from 20 locations will be compared to RAO 3 cleanup levels on a point-by-point basis.	e described in Section as described in Sectior
DQO 2	of the study has been c (EPA 2014b).	The site-wide SWAC will be estimated from the arithmetic mean of the composite samples. Each composite sample represents approximately the same-sized spatial area, allowing for a simplified estimate of the SWAC.	or acceptance criteria ar PARCCS) will be met, a
DQ0 1	The boundary 18 of the ROD	The 95UCL will be calculated using the best-fit statistical distribution for the data.	Performance o analyses (i.e.,
DQO Step	STEP 4: Define the boundaries of the study.	STEP 5: Develop the analytical approach.	STEP 6: Specify performance or acceptance criteria.

FINAL	
nish Waterway Group	tie / King County / The Boeing Company
/er D uwan	attle / City of Seat
Low	Port of Se

DQO 6	The 24 near-outfall sediment samples were selected to fill data gaps near outfalls without existing data nearby. At the 6 bank areas, a total of 11 locations will be sampled. One sample will be collected from each bank location unless conditions suggest the need for a vertical transect sample(s).	b likely to change
DQO 5	Twenty candidate locations were selected, including the 10 reoccupied RI locations used in DQO 3, plus an additional 10 reoccupied locations targeted to capture a wider range of PCB concentrations. All 20 bulk sediment samples will be analyzed for PCBs and organic carbon. Among the samples with the desired range of PCB concentrations in sediment, 10 will be selected for <i>ex situ</i> porewater testing and PCB congener analysis.	8 titled Salected remedu are
DQO 4	Data from the 10 reoccupied RI locations that were selected from MNR areas with sediment concentrations > benthic SCO will be compared to past and potentially to future data to assess changes over time.	ants nortraved in ROD Figure 1
DQO 3	Ten reoccupied RI locations in preliminary MNR areas with sediment concentrations > benthic SCO were selected, plus 10 random 10 random 168 samples for 168 sa	d technology secionme
DQO 2	ign has been gin has been collect 168 samples oughout the study e random sampling e selected within each ng grid cells of r equal area. A total of samples will be acch composed of the from 7 neighboring s design will avoid ered samples, which tatistical efficiency. ampling will allow for n of unbiased he site-wide mean and r. The arithmetic mean ations will also be a use equal spatial trinsic to the sample	remedial houndaries an
DQ0 1	A spatially bal sampling desi developed to distributed thr boundary. On location will bo of 168 sampli approximately 24 composite constructed, e grab samples grid cells. Thi spatially clust will improve s the calculation spatially clust will improve s the calculation spatially clust will improve s the calculation standard erro of the observe SWAC, becan weighting is ir design.	04+ +04+ 0000
DQO Step	STEP 7: Develop the detailed plan for obtaining data.	

following design. Thus, any reference to MNR areas refers to preliminary area designations.

Concentrations are not expected to meet natural recovery predictions during baseline sampling because the projections are for 10 years post-remedy. In addition, additional data will be collected during remedial design to support design decisions, such as where remedial technologies apply, and to better establish baseline relative to RAO 3 cleanup levels. ٩

Assumptions for the composite sample dataset (i.e., normally distributed data and a coefficient of variation of 0.7 or less) result in an RME of 25% or better for the post-remedy mean. ပ

ry RI – remedial investigation	ROD – Record of Decision eness, RME – relative margin of error SCO – sediment cleanup objective SMS – Washington State Sediment Manag Standards SWAC – spatially weighted average conce
MNR – monitored natural recover	PARCCS – precision, accuracy, representativeness, complete comparability, and sensitivity PCB – polychlorinated biphenyl QC – quality control RAO – remedial action objective
95UCL – 95% upper confidence limit for the mean	DQI – data quality indicator DQO – data quality objective Ecology – Washington State Department of Ecology ENR – enhanced natural recovery LDW – Lower Duwamish Waterway

FINAL Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 6

2.1.1.1 Baseline surface (composite samples 0–10-cm) sediment for site-wide RAOs

The DQOs for the establishment of site-wide baseline conditions in 0–10-cm LDW surface sediment samples are as follows:

- 1. Establish baseline, site-wide 95% upper confidence limit for the mean (95UCL) concentrations of remedial action objectives (RAOs) 1, 2, and 4 risk drivers.²
- 2. Establish baseline, site-wide spatially weighted average concentration (SWAC) to serve as the foundation for assessing trends from before to after sediment remediation for RAOs 1, 2, and 4 risk drivers.

The baseline surface sediment sample design is tailored to the DQOs above. Specifically, a spatially balanced sampling design has been developed to collect 168 samples distributed throughout the study boundary. The 168 samples will be collected at one random location within each sampling grid cell, all of which are of approximately equal area. Once collected, the surface sediment samples from these 168 cells will be combined into 24 composite samples for analysis. Each composite sample will contain seven grab samples.

Baseline concentrations will be established based on the composite sample data collected from a single site-wide sampling event. This sediment sampling approach can then be repeated over time to generate comparable datasets to assess progress toward cleanup goals, and to assess the effectiveness of the remedy in attaining the site-wide RAOs.

Baseline site-wide concentrations will reflect the combined effects of 1) cleanup actions at approximately 29 acres (ac) of early action areas, 2) ongoing source control, and 3) ongoing natural recovery throughout the LDW. Site-wide SWAC comparisons over time will establish trends in sediment concentrations, while the 95UCL is the ROD compliance metric for surface sediment area-wide cleanup levels (EPA 2014b).

The surface sediment composite samples will be analyzed for the contaminants of concern (COCs) for RAOs 1, 2, and 4 (PCBs, total arsenic, cPAHs, and dioxins/furans) (ROD Table 19) (EPA 2014b) and conventional parameters, including total organic carbon (TOC), black carbon, grain size, and total solids.

² Risk drivers are PCBs, dioxins/furans, carcinogenic polycyclic aromatic hydrocarbons [cPAHs], and arsenic (ROD Table 19, titled *Cleanup levels for PCBs, arsenic, cPAHs, and dioxins/furans in sediment for human health and ecological COCs [RAOs 1, 2, and 4]*). PCBs are the only risk drivers for RAO 4.

2.1.1.2 Individual 0–10-cm sediment samples

Twenty individual samples will be collected within the preliminary MNR areas shown in ROD Figure 18 (EPA 2014b)³ and individually analyzed for RAO 3 COCs to address DQOs 3 and 4:

- 3. Compare (on a point-by-point basis) concentrations in baseline samples collected from within MNR areas to the (benthic) cleanup levels presented in ROD Table 20⁴ (EPA 2014b).
- 4. Support the evaluation of site-wide trends and comparison of concentrations to predicted natural recovery in MNR areas.⁵

Ten of the 20 locations were identified to reoccupy LDW remedial investigation (RI) surface sediment locations in MNR areas with sediment cleanup objective (SCO)⁶ exceedances (MNR > SCO) based on existing data. The other 10 locations were randomly selected from locations within MNR areas. During long-term monitoring, repeated measurements over time using a fixed or rotating panel design will support the evaluation of trends and comparisons with predicted natural recovery in MNR areas. Note that these data are not being collected to delineate MNR areas, nor to assess MNR area compliance; data to address those needs will be collected during design and compliance monitoring.

These 20 samples will be analyzed for the target analytes in Table 20 of the ROD (EPA 2014b), and archives will be retained.

2.1.1.3 Ex situ porewater samples

The DQO for the collection of PCB porewater data⁷ is as follows:

5. Estimate baseline porewater concentrations in MNR/ENR areas for PCBs. This DQO is primarily intended to help assess the effect of reduced sediment concentrations on biota exposure and tissue concentrations.

³ It is acknowledged that the remedial boundaries and technology assignments portrayed in ROD Figure 18, titled *Selected remedy*, are likely to change following design. Thus, any reference to MNR, enhanced natural recovery (ENR), cap, or dredge areas in this QAPP refers to preliminary area designations.

⁴ ROD Table 20 is titled *Sediment cleanup levels for ecological (benthic invertebrate) COCs for RAO 3.* MNR areas are preliminary because remedial boundaries and technology assignments portrayed in ROD Figure 18 (EPA 2014b), titled *Selected remedy*, are likely to change during remedial design.

⁵ Concentrations are not expected to meet natural recovery predictions during baseline sampling because the projections are for 10 years post-remedy.

⁶ SCO is the term used in this sediment QAPP to refer to the benthic numeric cleanup criteria in Washington State Sediment Management Standards (SMS) Chapter 173-204-562. The benthic SCOs are also the cleanup levels for RAO 3 in the ROD.

⁷ Porewater data for cPAHs are discussed in the clam QAPP.

In the LDW, PCB porewater data currently are available for 31 locations (Windward and Integral 2017a). In addition to these field data, porewater concentrations can be predicted from sediment concentrations using the two-carbon equilibrium partitioning modelling that has been conducted for the LDW. To address DQO 5, PCB concentrations in sediment and porewater from 10 additional locations will be analyzed to potentially improve the ability to predict PCB concentrations in porewater.

Twenty sampling locations have been identified with surface sediment PCB concentrations that represent the range of PCB concentrations in the MNR/ENR areas. These 20 targeted locations include the 10 reoccupied RI locations in MNR areas selected to address DQO 3 (Section 2.1.1.2), and an additional 10 reoccupied RI locations to maximize the likelihood of sampling locations with the targeted range of total PCB concentrations, including six locations with concentrations above 720 μ g/kg.⁸

Sediment from the 20 sampling locations will be exposed to passive samplers for 28 days as part of an *ex situ* porewater investigation. Passive samplers will be used to characterize the freely dissolved PCB congener concentrations in porewater.

All 20 sediment samples will be analyzed for PCB Aroclors and TOC; based on these data (in consultation with EPA), 10 samples will be selected for analysis of the passive sampler extracts for PCB congeners. The goal is to have 10 samples with total PCB concentrations (Aroclor sums) distributed across the range of concentrations detected in the 20 samples (potentially up to approximately 2,000 μ g/kg dry weight [dw]). The 10 corresponding sediment samples will be analyzed for PCB congeners and black carbon.⁹ The remaining 10 porewater extracts and sediment samples will be archived.

Details regarding the methodology for conducting this *ex situ* investigation (e.g., type of passive sampler) are presented in Section 4.5 of this QAPP.

2.1.1.4 Evaluation of relationship between total PCBs as sum of Aroclors and total PCBs as sum of congeners

The relationship between total PCBs based on the sum of detected congeners versus the sum of detected Aroclors in LDW sediment was also assessed as part of this QAPP, per the Work Plan (Windward and Integral 2017b).

The existing RI/feasibility study (FS) and post-2010 (Task 2) data were reviewed to identify sediment samples with results for both PCB Aroclors and PCB congeners. These data were evaluated to determine whether total PCBs calculated using an

⁸ The additional 10 reoccupied RI locations had concentrations as high as 2,154 μ g/kg, while the upper limit of the MNR/ENR range is 720 μ g/kg (based on the ENR upper limit and assuming 2% TOC). The larger range will increase the likelihood that the actual range of PCB concentrations in samples will be up to 720 μ g/kg, and may also be helpful in assessing the relationship between current PCB concentrations in sediment and porewater in MNR/ENR areas.

⁹ These 10 sediment samples, along with paired Aroclor-congener results, will be used as described in Section 2.1.1.4.

Aroclor sum and total PCBs calculated using a PCB congener sum appear to be reliably correlated, or whether detectable systematic bias exists for one method to over- or under-estimate the total.

A total of 51 existing sediment samples from 21 unique locations are available from within the LDW with detected PCB Aroclors and congeners. These data are from two sampling events: an LDW-wide sediment characterization conducted for the US Army Corps of Engineers (USACE) in 2012 (HDR et al. 2013), and a focused investigation of the South Park Marina conducted by the Intelligence Group in 2016 (TIG 2016). The USACE characterization included the collection of sediment cores from six locations in the LDW. Samples were analyzed from the 0-2-ft depth at four locations and the 6.5-, 8.5-, and 8-10-ft depths at one location each. The South Park Marina samples were collected from 16 locations in the vicinity of the marina. Three depth intervals were analyzed at each location: a surface sediment sample (0-10 cm) and two subsurface sediment samples (0.3–3.3 and 3.3–6.6 ft). Data from these two studies were evaluated to assess the relationship between the two PCB sums. When the relationship was viewed on a linear scale (Figure 2-1), the correlation coefficient was large (Pearson's r = 0.97, p < 0.001), indicating a strong correlation between the two sums. However, visual inspection of the graphic suggests that two different trends may be present or that influential data points are present. The correlation is strongly influenced by two samples with PCB concentrations greater than 600 μ g/kg dw. Most of the available PCB data were less than 300 μ g/kg dw.

Survey • 05AUE 2012 • South Park Marna 2016

FINAL

The black line is the 1:1 line, indicating perfect agreement between the two sums; the blue line is the best-fit regression line fit to all the data on the linear scale.

Figure 2-1.Relationship between total PCBs as sum of Aroclors and as sum of congeners, linear-scaled axes

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 10 To assess how well results from the two methods match one another, the paired sediment data were plotted relative to the 1:1 line (indicating perfect agreement), the analytical variance around the 1:1 line was estimated based on the accuracy limits for the PCB Aroclor analysis of 50 to 120% (Figure 2-2). All of the data points above the 1:1 line, for which the Aroclor sums over-estimate the congener sums, were outside of the analytical variance. Most (82%) of the data points below the 1:1 line, for which the Aroclor sums over-estimate the congener sums, were within the analytical variance.

Survey . USACE 2012 . South Park Marina 2016

The black line is the 1:1 line, indicating perfect agreement between the two sums; the dashed lines represent the acceptable analytical variance around the 1:1 line. One sample with PCB concentration greater than 1,500 μ g/kg dw is not shown on this plot.

Figure 2-2.Relationship between total PCBs as sum of Aroclors and as sum of congeners, relative to analytical variance

Sediment data from the 10 locations selected for the *ex situ* porewater investigation (Section 2.1.1.3) will be added to the Aroclor/congener sediment dataset when these data are available, and the relationship will be re-evaluated with and without the existing data. Additional data may be collected to better define this relationship in the future. These data will be collected over time for a variety of purposes (including those associated with remediation efforts), and the relationship will be re-evaluated with respect to the questions posed at that time.

2.1.2 Targeted source-related sampling

In addition to the baseline sediment sampling, targeted source-related sampling will be conducted to address the following DQO:

6. Help Ecology assess the sufficiency of contaminant source control through additional near-outfall sediment sampling and bank sampling (EPA 2016c).

2.1.2.1 Near-outfall surface sediment sampling

To assist Ecology in its source evaluation for the LDW, surface sediment (0–10 cm)¹⁰ will be collected near the outfalls recommended by Leidos (2014a)¹¹ that also meet the screening criteria developed in the Work Plan (Windward and Integral 2017b). Specifically, an attempt will be made to sample sediment near outfalls that fit the following conditions:

- Do not have sufficient data within approximately 50 ft (outfalls with diameters less than or equal to 24 in.) or approximately 100 ft (outfalls with diameters greater than 24 in.)
- Are not near a cleanup site under an Agreed Order or expected to be
- Are expected to be sampleable based on information from Leidos (SAIC 2011; Leidos 2014a) and information gathered during a field reconnaissance effort performed on September 1 and 25, 2017 (see Appendix E)

As discussed in Section 4.1.2.1 of this QAPP, as a result of this screen, a total of 24 source-related surface sediment samples will be collected near 22 outfalls. Near outfalls with no additional nearby sediment data, two samples will be collected. Near outfalls with some existing nearby sediment data, one sample will be collected. Where feasible, samples will be collected within 50 ft of outfalls with diameters less than or equal to 24 in., and within 100 ft of outfalls with diameters greater than 24 in.

Sediment samples will be analyzed for the analytes listed in ROD Table 20 (EPA 2014b). A subset of samples will also be analyzed for dioxins/furans based on existing sediment data (see Section 4.1.2.1). In addition, an archive jar will be filled for samples collected near all other outfalls.

¹⁰ During its 2011 outfall surface sediment sampling, SAIC collected samples from a depth of 0–10 cm where possible (sample depths ranged from 0–3 to 0–10 cm) (SAIC 2011). Samples from a depth of 0–10 cm are consistent with the SAIC 2011 sampling effort and with other surface sediment samples described in this QAPP. If a 0–10-cm sample cannot be collected from a given location, samples from a depth of less than 10 cm will be retained for analysis (see Section 4.2.2.2).

¹¹ Leidos (2014a) recommended sediment sampling near outfalls that met the following criteria: 1) the outfall was active or presumed active, 2) it was not adjacent to a cleanup site, and 3) existing post-1999 surface sediment data were not sufficient (i.e., two sediment samples collected within 50 to 100 ft from 2000 to present).

2.1.2.2 Bank soil sampling

Uncharacterized bank soils (0–10 cm)¹² between +4 and +12 ft mean lower low water (MLLW)¹³ will also be sampled to assist Ecology in its source evaluation for the LDW, if the bank meets all of the following criteria:

- Bank soils are exposed and potentially erodible (i.e., constructed armoring is absent or of poor integrity).
- The bank is not adjacent to an upland cleanup site under or expected to be under an Agreed Order or an early action.
- Insufficient bank soil data exist.
- The bank soil can be sampled.

Overwater structures prevent characterization in some bank areas. Such areas will be addressed in remedial design.

• After eliminating the bank areas that did not meet these criteria, the remaining uncharacterized exposed bank areas were assessed in a field reconnaissance survey on August 31 and September 1, 2017. The goal of this survey was to determine whether the locations appear to be sampleable based on the presence and condition of overwater structures (which can create unsafe sampling conditions) and the presence and integrity of armoring. Based on this field reconnaissance (see Appendix E), six banks appear to be sampleable; see Section 4.1.2.2 for details.

For each of the six banks, discrete samples will be collected. The number of discrete samples per bank will range from one to three, depending on the length of the bank. Samples will be analyzed for the analytes listed in ROD Table 20 (EPA 2014b). Samples from Bank Area 2 will also be analyzed for dioxins/furans, and an archive jar will be filled for all bank sample locations (see Section 4.1.2.2).

2.1.3 Intertidal surface sediment (0-45 cm) samples

Four DQOs have been identified for the 0-45 cm sediment samples to be collected in potential clamming and beach play areas to establish baseline concentrations and provide a foundation for assessing trends. These DQOs are summarized in Table 2-2.

¹² In 2011, Hart Crowser collected bank samples for Ecology from a depth of 1–10 cm at 7 of the 8 bank sampling locations (Hart Crowser 2012). To be generally consistent with the Hart Crowser samples, bank samples for this effort will be collected from a depth of 0–10 cm.

¹³ This elevation is approximately equal to mean higher high water (MHHW). The National Oceanic and Atmospheric Administration (NOAA) reports MHHW at the Seattle station (Elliott Bay) as +11.36 ft MLLW (NOAA 2013).

Step	DQO 7	DQO 8	DQO 9	DQO 10
STEP 1: State the problem.	A synoptic site-wide sediment dat condition in potential clamming ar sediment remedy.	aset is needed to assess the baseline eas prior to implementation of the	Sediment concentration data from beac implementation of the sediment remedy	h play areas are needed prior to
STEP 2: Identify the goals of the study.	Establish a baseline, site-wide 95UCL concentration of RAO 2 risk drivers across all potential clamming areas within the LDW.	Establish a baseline, site-wide mean concentration in potential clamming areas to serve as the foundation for assessing temporal trends for RAO 2 risk drivers.	Establish baseline 95UCL concentrations of human health risk drivers for RAO 2 within each of the 8 beach play areas of the LDW.	Establish baseline mean concentrations to serve as a foundation for assessing temporal trends in the 8 beach play areas for RAO 2 risk drivers.
STEP 3: Identify the information inputs.	Spatial area estimates for the pote ROD were used to determine the locations across the entire potenti approximately spatially proportion	ential clamming areas identified in the appropriate number of sampling al clamming area to achieve al sampling.	Spatial area estimates for the beach pla used to determine the appropriate numl play area to achieve approximately prop	y areas identified in the ROD were ber of locations within each beach bortional sampling by beach.
STEP 4: Define the boundaries of the study.	The boundaries of the potential cl ROD.	amming areas were defined in the	The boundaries for each of the 8 beach ROD.	play areas were defined in the
STEP 5: Develop the analytical approach.	The baseline 95UCL will be calculated using a <i>t</i> -interval, and will be justified by invoking the CLT due the large number of field samples ($n = 72$) per analytical sample.	The baseline mean will be estimated as the arithmetic mean of the 3 potential clamming area-wide composites.	The baseline 95UCL will be calculated using the Chebyshev Inequality.	The baseline mean for each beach play area will be estimated as the arithmetic mean of the 3 composites from each beach.
STEP 6: Specify performance or acceptance criteria.	Performance or acceptance criteri (i.e., PARCCS) will be met, as des	ia are described in Section 4.6, including fection 4.6.	field QC samples and laboratory QC san	ples. DQIs for laboratory analyses
STEP 7: Develop the detailed plan for obtaining data.	Three site-wide composite sample up to 72 intertidal locations) will be from spatially balanced random lo clamming areas in the LDW. Exa determined in the field using a trai the sampling event, samples will t balanced site-wide composite san LDW-wide potential clamming are	es (each consisting of sediment from e prepared from samples collected cations throughout the potential ct sampling locations will be nsect approach. After the completion of be assigned to 1 of the 3 spatially nples, each composite representing the a.	Three composite samples will be asser areas (each consisting of sediment from composite beach play area samples. Sp will be collected from each beach play a number of sampling locations per beach to the size of the beach play area, and v per composite) to 27 samples (i.e., 9 pe of the sampling event, samples from a assigned to 1 of the 3 spatially balance	bled for each of the 8 beach play 1 3 to 9 locations) for a total of 24 batially balanced random samples trea using a transect approach. The 1 will be approximately proportional will range from 9 samples (i.e., 3 r composite). After the completion given beach play area will be d beach-specific composites.
95UCL – 95% upper confi CLT – Central Limit Theor DQI – data quality indicatc DQO – data quality object	dence limit for the mean L em F or ive 0	DW – Lower Duwamish Waterway PARCC – precision, accuracy, represental completeness, comparability, and ser QC – quality control	RAO – remedial action tiveness, ROD – Record of Dec nsitivity	ision

Table 2-2. DQOs for intertidal surface sediment samples (0-45 cm)

Surface Sediment QAPP May 31, 2018 14

Lower Duwamish Waterway Group

2.1.3.1 Intertidal baseline sediment for direct contact RAO 2 – potential clamming areas

The DQOs for the collection and analysis of surface sediment samples (0–45 cm) for RAO 2 in potential clamming areas are as follows:

- 7. Establish baseline 95UCL concentrations of human health risk drivers for RAO 2 across all potential clamming areas identified in the ROD.
- 8. Establish baseline site-wide potential clamming area mean concentrations to assess trends following sediment remediation for RAO 2 (direct contact clamming) risk drivers.

Potential clamming areas will be sampled to assess baseline conditions in these intertidal areas throughout the LDW. Three site-wide composite samples will be prepared from samples collected from up to 216 spatially balanced¹⁴ locations throughout the potential clamming areas in the LDW. As described in Section 4.1.3.1, samples from each potential clamming subarea will be assigned to one of three site-wide composite samples, each consisting of sediment from up to 72 locations. Samples will be assigned to achieve spatial balance. Within each potential clamming subarea, the first location along a transect will be randomly assigned to one of the three composites. Thereafter, the locations will follow the same systematic pattern, achieving a similar spatial distribution within each composite. The samples to be included in each composite sample will be documented in a compositing memorandum submitted for EPA approval.

Concentrations in each composite sample represent the site-wide mean concentration; the three composites are independent estimates of the mean. The variance among the composite sample concentrations will be used to calculate the site-wide potential clamming area 95UCL.

The composite samples will be analyzed for human health direct contact COCs (PCBs, total arsenic, cPAHs, and dioxins/furans) identified in ROD Table 19. The samples will also be analyzed for toxaphene, which is identified in ROD Table 14 as a direct contact contaminant of potential concern (COPC) (EPA 2014b).¹⁵

2.1.3.2 Intertidal baseline sediment for direct contact RAO 2 – beach play areas

The DQOs for the collection and analysis of surface sediment samples (0–45 cm) for RAO 2 in beach play areas are as follows:

¹⁴ The total number of locations within each potential clamming area is roughly proportional to the size of the area.

¹⁵ ROD Table 14 is titled *Summary of COPCs and Rationale for Selection as COCs for Human Health Exposure Scenarios.*

- 9. Establish baseline 95UCL concentrations for risk drivers to achieve RAO 2 in each of the eight beach play areas.
- 10. Establish baseline beach play area-specific mean concentrations to assess trends following sediment remediation for RAO 2 (direct contact beach play) risk drivers.

Baseline conditions within each of the eight beach play areas will be characterized with three composite samples from each beach play area. The number of locations per composite within each beach play area composite sample will be roughly proportional to the size of each beach play area, varying from 9 samples (3 per composite) to 27 samples (9 per composite) in each of the beach play areas. Concentrations in each composite sample will represent the mean concentration at each beach; thus, the three composites will be independent estimates of the beach-wide mean, capturing small-scale spatial variability as well as sampling and analytical error. The variance among the composite sample concentrations will be used to calculate the 95UCL by beach.

These composite samples will be analyzed for human health direct contact COCs (PCBs, total arsenic, cPAHs, and dioxins/furans) identified in ROD Table 19 (EPA 2014b). The samples will also be analyzed for toxaphene, which is identified in ROD Table 14 as a direct contact COPC.

2.2 PROJECT APPROACH AND SCHEDULE

Two separate sampling events will be conducted to address the 10 surface sediment DQOs described in Section 2.1. Figure 2-3 presents the schedule for the surface sediment sampling events and the porewater investigation.

Figure 2-3. Timeline showing target schedule for the two surface sediment sampling events and the *ex situ* porewater laboratory exposure period

Sampling of the 0–10-cm sediment samples (including near-outfall sampling) began in mid-February 2018; the chemical analysis and 28-day *ex situ* porewater laboratory

FINAL

Lower Duwamish Waterway Group

exposures began when the 0–10-cm sediment sampling and compositing was complete. The 0–45-cm and bank soil sampling will be conducted in June 2018 during the period of daytime low tides; targeted sampling days will have low tides of -1.3 ft MLLW or lower.¹⁶ Chemical analysis of the samples will begin when the sampling and the compositing of the 0–45-cm samples is complete. Field conditions or logistics may require deviations from these target timeframes; such deviations will be communicated to EPA as they are realized and noted in the data reports (described below).

Chemical analysis of the samples from each sampling event will require approximately four weeks. Data validation will be completed approximately three weeks after receipt of the chemistry data. EPA will be notified when the final data validation report has been received for each event.

Draft sampling data reports for each event (Work Plan Task 5 (Windward and Integral 2017b)) will be submitted to EPA 21 days after receipt of the final validated analytical results. The first data report will contain the results of Sampling Event 1 in February. The second of the two data reports will contain the results of Sampling Event 2 in June and the *ex situ* porewater investigation results. Draft final data reports will be submitted to EPA 30 days after receipt of EPA's comments on the draft data reports. Final validated data will be submitted to Ecology's Environmental Information Management (EIM) system and EPA's Scribe database within 30 days of the approval of the final data report. Surface sediment and porewater data will be evaluated in the data evaluation report (Work Plan Task 6).

¹⁶ Near-outfall sediment sampling locations that are not accessible by boat may be sampled from shore at low tide during Sampling Event 2.

3 Project Organization and Responsibilities

The overall project organization and the individuals responsible for the various tasks required for surface sediment sample collection and analysis are shown in Figure 3-1. Responsibilities of project team members, as well as laboratory project managers (PMs), are described in the following sections.

Lower Duwamish Waterway Group

Figure 3-1. Project organization and team responsibilities

Lower Duwamish Waterway Group

3.1 PROJECT MANAGEMENT

Both the Lower Duwamish Waterway Group (LDWG) and EPA are involved in all aspects of this project, including discussion, review, and approval of this QAPP, and interpretation of the results of the investigation. Elly Hale is the EPA PM for the pre-design studies (EPA 2016c).

Kathy Godtfredsen is the Windward Environmental LLC (Windward) PM. In this capacity, she will be responsible for overall project coordination, and for providing oversight for planning and coordination, work plans, all project deliverables, and performance of the administrative tasks needed to ensure timely and successful completion of the project. She will also be responsible for coordinating with LDWG and EPA on schedule, deliverables, and other administrative details. Dr. Godtfredsen can be reached as follows:

Dr. Kathy Godtfredsen Windward Environmental LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 Telephone: 206.577.1283 E-mail: <u>kathyg@windwardenv.com</u>

Susan McGroddy is the Windward monitoring task manager (TM). As TM, she will be responsible for communicating with the Windward PM on the progress of project tasks, conducting detailed planning and coordination, and monitoring and communicating any deviations from the QAPP. Significant deviations from the QAPP will be further reported to representatives of LDWG and EPA. Dr. McGroddy can be reached as follows:

Dr. Susan McGroddy Windward Environmental LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 Telephone: 206.812.5421 E-mail: <u>susanm@windwardenv.com</u>

3.2 FIELD COORDINATION

Thai Do is the Windward field coordinator (FC). As FC, he will be responsible for managing field sampling activities and general field and QA/quality control (QC) oversight. He will ensure that appropriate protocols are observed for sample collection, preservation, and holding times, and will oversee delivery of environmental samples to the designated laboratories for chemical analyses. The FC will report deviations from this QAPP to the TM and PM for consultation. Significant deviations from the QAPP will be further reported to representatives of LDWG and EPA. Mr. Do can be reached as follows:

Mr. Thai Do Windward Environmental LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 Telephone: 206.812.5407¹⁷ Email: <u>thaid@windwardenv.com</u>

Eric Parker is one of two boat captains. He will be responsible for operating the boat, and will coordinate closely with the FC to ensure that samples are collected in keeping with the methods and procedures presented in this QAPP. Mr. Parker can be reached as follows:

Mr. Eric Parker Research Support Services 321 High School Road NE D3/563 Bainbridge Island, WA 98110 Mobile: 260.550.5202 Email: <u>eparker@rssincorporated.com</u>

Shawn Hinz is the other boat captain. He will be responsible for operating the boat and will coordinate closely with the FC to ensure that samples are collected in keeping with the methods and procedures presented in this QAPP. Mr. Hinz can be reached as follows:

Mr. Shawn Hinz Gravity Consulting LLC 32617 Southeast 44th Street Fall City, WA 98024 Mobile: 425.281.1471 Email: shawn@gravity.com

3.3 QUALITY ASSURANCE/QUALITY CONTROL

Amara Vandervort is the Windward QA/QC coordinator. In this capacity, she will oversee coordination of the field sampling and laboratory programs, and will supervise data validation and project QA coordination, including coordination with the analytical laboratories and the EPA QA officer, Donald Brown. Ms. Vandervort will also maintain the official approved QAPP and ensure that the appropriate parties receive any updated versions of the QAPP. Ms. Vandervort can be reached as follows:

¹⁷ This is Mr. Do's office phone number. A mobile phone number will be provided prior to field sampling.

Ms. Amara Vandervort Windward Environmental LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 Telephone: 206.812.5415 Email: <u>amarav@windwardenv.com</u>

Mr. Brown can be reached as follows:

Mr. Donald Brown US Environmental Protection Agency, Region 10 1200 6th Avenue Seattle, WA 98101 Telephone: 206.553.0717 Email: <u>brown.donaldm@epa.gov</u>

Independent third-party chemical data review and validation will be provided by EcoChem. The PM at EcoChem can be reached as follows:

Ms. Christina Mott Frans EcoChem 1011 Western Avenue, Suite 1006 Seattle, WA 98104 Telephone: 206.508.2110 Email: <u>cmfrans@ecochem.net</u>

3.4 LABORATORY RESPONSIBILITIES

Amara Vandervort of Windward is the laboratory coordinator for the analytical chemistry laboratories. Analytical Resources, Inc. (ARI) will perform all chemical analyses on the surface sediment samples, with the exception of analyses for dioxins/furans, PCB congeners, and black carbon. Axys Analytical Services Ltd. (Axys) will prepare the porewater passive samplers and perform analyses for PCB congeners and dioxins/furans. ALS Environmental-Kelso (ALS) will perform analyses for black carbon.

The laboratory PM at ARI can be reached as follows:

Ms. Susan Dunnihoo Analytical Resources, Inc. 4611 South 134th Place Tukwila, WA 98168-3240 Telephone: 206.695.6207 Email: limsadm@arilabs.com

The laboratory PM at Axys can be reached as follows:

Ms. Georgina Brooks Axys Analytical Services Ltd. 2045 West Mills Road Sidney, British Columbia V8L 5X2 Canada Telephone: 250.655.5801 Email: <u>Georgina.Brooks@sgs.com</u>

The laboratory PM at ALS can be reached as follows:

Mr. Jeff Grindstaff ALS Environmental-Kelso 1317 13th Avenue South Kelso, WA 98626 Telephone: 360.577.7222 Email: Jeff.Grindstaff@alsglobal.com

ARI, ALS, and Axys will meet the following requirements:

- Adhere to the methods outlined in this QAPP, including those methods referenced for each procedure.
- Adhere to documentation, custody, and sample logbook procedures.
- Implement QA/QC procedures defined in this QAPP.
- Meet all reporting requirements.
- Deliver electronic data files as specified in this QAPP.
- Meet turnaround times for deliverables as described in this QAPP.
- Allow EPA and the QA/QC manager, or a representative, to perform laboratory and data audits.

3.5 DATA MANAGEMENT

Kim Goffman of Windward will oversee data management, and will ensure that analytical data are incorporated into the LDW database with appropriate qualifiers following acceptance of the data validation. QA/QC of the database entries will ensure accuracy for use in the pre-design studies. Ms. Goffman can be reached as follows:

FINAL

Ms. Kim Goffman Windward Environmental LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 Telephone: 206.812.5414 Email: <u>kimg@windwardenv.com</u>

3.6 SPECIAL TRAINING/CERTIFICATION

The Superfund Amendments and Reauthorization Act of 1986 required the Secretary of Labor to issue regulations through the Occupational Safety and Health Administration (OSHA) providing health and safety standards and guidelines for workers engaged in hazardous waste operations. Accordingly, 29 Code of Federal Regulations (CFR) 1910.120 requires that employees be given the training necessary to provide them with the knowledge and skills to enable them to perform their jobs safely and with minimum risk to their personal health. All sampling personnel will have completed the 40-hour HAZWOPER training and 8-hour refresher courses, as necessary, to meet OSHA regulations.

Also, ARI and Axys have current environmental laboratory accreditation from Ecology for methods to be performed. Ecology does not offer accreditation for the black carbon method. However, ALS is International Organization for Standardization (ISO) accredited for the instrumental portion of black carbon analysis, which is the only accreditation available for this method.

3.7 DOCUMENTATION AND RECORDS

All field activities and laboratory analyses will be documented following the protocols described in this section. In addition, data reduction rules and data report formats are provided herein.

3.7.1 Field observations

All field activities will be recorded in a field logbook maintained by the FC or designee. The field logbook will provide a description of all sampling activities, conferences between the FC and EPA oversight personnel associated with field sampling activities, sampling personnel, and weather conditions, as well as a record of all modifications to the procedures and plans identified in this QAPP and the HSP (Appendix A). The field logbook will consist of bound, numbered pages, and all entries will be made in indelible ink. Photographs, taken with a digital camera, will provide additional documentation of the surface sediment collection activities and all bank sampling areas. The field logbook is intended to provide sufficient data and observations to enable participants to reconstruct events that occurred during the sampling period.

The following field data collection sheets, included as Appendix B, will also be used to record pertinent information after sample collection:

- Surface sediment collection form
- Bank collection form
- Percent moisture benchsheet for *ex situ* porewater investigation
- Exposure setup benchsheet for *ex situ* porewater investigation

- Daily conditions benchsheet for *ex situ* porewater investigation
- Protocol modification form

Information regarding equipment calibration and other sampling activities will be documented in the field logbook.

3.7.2 Laboratory records

ARI, ALS, and Axys will be responsible for internal checks on sample handling and analytical data reporting and will correct errors identified during the QA review. The laboratory data packages will be submitted electronically and will include the following, as applicable:

- **Project narrative**: This summary, in the form of a cover letter, will present any problems encountered during any aspect of sample analyses. The summary will include, but not be limited to, discussion of QC, sample shipment, sample storage, and analytical difficulties. Any problems encountered by the laboratory will be documented, as will their resolutions. In addition, operating conditions for instruments used for the analysis of each suite of analytes and definitions of laboratory qualifiers will be provided.
- **Records**: Legible copies of the chain of custody forms will be provided as part of the data package. This documentation will include the time of receipt and the condition of each sample received by the laboratory. Additional internal tracking of sample custody by the laboratory will also be documented.
- **Sample results**: The data package will summarize the results for each sample analyzed. The summary will include the following information, as applicable:
 - Field sample identification (ID) code and the corresponding laboratory ID code
 - Sample matrix
 - Date of sample extraction/digestion
 - Date and time of analysis
 - Weight used for analysis
 - Final dilution volumes or concentration factor for the sample
 - Percent solids in the samples
 - Identification of the instruments used for analysis

- Method detection limits (MDLs)¹⁸ and RLs¹⁹
- All data qualifiers and their definitions
- QA/QC summaries: These summaries will contain the results of all QA/QC procedures. Each QA/QC sample analysis will be documented with the same information required for the sample results (see above). The laboratory will make no recovery or blank corrections, except for isotope dilution method correction prescribed in EPA methods 1613b and 1668c. The required summaries will include the following information, as applicable:
 - The calibration data summary will contain the concentrations of the initial calibration and daily calibration standards and the date and time of analysis. The response factor, percent relative standard deviation (%RSD), relative percent difference (RPD), and retention time for each analyte will be listed, as appropriate. Results for standards analyzed to indicate instrument sensitivity will be reported.
 - The internal standard area summary will report the internal standard areas, as appropriate.
 - The method blank analysis summary will report the method blank analysis associated with each sample and the concentrations of all compounds of interest identified in these blanks.
 - The surrogate spike recovery summary will report all surrogate spike recovery data for organic analyses. The names and concentrations of all compounds added, percent recoveries, and QC limits will be listed.
 - The labeled compound recovery summary will report all labeled compound recovery data for EPA methods 1613b and 1668c. The names and concentrations of all compounds added, percent recovery, and QC limits will be listed.
 - The matrix spike (MS) recovery summary will report the MS or MS/matrix spike duplicate (MSD) recovery data for analyses, as appropriate. The names and concentrations of all compounds added, percent recoveries, and QC limits will be included. The RPD for all MS and MSD analyses will be reported.
 - The matrix duplicate summary will report the RPD for all matrix duplicate analyses. The QC limits for each compound or analyte will be listed.

¹⁸ The term MDL includes other types of detection limits (DLs), such as estimated detection limit (EDL) values calculated for PCB congeners and dioxin/furan congeners.

¹⁹ RL values are consistent with the lower limit of quantitation (LLOQ) values required under EPA-846.

- The standard reference material (SRM) analysis²⁰ summary will report the results of the SRM analyses and compare these results with published concentration ranges for the SRMs.
- The LCS analysis summary will report the results of the analyses of LCSs. The QC limits for each compound or analyte will be included.
- The relative retention time summary will report the relative retention times for the primary and confirmational columns of each analyte detected in the samples and the percent difference between the columns, as appropriate.
- The ion abundance ratio summary for samples analyzed by EPA methods 1613b and 1668c will report computed ion abundance ratios compared to theoretical ratios listed in the applicable method.
- **Original data**: Legible copies of the original data generated by the laboratory will be provided, including the following:
 - Sample extraction/digestion, preparation, and cleanup logs
 - Instrument specifications and analysis logs for all instruments used on days of calibration and analysis
 - Reconstructed ion chromatograms for all samples, standards, blanks, calibrations, spikes, replicates, LCSs, and SRMs
 - Enhanced and unenhanced spectra of target compounds detected in field samples and method blanks, with associated best-match spectra and background-subtracted spectra, for all gas chromatography/mass spectrometry (GC/MS) analyses
 - Enhanced and unenhanced spectra of target performance reference compounds (PRCs) detected in field samples, day-zero blank, field blank, and method blanks, with associated best-match spectra and background-subtracted spectra, for all GC/MS analyses
 - Quantitation reports for each instrument used, including reports for all samples, blanks, calibrations, MSs/MSDs, laboratory replicates, LCSs, and SRMs

ARI, ALS, and Axys will submit data electronically, in EarthSoft EQuIS® standard four-file or EZ_EDD format. Guidelines for electronic data deliverables for chemical data are provided on the EarthSoft website,

http://www.earthsoft.com/en/index.html, and additional information will be communicated to ARI, ALS, and Axys by the project QA/QC coordinator or data

²⁰ SRMs will be analyzed for polycyclic aromatic hydrocarbons (PAHs), PCB Aroclors, dioxins/furans, and PCB congeners. All other analyses will include a laboratory control sample (LCS). Specific information is listed in Section 4.7.

manager. All electronic data submittals must be tab-delimited text files with all results, MDLs (as applicable), and RLs reported to the appropriate number of significant figures. If laboratory replicate analyses are conducted on a single submitted field sample, the laboratory sample identifier must distinguish among the replicate analyses.

3.7.3 Data reduction

Data reduction is the process by which original data (analytical measurements) are converted or reduced to a specified format or unit to facilitate analysis of the data. Data reduction requires that all aspects of sample preparation that could affect the test result, such as sample volume analyzed or dilutions required, be taken into account in the final result. It is the laboratory analyst's responsibility to reduce the data, which are subjected to further review and reduction by the laboratory PM, the Windward TM, the QA/QC coordinator, and independent reviewers. The data will be generated in a format amenable to review and evaluation. Data reduction may be performed manually or electronically. If performed electronically, all software used must be demonstrated to be true and free from unacceptable error.

3.7.4 Data report

Two data reports will be prepared documenting all activities associated with the collection, handling, and analysis of samples, as specified in Task 5 of the third amendment to the AOC (EPA 2016c). The first data report will document Sampling Event 1 and present the analytical results for the 0–10-cm sediment samples. The second data report will document the Sampling Event 2 and present the analytical results for any near-outfall samples that were collected during low tide, bank samples, and 0–45-cm sediment samples, as well as the analytical results of the *ex situ* porewater investigation.

The following information will be included in each data report:

- Summary of all field activities, including descriptions of any deviations from the approved QAPP
- Sampling locations reported in latitude and longitude to the nearest one-tenth of a second and in northing and easting to the nearest foot
- Summary of the chemical data QA/QC review
- Results from the analyses of field samples and *ex situ* analyses, included as summary tables in the main body of the report, data forms submitted by ARI, ALS, and Axys, and cross-tab tables produced from Windward's database
- Copies of field logs and photographs (appendix)
- Copies of chain of custody forms (appendix)
- Data validation report (appendix)

Once each data report has been approved by EPA, a database export will be created from Windward's database. The data will be exported in two formats: one that is compatible with Ecology's EIM system, and one that is compatible with EPA's Scribe database.

3.7.5 Data storage and backup

All electronic files related to the project will be stored on a secure server on Windward's network. The server contents are backed up on an hourly basis, and a copy of the backup is uploaded nightly to a secure off-site facility.

4 Data Generation and Acquisition

Surface sediment samples will be collected, processed, and analyzed according to the procedures described in this section. In addition, methods for the *ex situ* porewater investigation are described herein. QA/QC, instrument maintenance and calibration, non-direct measurement, and data management requirements are also provided.

4.1 SAMPLING DESIGN

Sampling design components for sediment collections are detailed in the following sections. The study designs for the collection of the 0–10-cm surface sediment grab samples, related composites, and sediment samples for the *ex situ* porewater investigation are described in Section 4.1.1. The analyses to determine the locations for targeted source-related sampling of sediments near outfalls and banks are presented in Section 4.1.2. The study designs for the intertidal 0–45-cm surface sediment composite samples from potential clamming areas and the eight beach play areas are detailed in Section 4.1.3.

4.1.1 Surface sediment samples (0–10 cm)

This section presents the sampling design for the 0–10-cm surface sediment samples that will be collected to evaluate DQOs 1 through 5 (Table 2-1). The sampling design used to characterize surface sediment concentrations was statistically based to ensure unbiased coverage of the LDW to generate the data needed for the DQOs.

Random sampling was used to satisfy DQOs 1 and 2. A subset of these samples was augmented with non-random sampling (i.e., reoccupation of RI locations) to provide data for DQOs 3 through 5. An overview of the design is presented in Table 4-1, and details about the sample sizes and how the sampling locations were selected for each DQO are presented below.

		Approach		
Design Component	DQOs 1 and 2 – Site-wide 95UCL and SWAC	DQO 3 – Point-by-Point Evaluation	DQO 4 – Trend Support	DQO 5 – <i>Ex Situ</i> Porewater Evaluation
Sediment sample type	composites of grab samples	individual grab samples	individual grab samples	individual grab samples
Sample size	24 composite samples (7 grab samples each)	20 grab samples	10 grab samples	20 grab samples
Sampling locations	168 random locations spatially balanced across the LDW	20 locations (10 reoccupied RI locations and 10 random) within MNR areas.	10 reoccupied RI locations within MNR areas	20 candidate locations with targeted PCB concentrations based on RI/FS data
95UCL – 95% u DQO – data qua	pper confidence limit for th lity objective	ne mean MNR – monitored r PCB – polychlorina	natural recovery ted biphenyl	

Table 4-1. Overview of 0–10-cm surface sediment sampling approach

LDW – Lower Duwamish Waterway

RI/FS - remedial investigation/feasibility study SWAC - spatially weighted average concentration

The sampling design for collecting the baseline surface sediment samples that will be used to estimate the site-wide 95UCL and the SWAC (DQOs 1 and 2) is based on a spatially balanced random sampling design with composite samples.

Locations

A spatially balanced random sampling design was used because it provided an efficient way to ensure that the dataset had an equal chance of capturing all areas within the waterway while avoiding randomly clustered sampling locations that could overly influence mean and variance. Spatial balance was achieved using a stratified design, which placed one sample per grid cell in each approximately equally sized grid cell.

Sample Size

The total number of grid cells selected to characterize the site-wide average (as SWAC and 95UCL) was based on simulated variance estimates and EPA direction (Section 2 of Appendix A to the Work Plan (Windward and Integral 2017b)). The sampling design included 24 composite samples of 7 samples each (for a total of 168 field samples), and used an irregular grid of 168 cells of approximately equal area. This

approach is expected to result in a relative margin of error (RME)²¹ for the mean of 25% or less,²² which is less than analytical variability.²³

Once collected, the surface sediment samples from these 168 cells will be combined into 24 composite samples for analysis (Map 4-1), and individual samples will be archived. Each composite sample will contain seven samples from neighboring grid cells (Map 4-1). The composite areas and the remedy technology assignments (as preliminarily mapped in the ROD Figure 18 (EPA 2014b)) are provided in Map 4-2.

In future years of monitoring, the number of samples per composite should remain consistent to maintain year-to-year comparability of the datasets. However, the numbers of field samples and composite samples may change in response to updated information about site variance, and to achieve a desired RME for the site-wide mean. In this way, a robust site-wide SWAC and 95UCL can be calculated for each sampling event.

A total of 188 0–10-cm surface sediment samples will be collected. The 168 random locations (sample locations 1 through 168 on Map 4-3) will contribute to the site-wide composites to address DQOs 1 and 2. Ten of the random locations that are located in MNR areas will also be analyzed for SMS analytes as individual samples to address DQOs 3 and 4 (Table 4-2). In addition, 10 reoccupied RI locations will also be analyzed for SMS analytes to address DQOs 3 and 4. To address DQO 5, splits from the 10 reoccupied RI locations and samples from 10 additional locations will be analyzed for PCBs (Table 4-2).

Sample Location	RM	Reoccupied RI Location	PCB Conc. (µg/kg)	DQO 3	DQO 4	DQO 5
Random locat	ions wit	hin MNR areas (sam	ple splits)			
8	0.1	na	na	Х	Х	
23	0.5	na	na	Х	Х	
40	0.7	na	na	Х	Х	
52	0.9	na	na	Х	Х	
69	1.4	na	na	Х	Х	
91	2.1	na	na	Х	Х	
101	2.4	na	na	Х	Х	

 Table 4-2. Location and rationale for 0–10-cm grab samples to be analyzed individually

²¹ RME is measured as the width of the 95UCL as a percent of the mean.

²² The expectation of 25% RME or better for the mean was based on a normal distribution and a coefficient of variation of 0.7, or less, for the composite sample dataset.

²³ The analytical precision required by EPA functional guidelines for the analytical methods typically used in sediment characterization ranges from 20 to 50%, comparable to a range of 16 to 42% for RME as defined for this project.

Sample Location	RM	Reoccupied RI Location	PCB Conc. (µg/kg)	DQO 3	DQO 4	DQO 5
130	3.5	na	na	Х	Х	
143	4.1	na	na	Х	Х	
161	4.7	na	na	Х	Х	
Reoccupied R	l locatio	ons	·			
169	0.3	DR005	168	Х	Х	Х
170	0.6	DR010	74	Х	Х	Х
171	0.6	DUD040	620			Х
172	0.6	LDW-SS312	1,010			Х
173	0.7	DR083	567			Х
174	0.7	WIT288	340	Х	Х	Х
175	0.8	LDW-Pilot 4B-SS4	1,640			Х
176	1.0	LDW-SS321	450			Х
177	1.5	LDW-SS57	750			Х
178	1.6	DR092	64	Х	Х	Х
179	2.1	DR111	311 (1998), 176 (2004)	Х	Х	Х
180	2.2	2154-DSS-21	1,520			Х
181	2.2	DR139	2,830			Х
182	2.2	B5a-2	1,730			Х
183	2.5	WRC-SS-B3	18	Х	Х	Х
184	3.0	WIT270	100	Х	Х	Х
185	3.7	SD-336-S	250			Х
186	3.9	DR258	62	Х	Х	Х
187	4.5	DR290	170	Х	Х	Х
188	5.0	DR276	32	Х	Х	Х
DOO – data d	uality oh	iective	BI – remedi	al investigat	ion	

PCB – polychlorinated biphenyl

MNR – monitored natural recovery

na - not applicable or available

RM - river mile

SCO - sediment cleanup objective

FINAL

4.1.2 Targeted source-related sampling

In addition to the baseline sediment samples discussed in Sections 4.1.1 and 4.1.3, targeted source-related sediment sampling will be conducted to address DQO 6 to "help Ecology assess the sufficiency of contaminant source control through additional near-outfall sediment sampling and bank sampling" (EPA 2016c).

4.1.2.1 Near-outfall sediment sampling

Near-outfall sediment samples (0–10-cm) will be collected as part of targeted source-related sampling. In 2014, Leidos conducted an assessment to identify sediment data gaps near outfalls, evaluate the feasibility of filling those gaps, and provide information needed to conduct additional outfall sediment sampling (Leidos 2014a). The list that Leidos developed was then screened against additional criteria presented in the Work Plan and in Figure 4-1 herein (Windward and Integral 2017b).

Figure 4-1. Selection criteria for sampling sediment near active outfalls

Leidos (2014a) recommended 68 outfalls for additional sediment sampling. Eight of these outfalls are located outside of the site boundaries or have not been located: five (Outfalls E&E-2, E&E-3, E&E-4, 3842, and 3921) are located south of river mile (RM) 5.0, two (Outfalls 8132 and 8133) are located north of RM 0.0, and the location of Outfall 2167 is unknown. All of these outfalls were therefore excluded. The remaining 60 outfalls are circled on Map 4-4.

To determine whether sufficient surface sediment data exist in the vicinity of these 60 outfalls, all available surface sediment data²⁴ within approximately 50 ft of outfalls with diameters of 24 in. or less, and within approximately 100 ft of outfalls with diameters greater than 24 in., were considered (Map 4-4). Of the 60 outfalls, 26 had sufficient surface sediment sample locations within approximately 50 or 100 ft (Table 4-3). These 26 outfalls will not be sampled.

²⁴ All data from the RI/FS dataset were considered, as well as those compiled as part of Task 2 of the Work Plan (Windward and Integral 2017b).

1	_									
	Proposed No. of Samples	0	0	0	0	0	0	.	0	
	Additional Notes					"never been found," per Ecology			outfall plugged, per King County	
	Notes from Windward: Sampleability Recon and Data Assessment					ring of rate 1 sample within 50-ft buffer zone and 4 additional samples within 135 ft ring existing sediment sample within of existing sediment sample within rate 61 ft; outfall is within potential Clamming Subarea 3; will collect a sample during Sampling Event uring 2			two existing sediment samples within 100 ft; outfall in potential Clamming Subarea 3; will collect a sample during Sampling Event	
	Note from Leidos Documents on Sampleability	did not sample during Phase I because of riprap/rocky substrate	did not sample during Phase I because of riprap/rocky substrate	did not sample during Phase I because of riprap/rocky substrate	did not sample during Phase I because of riprap/rocky substrate	did not sample during Phase I because of riprap/rocky substrate	Phase I because of riprap/rocky substrate did not sample during Phase I because of riprap/rocky substrate (but noted that sampling may be possible by foot during low tide)		did not sample during Phase I because of riprap/rocky substrate	
	No. of Sample Locations Within 50 or 100 ft ^b	0	0	0	0	0	-	0	0	0
	Preliminary Assessment	screen out (not sampleable due to riprap/rocky substrate)	screen out (sufficient data)	try to sample during low tide	screen out (not sampleable due to riprap/rocky substrate)	sample				
	Outfall Diameter (in.)	18	12	18	9	0 6 6 6 6 6 20 20 20 20 20 20 20 20 20 20 20 20 20		12	unknown	
	Location (approx. RM)	0	0	0	0	0.3 E).7 E 12		0.7 E	0.8 E
	Outfall ^a	2156	2151	HRE-1	2154	S Nevada St SD	2225	2003	2006	FedCtrS

Surface Sediment QAPP May 31, 2018 37

FINAL

falls
out
near
ent
dim
r se
le fo
ampl
to si
eas t
h ar
whic
ine
erm
det
n to
cree
of s
ary
mm
3. SL
9.4
able

Outfall ^a	Location (approx. RM)	Outfall Diameter (in.)	Preliminary Assessment	No. of Sample Locations Within 50 or 100 ft ^b	Note from Leidos Documents on Sampleability	Notes from Windward: Sampleability Recon and Data Assessment	Additional Notes	Proposed No. of Samples
2005	0.9 E	80	screen out (not sampleable due to riprap/rocky substrate)	0	did not sample during Phase I because of riprap/rocky substrate			0
2004	0.9 E	80	screen out (not sampleable due to dock)	0	did not sample during Phase I because of obstructions (dock)			0
2014	1.6 E	24	screen out (not sampleable due to riprap/rocky substrate)	0	did not sample during Phase I because of riprap/rocky substrate			0
GlacierN W- CBP	1.7 E	unknown	sample	0		located in Slip 2, numerous other samples in slip		
GenBiodi esel	1.7 E	not reported	sample	0		located in Slip 2, numerous other samples in slip		.
2503 (1st Ave. S Bridge SD)	2.0 E	36	screen out (sufficient data)	0	collected 1 sample near mouth of 100-ft drainage ditch where outfall is located	not sampleable due to riprap and other armoring		0
SCS Refd Services	2.1 E	unknown	screen out (not sampleable due to overwater structures and armoring)	0		located in Slip 3; not sampleable due to structures and armoring (wooden piles and riprap) along the shoreline		0
Seattle Dist Ctr	2.1 E	10	sample	0		near Outfall 2025 at head of Slip 3, numerous other samples in vicinity at head of Slip 3		-
2025	2.1 E	unknown	screen out (sufficient data)	-		1 sample within 50 ft and 3 additional samples within 135 ft at the head of Slip 3; located near Seattle Dist Ctr; unclear if 2025 is an outfall or seep		0

Surface Sediment QAPP May 31, 2018 38

FINAL

Preliminary Not of sample Locations Within Note from 50 or 100 ft ^b Note from Sampleat e 1 0 1 e 0 0 1 n out (sufficient 6 1
art 6
0 0 m
<u>ග</u> ෆ
ი
-
ω
Q
~

Surface Sediment QAPP May 31, 2018 39

FINAL

Summary of screen to determine which areas to sample for sediment near outfalls ocation Outfall No. of Sample Note from Leidos Notes from Windw	of screen to determine which areas to sample for sediment near outfalls tfall Note from Leidos Notes from Windw	reen to determine which areas to sample for sediment near outfalls No. of Sample Note from Leidos Notes from Windw	which areas to sample for sediment near outfalls No. of Sample Notes from Window	Sample for sediment near outfalls Note from Leidos Notes from Windw	hent near outfalls Notes from Windw	vard:		Proposed
approx. Diameter Preliminary Locations Within Documents on San RM) (in.) Assessment 50 or 100 ft ^b Sampleability	neter Preliminary Locations Within Documents on San n.) Assessment 50 or 100 ft ^b Sampleability	Preliminary Locations Within Documents on San Assessment 50 or 100 ft ^b Sampleability	Locations Within Documents on San 50 or 100 ft ^b Sampleability	Note iron Leidos Documents on San Sampleability	San	notes from windward. npleability Recon and Data Assessment	Additional Notes	Proposed No. of Samples
0 E unknown screen out (sufficient 1 arm screen out (sufficient sam	own screen out (sufficient 1 aam data)	screen out (sufficient 1 sam data) 1 sam	1 1 sam	1 sam samp	1 san samp	nple within 50 ft and 5 les within 110 ft		0
0 W ha sample 0 locate	sample 0 sample locate	sample 0 0 sample locate	0 outfall being	outfall ditch; sampl locate	outfall ditch; sampl locate	I reportedly located in a will attempt to collect 1 le in the ditch if ditch can be		, -
2 W 18 screen out (sufficient 0 3 sam	screen out (sufficient 0 3 sam data)	screen out (sufficient 0 3 sam data)	0 3 sam	3 sam	3 san	nples within 80 ft		0
4 W 24 sampleable due to did not sample during Phase I because of could obstructions (dock becau extending over and structu	screen out (not sampleable due to dock) 21 did not sample during Phase I because of obstructions (dock becau beyond outfall) structi	screen out (not sampleable due to dock) 1 did not sample during Phase I because of obstructions (dock becau beyond outfall) struct	did not sample duringPhase I because ofobstructions (dockextending over andbeyond outfall)	did not sample during Phase I because of obstructions (dock becau extending over and struct beyond outfall)	could becau structu	not see outfall during recon se of the large over-water ure and barges		0
5 W na sample if accessible 0 Phase I because covere unavailable immediate covere covere unavailable limited	sample if accessible 0 property access was covere unavailable limited	sample if accessible 0 property access was shoreli limited	0 property access was covere unavailable limited	did not sample during outfall difficult Phase I because riprap i shoreli property access was covere unavailable limited	outfall difficult riprap shoreli covere limited	is a creek; access may be t by land, and there is in and near the creek; ne area north of creek d by a wooden pier; access		-
5 W unknown screen out (sufficient 2 addition 2 sam	own screen out (sufficient 2 2 addition 2 same	screen out (sufficient 2 2 addata)	2 2 addition	2 sam additic	2 sam additic	ples within 50 ft and 2 anal samples within 100 ft		0

Surface Sediment QAPP May 31, 2018 40

FINAL

Proposed No. of Samples	-	0	0	0
Additional Notes	Per the City of Seattle, SoundEarth (2011) refers to a pipe outlet that was observed near the ravine on the northern portion of the T-107 park property during a site reconnaissance; no flow was observed, and the location of the pipe inlet is unknown. In addition, a stormwater pipe with input from a catch basin located near the public parking lot transmits water to a grass swale. Area is largely undeveloped. There are no known historical sources.			
Notes from Windward: Sampleability Recon and Data Assessment	area is shallow, contains riprap, and is in potential Clamming Subarea 2; will try to collect a sample during Sampling Event 2	2 within 100 ft and 3 within 125 ft; approximately co-located with Outfall 2137	outfall is located adjacent to Outfall 5005	1 sample within 50 ft and an additional 4 samples located within 130 ft; almost co-located with Outfall AMI-DP3
Note from Leidos Documents on Sampleability			did not sample during Phase I because location overlaps with Outfall 5005 (only planned for adjacent sample)	
No. of Sample Locations Within 50 or 100 ft ^b	o	5	0	
Preliminary Assessment	ample	screen out (sufficient data)	screen out (sufficient data)	screen out (sufficient data)
Outfall Diameter (in.)	nwonknu	48	24	unknown
Location (approx. RM)	0.6 V	1.2 W	1.2 W	1.3 W
Outfall ^a	T107 Park	5005	2137	AML-DP2

Surface Sediment QAPP May 31, 2018 41

FINAL

1								
	Proposed No. of Samples	0	0	0	0	0		1-2 as possible
	Additional Notes						Per the City of Seattle, these outfalls are believed to be bridge drains. The outfalls,	both of them small, are located in the channel downstream of a large wetland by SR99. There is likely scour in this channel.
	Notes from Windward: Sampleability Recon and Data Assessment	5 samples located within 135 ft; almost co-located with Outfall AML-DP2	1 sample within 50-ft buffer; outfall located at edge of over- water structure; likely riprap/rocky substrate in vicinity based on Leidos notes	1 sample within 50 ft and 4 additional samples within 115 ft; located within 45 ft of Outfall 2124	1 sample within 50 ft and 4 additional samples within 115 ft; located within 45 ft of Outfall 2123	1 sample within 50 ft and 5 additional samples within 135 ft	outfall is under the 1 st Ave. Bridge and is in potential Clamming Subarea 7; will collect a sample during Sampling Event 2	outfall is under the 1 st Ave. Bridge and is in potential Clamming Subarea 7; will collect a sample during Sampling Event 2
	Note from Leidos Documents on Sampleability		did not sample during Phase I because of obstructions (bulkhead) and riprap/rocky substrate			did not sample during Phase I because of lack of DGPS while collecting on foot		
	No. of Sample Locations Within 50 or 100 ft ^b	0	-	-	-	-	0	o
	Preliminary Assessment	screen out (sufficient data)	screen out (sufficient data, over-water structure, and riprap/rocky substrate)	screen out (sufficient data)	screen out (sufficient data)	screen out (sufficient data)	sample	sample
	Outfall Diameter (in.)	unknown	20	12	18	12	ω	œ
	Location (approx. RM)	1.3 W	1.8 W	1.9 W	1.9 W	2.0 W	2.1 W	2.1 W
	Outfall ^a	AML-DP3	2220	2123	2124	2505	2507	2510

Surface Sediment QAPP May 31, 2018 42

FINAL

	Proposed No. of Samples	-	O	1 (if possible)
	Additional Notes	Per the City of Seattle, this outfall is believed to be a bridge drain, but it appears to be at the same location as Outfall 2121. It is not clear whether this is a separate outfall. This location needs to be verified. There are 3 outfalls in this area.		
	Notes from Windward: Sampleability Recon and Data Assessment	outfall is under the 1 st Ave. Bridge and is in potential Clamming Subarea 7; will collect a sample during Sampling Event 2	1 sample within 50-ft buffer; Outfall 2116 appears to drain the same property and operations as Outfalls Boyer-1, Boyer-2, and 2115, for which there are 10 additional samples within 115 ft	could not see outfall during recon because of boats and barges in front of outfall
-	Note from Leidos Documents on Sampleability		did not sample during Phase I because of riprap/rocky substrate (but noted that sampling may be possible by foot during low tide)	did not sample during Phase I because of obstructions (barges continuously docked in front of outfall)
	No. of Sample Locations Within 50 or 100 ft ^b	O	-	0
	Preliminary Assessment	sample	screen out (sufficient data at similar outfalls)	sample if accessible
•	Outfall Diameter (in.)	12	Q	Q
	Location (approx. RM)	2.1 W	2.3 W	2.4 W
	Outfall ^a	2509	2116	2114

Surface Sediment QAPP May 31, 2018 43

FINAL

	Proposed No. of Samples	1 (if possible)	0	0
	Additional Notes	Per the City of Seattle, surface discharge is at the end of 5 th Avenue South. According to the United Iron Works SWPPP, surface runoff from this and several other facilities discharges to the LDW at this location. Neighbors occasionally cut an opening through the bank at this location the bank at this location the bank at this location that backs up on 5 th Avenue South/South Fontanelle Street. This is an area where the river overtops the bank during king tides.		
	Notes from Windward: Sampleability Recon and Data Assessment	1 sample within 50-ft buffer zone but was only analyzed for grain size and PCBs; access could be an issue; outfall is located in potential Clamming Subarea 9; to collect a sample during Sampling Event 2	5 samples within 120 ft and uncertainty related to over-water structures	1 sample located within 55 ft; adjacent to Outfall 2109
	Note from Leidos Documents on Sampleability		did not sample during Phase I because of obstructions (dock and catwalk on either side)	did not sample during Phase I because of obstructions (outfall located behind dock, crane, and catwalk)
	No. of Sample Locations Within 50 or 100 ft ^b	-	0	0
	Preliminary Assessment	sample	screen out (sufficient data and potential obstructions)	screen out (sufficient data)
1	Outfall Diameter (in.)	nwonknu	Q	15
	Location (approx. RM)	2.5 X	2.6 W	2.9 W
	Outfall ^a	5th Ave S	2113 (S Webster St SD)	2110

Surface Sediment QAPP May 31, 2018 44

FINAL

Proposed No. of Samples	8	~	0	~	N	
Additional Notes	Per the City of Seattle, outfall is near the end of South Chicago Street. Independent Metals currently operates on this parcel. There are multiple outfalls and sources along the shoreline opposite the former Independent Metals Plant 2 site. Stormwater from the on-site treatment system (Metals Rx) was discharged via Outfall L2106, but the entire shoreline was stacked with materials.	Per King County, the County built a bioretention system to treat runoff from South Park Bridge.				
Notes from Windward: Sampleability Recon and Data Assessment	appears sampleable now (no barges in front of outfall during recon); sample will be collected in vicinity of Outfall 2109 and Outfall 2110	numerous existing samples nearby; outfall is located in potential Clamming Subarea 13; will collect a sample during Sampling Event 2	South Park Marina is a cleanup site	numerous existing samples nearby		existing sample nearby
Note from Leidos Documents on Sampleability	did not sample during Phase I because of obstructions (barges continuously docked in front of outfall)					
No. of Sample Locations Within 50 or 100 ft ^b	Ο	o	0	0	o	0
Preliminary Assessment	sample if accessible	sample	screen out (cleanup site)	sample	sample	sample
Outfall Diameter (in.)	2	12	unknown	18	72	unknown
Location (approx. RM)	2.9 X	3.4 W	3.4 W	4.0 W	4.2 W	4.2 W
Outfall ^a	2109	2215 (16 Ave S Bridge [west])	South Park Marina	2101	2100A (North Fork Hamm Creek)	Delta Marine

Surface Sediment QAPP May 31, 2018 45

oposed Vo. of Imples					
Pr I al Notes St	0	~	0	0	
Addition					
Notes from Windward: Sampleability Recon and Data Assessment	1 sample within 50 ft analyzed for TOC, grain size, and PCBs only; outfall is a creek; source tracing data indicate source control sufficiency (Leidos 2015; King County [in prep]).	existing sample nearby; outfall in potential Clamming Subarea 15; will collect a sample during Sampling Event 2	1 sample within 100-ft buffer zone and 3 additional samples within 130 ft	outfall is a ditch with 3 existing samples; existing data do not show exceedances except for 1 PCB exceedance that could not be replicated	outfall is a ditch which will be
Note from Leidos Documents on Sampleability			did not sample during Phase I because property access was unavailable (property owned by Muckleshoot Tribe)		
No. of Sample Locations Within 50 or 100 ft ^b	-	0	-	0	
Preliminary Assessment	screen out (sufficient data)	sample	screen out (sufficient data)	screen out (sufficient data)	
Outfall Diameter (in.)	р	ω	36	ра	
Location (approx. RM)	4.3 W	4.4 W	4.6 W	4.7 W	
Outfall ^a	2205 (South Fork Hamm Creek)	DuwSD#3	2201	Ditch #1	

Note: Leidos documents include Phase 1 data report (including field forms) and Phase 2 scoping document.

Source: Leidos (2014b) g

This column lists the numbers of sample locations within 50 ft (outfall diameter ≤ 24 in.) or 100 ft (outfall diameter > 24 in.) from all RI/FS and Task 2 data. SD – storm drain p

RI/FS – remedial investigation/feasibility study PCB – polychlorinated biphenyl RAL – remedial action level RM – river mile Ecology – Washington State Department of Ecology DGPS – differential global positioning system LDWG – Lower Duwamish Waterway Group LDW – Lower Duwamish Waterway City – City of Seattle

SWPPP – stormwater pollution prevention plan

SoundEarth – SoundEarth Strategies, Inc.

Windward – Windward Environmental LLC

T-107 - Terminal 107

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 FINAL

46

Sampleability of sediment near the remaining 34 outfalls was assessed based on information provided by Leidos (2014a) and SAIC (2011) and a limited-scope field reconnaissance performed by boat on September 1 and September 25, 2017 (see Appendix E for field notes). Sediment near 2 of these 34 outfalls (Outfalls 2004 and 2157) was determined to not be sampleable based on their locations (under large docks). Sediment near 9 of these 34 outfalls was determined not likely to be sampleable because of riprap/rocky substrate (Leidos 2014a), although sediment near 1 of these outfalls may be sampleable by foot at a lower tide (SAIC 2011). Sediment at the SCS Refd Services outfall was determined not to be sampleable due to both overwater structures and riprap. Therefore, sediment near 11 of the 34 remaining outfalls is not considered sampleable. The area near a South Park Marina outfall was eliminated because it is adjacent to a cleanup site.

The remaining 22 outfalls are targeted for sampling (Map 4-5). Either one or two samples will be collected from the vicinity (50 or 100 ft, depending on outfall diameter) of each outfall. The number of samples specified per outfall is dependent on the number of existing surface sediment locations within, or close to, the 50- or 100-ft radius. Based on these criteria, a total of 24 surface sediment samples are targeted (Table 4-3). This sampling design will not generally result in adjacent, upstream, and downstream samples within the 50- or 100-ft radius at each outfall (the original Ecology goal). However, because sampling near these outfalls is difficult (as noted based on earlier sampling attempts²⁵), Ecology has deemed this design sufficient to fill remaining data gaps. Section 4.2.2.2 provides information on field contingencies.

Per the Work Plan (Windward and Integral 2017b), all near-outfall sediment samples will be analyzed for the analytes listed in ROD Table 20. Dioxins/furans will also be analyzed in samples collected near Outfalls 2226, T107 Park, 2507, Seattle Dist Ctr, 5th Ave South, CleanScapes B, and 2100A, based on existing surface sediment data (Map 4-6). Archives will be kept of all near-outfall samples. Archived samples will be analyzed for dioxins/furans, unless existing information indicates or suggests dioxins/furans data are not needed at a given location.²⁶ Data considered in these decisions will include all existing data and surface sediment data collected pursuant to this QAPP. EPA and Ecology will be consulted prior to finalizing which additional near-outfall sediment samples will be analyzed for dioxins/furans.

²⁵ Ecology has previously attempted to collect three samples near each outfall: adjacent to, upstream, and downstream of the direction of flow from the outfall (Leidos 2014a).

²⁶ Pursuant to Ecology's source control strategy, use of the remedial action level (RAL) is sufficient for source control for constituents without SMS (e.g., dioxins/furans) (Ecology 2016).

4.1.2.2 Bank soil sampling

Uncharacterized exposed bank areas between +4 and +12 ft MLLW²⁷ will also be sampled to assist Ecology in source control.

In 2016, Leidos produced maps for Ecology delineating exposed bank areas on the LDW that had not been characterized (LDWG 2016). This delineation was based on areas identified as exposed bank in the LDW FS (AECOM 2012), and on bank locations sampled in 2011 by Hart Crowser for Ecology (Hart Crowser 2012). Based on its assessment, Leidos identified 10 exposed banks that had not been characterized (LDWG 2016) (Map 4-7).

Uncharacterized exposed bank areas from the Leidos list were further screened relative to the criteria outlined in Figure 4-2. In addition, the location of the bank area relative to that of preliminary dredge/cap areas (as identified in ROD Figure 18 (EPA 2014b)) was considered in this assessment, although none of the banks were excluded based on this consideration.

²⁷ This elevation is approximately equal to MHHW. NOAA reports MHHW at the Seattle station (Elliott Bay) as +11.36 ft MLLW (NOAA 2013).

Figure 4-2. Selection criteria for sampling banks

Three of the 10 areas (RM 0.1 W, RM 4.2 to RM 4.3 W, and RM 4.8 to RM 5.0 E) were determined to be sufficiently characterized based on the existing bank and sediment sampling data (see Table 4-4 and Map 4-7). The seven remaining uncharacterized areas were then assessed in a field reconnaissance survey conducted by boat on August 31 and September 1, 2017, to determine whether the locations could be sampled.

FINAL

Substrate conditions, the presence and condition of over-water structures (which can create unsafe sampling conditions), and the presence of armoring were observed to the extent possible (Appendix E). One of the seven areas (RM 4.7 E) was observed to have a steep slope with dense vegetation and riprap; this area was not considered sampleable. Of the other six areas, one area was subsequently determined to not need sampling based on input from Ecology. One additional bank area not assessed in the field reconnaissance survey was added in order to support Ecology's source control efforts. These areas will be targeted for bank soil sampling (see Table 4-4 and Map 4-8).

"Not Characterized" Exposed Bank Area ^a (RM)	Cleanup site under or expected to be under an Agreed Order?	Are there sufficient existing data for the bank area and nearby sediment?	What data exist?	Is the bank sampleable?	Sample?	Rationale for Exclusion
0.1 W	ОИ	yes (sediment within narrow slough)	3 nearby sediment samples analyzed for COCs; no RAL exceedances	na ^b	по	sufficient nearby sediment data in narrow slough
0.5–0.6 W ^c	Ю	ОЦ	no data	na ^b	yes	
0.6–0.7 E	no	ОЦ	no data	yes	ои	coordination with Ecology
0.9–1.0 W	no	ОЦ	no data	yes	yes	1
2.0–2.2 W	no	no	no data	yes	yes	1
2.5–2.7 W	no	no	no data	yes	yes	1
3.0–3.1 W	no	ОЦ	no data	yes	yes	1
4.2–4.3 W	QL	yes (sediment/bank)	1 nearby bank/sediment sample analyzed for COCs; no RAL exceedances	yes	Q	sufficient nearby sediment/bank data
4.6–5.0 W	ou	ОЦ	no data	yes	yes	
4.7 E	DO	ОЦ	no data	ои	ои	not sampleable
4.8–5.0 E	e	yes (sediment/bank)	9 nearby sediment sample locations, 4 of which were analyzed for PCBs only. There have been 8 exceedances for total PCBs and 1 exceedance for 1,4-dichlorobenzene	nab	Q	sufficient nearby sediment/bank data
¹ Based on Leidos's m	nans for Ecology					

Table 4-4. Evaluation of exposed bank areas

Based on Leidos's maps for Ecology.

Banks were not surveyed in the reconnaissance survey. ٩

Bank area designated "characterized" on Leidos's maps for Ecology and added to analysis based on input from Ecology. COC – contaminant of concern υ

Ecology – Washington State Department of Ecology

na – not available PCB – polychlorinated biphenyl

RAL - remedial action level RM - river mile

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 51

A total of 11 discrete samples (0–10 cm) will be collected from the 6 banks, per Ecology direction (Table 4-5). Each bank will have at least one discrete sample (Table 4-5). Specific locations may be sampled at more than one elevation based on field and tidal conditions, substrate material, bank slope, and exposed bank area. The number of elevations sampled will be determined during the field effort based on these considerations and past examples (Hart Crowser 2012), with potential oversight from Ecology.

Bank	Exposed Bank Area (approximate RM)	Proposed Number of Discrete Samples
1	0.5 – 0.6 W	1
2	0.9 – 1.0 W	1
3	2.0 – 2.2 W	3
4	2.5 – 2.7 W	3
5	3.0 – 3.1 W	1
6	4.6 – 5.0 W	2
Total	-	11 ^a

Table 4	-5 Number	of pro	nosed d	liscrete	samples	ner	hank
	-J. Number		poseu u		Samples	hei	Jaiin

^a Additional samples may be collected if it is determined during the field effort that additional elevations are needed.

RM – river mile

Furthermore, an additional discrete sample will be collected at any location in the bank areas that appears to represent a unique potential source (i.e., area with discoloration or visible seepage of material).

Per the Work Plan (Windward and Integral 2017b), all bank sediment samples will be analyzed for the analytes listed in ROD Table 20. Dioxins/furans will also be analyzed in the sample(s) collected at Bank Area 2, based on existing surface sediment data (Map 4-6). Archives will be kept of all bank samples. Archived samples will be analyzed for dioxins/furans unless existing information indicates or suggests dioxins/furans data are not needed at a given location.²⁸ Data considered in these decisions will include all existing data and surface sediment data collected pursuant to this QAPP. EPA and Ecology will be consulted prior to finalizing which additional bank samples will be analyzed for dioxins/furans.

4.1.3 Intertidal surface sediment samples (0-45 cm)

This section presents the sampling design for the intertidal 0–45-cm surface sediment samples that will be collected to evaluate DQOs 7 through 10 (Table 2-2). The design to

²⁸ Pursuant to Ecology's source control strategy, use of the RAL is sufficient for source control for constituents without SMS (e.g., dioxins/furans) (Ecology 2016).

measure conditions in the LDW-wide potential clamming areas and each of the eight beach play areas is spatially balanced and is based on composite samples. An overview is presented in Table 4-6, and details about sample sizes and how the sampling locations were selected for each DQO are presented in the subsections that follow.

	Approach						
Design Component	DQOs 7 and 8 – Potential Clamming Area 95UCL and Mean	DQO 9 and 10 – Beach Play Area 95UCLs and Means					
Sample type	composite samples	composite samples					
Number of composite samples	3 site-wide composite samples (each consisting of sediment from up to 72 locations)	3 composite samples for each of the 8 beaches for a total of 24 composite samples (each consisting of sediment from 3 to 9 locations depending on the size of the beach)					
Sampling locations	up to 216 intertidal locations site wide (i.e., up to 72 locations per composite); if the total sampleable area ^a is smaller than anticipated, fewer samples will be collected	9 to 27 locations per beach (129 locations in total); if the sampleable area at a given beach is smaller than anticipated, sampling locations will be adjusted (i.e., the total number of samples will not change).					

Table 4-6.	Overview of intertidal 0–45-cm surface sediment sampling approach
------------	---

^a Areas that are not sampleable include those that are too unconsolidated to safely sample or areas that are below the water line when sampling under the targeted low tide conditions outlined in Section 2.2.
 95UCL – 95% upper confidence limit for the mean

DQO - data quality objective

4.1.3.1 Potential clamming area composites

The potential clamming area identified in ROD Figure 6 (EPA 2014b)²⁹ will be characterized with three site-wide composite samples, each containing sediment from up to 72 locations distributed throughout the potential clamming area. Thus, a maximum of 216 locations will be sampled along the transects shown on Map 4-9. If the total sampleable area is smaller than anticipated, fewer samples will be collected. One-third of the total number of samples will be included in each of the three composite samples.

The total number of locations (≤ 216) was determined based on the requirements that every potential clamming subarea be sampled, and that the number of sampling locations within each subarea be approximately proportional to its area. In practice, a minimum of three sampling locations were placed in the smallest potential clamming subarea, and a proportionally larger number of sampling locations was placed in each of the larger potential clamming subareas. Thus, if the sampleable area is smaller than anticipated, fewer samples will be collected (i.e., the same general number of samples per accessible area will be maintained).

²⁹ ROD Figure 6 is titled *LDW* areas with parks and habitat restoration, beach play activities, and potential *clamming*.

To determine actual sampling locations, a transect approach will be used. Transects were developed for each potential clamming subarea and points were set at equal distance along the transect lines (Map 4-9). Actual sampling locations will be determined in the field using a random-number table to determine varying distances from each point on the transect line. This approach is described in more detail in Section 4.2.2.3.

Overall, the areas represented by each sampling location range from 0.28 to 0.54 acres across the 16 potential clamming subareas, with an average of one sample per 0.45 acre (Table 4-7 and Map 4-9). The resulting data will represent an approximately spatially balanced dataset with which to assess baseline conditions in the potential clamming area throughout the LDW. In future monitoring, the sampling locations in the potential clamming subareas will be re-randomized to allow unbiased inference about potential site-wide clamming conditions at each point in time.

Potential Clamming Subarea	Subarea Size (ac)	Maximum No. of Sampling Locations	Area per Sampling Location (ac)
1	2.3	6 (up to 2 per composite)	0.38
2	29	57 (up to 19 per composite)	0.51
3	4.8	9 (up to 3 per composite)	0.53
4	2.4	6 (up to 2 per composite)	0.40
5	1.8	6 (up to 2 per composite)	0.30
6	1.5	3 (up to 1 per composite)	0.50
7	2.8	6 (up to 2 per composite)	0.47
8	2.4	6 (up to 2 per composite)	0.40
9	2	6 (up to 2 per composite)	0.33
10	2.8	6 (up to 2 per composite)	0.47
11	0.85	3 (up to 1 per composite)	0.28
12	21	39 (up to 13 per composite)	0.54
13	5.3	12 (up to 4 per composite)	0.44
14	4.3	9 (up to 3 per composite)	0.48
15	16	30 (up to 10 per composite)	0.53
16	6.2	12 (up to 4 per composite)	0.52
Total	105	216 (up to 72 per composite)	na

 Table 4-7. Number of sampling locations per potential clamming subarea

na – not applicable

Samples from each potential clamming subarea will be assigned to one of three site-wide composite samples, each consisting of sediment from as many as 72 locations. Samples will be assigned to achieve spatial balance. Within each potential clamming subarea, the first location along a transect will be randomly assigned to one of the three composites, and the second location will be randomly assigned to one of the remaining two composites. Thereafter, the locations will follow the same systematic pattern, achieving a similar spatial distribution within each composite. The samples to be included in each composite sample will be documented in a compositing memorandum submitted for EPA approval.

The composite concentrations represent the average concentrations in the LDW-wide potential clamming area and the three composites will provide independent estimates of the LDW-wide potential clamming area average. Based on the assumption of normality, the 95UCL will be derived with the standard equation for a normally distributed population,³⁰ and the potential clamming area-wide mean concentration will be the arithmetic average of the three site-wide composite sample concentrations.

4.1.3.2 Beach play area composites

Each of the eight beach play areas identified in the ROD will be characterized using three composite samples. Sampling locations were randomly distributed throughout each of the eight beach play areas. The number of samples in each beach play area was determined based on the size of the beach play area.

The number of sampling locations contributing sediment to each beach play area composite ranges from three to nine per beach (i.e., 9 to 27 total locations per beach), with the locations spatially balanced within each beach (Map 4-10). The smallest beaches were assigned nine locations (i.e., 3 locations per composite); larger beaches were assigned a number of sampling locations approximately proportional to the physical size of each beach play area (Table 4-8). The sampling locations within each beach play area will be randomly located using a transect approach (as described above for clamming and in more detail in Section 4.2.2.3) to avoid clustering and obtain sufficient spatial separation among samples within each beach.

Beach Play Area	Area Size (ac)	No. Sampling Locations	Area per Sampling Location (ac)
1	1.5	9 (3 per composite)	0.17
2	2.9	9 (3 per composite)	0.32
3	5	15 (5 per composite)	0.33
4	5	15 (5 per composite)	0.33
5	11.4	27 (9 per composite)	0.42
6	1	9 (3 per composite)	0.11
7	6.1	18 (6 per composite)	0.34

 Table 4-8. Number of sampling locations per beach play area

³⁰ Because each analytical sample will represent the potential clamming area-wide mean based on a large number of field samples (up to n = 71) per composite, the Central Limit Theorem (CLT) will be invoked and normality assumed.

Beach Play Area	Area Size (ac)	No. Sampling Locations	Area per Sampling Location (ac)
8	11.1	27 (9 per composite)	0.41
Total	44	129 (3 to 9 per composite)	na
		(e te e pei composite)	

na – not applicable

For each beach play area, an equal number of samples will be included in the three beach-specific composite samples. The assignment of samples to each composite will be documented in a compositing memorandum submitted for EPA approval. In this way, each composite sample will represent an average for the beach-wide mean, and the three composites will be replicates of the beach-wide mean, capturing small-scale spatial variability as well as sampling and analytical error. The 95UCL for the baseline composite samples from each beach will be calculated using Chebyshev's inequality.³¹ Each beach-wide mean will be the arithmetic average of the three beach-wide composites.

4.2 SAMPLING METHODS

Field sampling and sample identification will be performed according to the protocols described in this section. Contingencies may arise during field activities that will require modification of the general procedures outlined below. Such modifications will be at the discretion of the FC after consultation with the Windward TM and PM, the boat captain, and the EPA representative in the field, if applicable. LDWG and EPA will be consulted if significant deviations from the sampling design are required. All modifications will be recorded in the protocol modification form (Appendix B).

4.2.1 Sample identification

Unique alphanumeric ID numbers will be assigned to each sample and recorded on the surface sediment collection form (Appendix B).

The sample IDs for individual surface sediment samples and bank samples will include the following:

- Project area ID and two-digit year
- Sample type:
 - 0-10-cm samples will be SS (or SSOT for outfall samples)
 - 0–45-cm samples will be IT45
 - Bank soil samples will be BNK

³¹ The shape of the distribution cannot be properly evaluated with only three samples, so a non-parametric Chebyshev interval will be used.

• Location number (for the 0-10 cm samples, outfall samples, and bank soil samples) or location ID (for the 0-45-cm samples)

For example, a surface sediment sample from location 27 would be labelled LDW18-SS-027.

The location IDs for the 0-45 cm intertidal samples will be identified using the area number (e.g., CL for clamming areas and BP for beach play areas), transect identifier (e.g., A, B, C, etc.), and consecutive numbers for points along the transect line. For example, the third sample collected along transect A in clamming area 2 would be identified as LDW18-IT45-CL2-A3. Similarly, the first sample collected along transect C in beach play area 6 would be LDW18-IT45-BP6-C1.

In addition, individual samples will be combined to form composite samples, which will require composite IDs that will include the following:

- Project area ID and two-digit year
- Sample type:
 - 0-10-cm composites will be SS.
 - 0-45-cm samples will be IT45-CL for potential clamming area composites and IT45-B for beach composites.
- Composite number

For example, the surface sediment composite that contains sediment from sample Locations 1, 2, 3, 4, 6, 7, and 8 would be labelled LDW18-SS-Comp01. The three potential clamming area composites samples would be LDW18-IT45-CL-Comp1, LDW18-IT45-CL-Comp2 and LDW18-IT45-CL-Comp3. The three composite samples for Beach Area 3 will be LDW18-IT45-B3-Comp1, LDW18-IT45-B3-Comp2 and LDW18-IT45-B3-Comp3.

For the porewater samples, the sample ID will include the following:

- Project area ID and two-digit year
- PWPS (porewater passive sampler results)
- Surface sediment location ID

For example, the passive sampler associated with surface sediment Location 18 would be labelled LDW18-PWPS-SS018. The porewater concentrations calculated from the passive sampler results would be LDW18-PW-SS018.

All relevant information for each sample – including sample ID, sample date, sample time, and sample depth and location – will be recorded on the surface sediment collection form (Appendix B) and included as an appendix in the data report.

4.2.2 Surface sediment sampling methods

Surface sediment samples will be collected by boat or by land, and bank samples will be collected by land, as described in this section. For samples that will be collected by land, access agreements will be needed with property owners that are not LDWG parties and all parties (including tenants of LDWG parties) will be notified well in advance of sampling to coordinate access. The access agreement process will commence soon after the draft QAPP is submitted to EPA. In the event that LDWG and EPA cannot obtain access, alternative locations will be determined in consultation with EPA.

4.2.2.1 0–10-cm samples

Surface sediment grab sample collection and processing will follow standardized procedures for the Puget Sound area that have been developed by the Puget Sound Estuary Program (PSEP) (1997). Surface sediments will be collected from each location shown in Table 4-9³² and on Map 4-1 using a pneumatic grab sampler from a sampling vessel, if feasible. In the event that a sample cannot be obtained at the target coordinates due to an obstruction or because the location is too shallow to sample by boat, the field crew will move the sample location – as little as possible and to an area that is as similar as possible in depth and character to the intended sampling location – to avoid the obstruction or enable sampling by boat. If the sample location needs to be moved more than 10 m (32 ft), EPA and LDWG will be consulted. To minimize the need to move the sample location, the field crew will notify property owners with barges ahead of the sampling event and will sample shallow areas during the highest tides during the field event.

Location ID	x	Y	Longitude	Latitude	River Mile	Estimated Depth Above or Below MLLW (ft)
1	1265898	211122	-122.350534	47.568659	0.0	-31
2	1266308	211198	-122.348881	47.56889	0.0	-16
3	1266484	211200	-122.348169	47.568907	0.1	na
4	1266936	211157	-122.346335	47.568812	0.1	-33
5	1266930	210796	-122.34633	47.567823	0.2	-34
6	1266734	210776	-122.347124	47.567756	0.2	-35
7	1266368	210935	-122.348618	47.568172	0.1	-39
8	1266096	211048	-122.349729	47.568469	0.1	-39
9	1266122	210482	-122.349577	47.566919	0.2	-16
10	1266461	210656	-122.348217	47.567413	0.2	-48

FINAL

Table 4-9. Surface sediment sampling location target coordinates for baseline 0–10-cm samples

³² See Table 4-2 for locations where samples will be split.

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 58
Location ID	x	Y	Longitude	Latitude	River Mile	Estimated Depth Above or Below MLLW (ft)
11	1266745	210519	-122.347058	47.567054	0.2	-40
12	1267024	210662	-122.34594	47.567459	0.2	na
13	1266875	210133	-122.346499	47.566001	0.3	-32
14	1266466	210010	-122.348145	47.565642	0.3	-41
15	1266201	210156	-122.349231	47.566029	0.2	-15
16	1266232	209905	-122.349086	47.565342	0.3	-11
17	1266644	209847	-122.347414	47.565205	0.3	-42
18	1266889	209622	-122.346404	47.564603	0.4	-15
19	1266319	209596	-122.348709	47.564501	0.3	-34
20	1266847	209464	-122.34656	47.564167	0.4	-26
21	1266550	209331	-122.347753	47.563786	0.4	-39
22	1266747	209089	-122.346936	47.563133	0.5	-35
23	1266363	208911	-122.348474	47.562624	0.5	na
24	1266579	208918	-122.347602	47.562654	0.5	-30
25	1267134	208764	-122.345343	47.562263	0.5	-19
26	1267024	208491	-122.345764	47.561509	0.6	-29
27	1266802	208602	-122.346675	47.561801	0.5	-34
28	1266329	208526	-122.348584	47.561567	0.5	-29
29	1266042	208466	-122.349739	47.561387	0.5	-14
30	1266002	208294	-122.349889	47.560915	0.6	-3
31	1266264	208148	-122.348815	47.560529	0.6	-7
32	1266644	208081	-122.347272	47.560366	0.6	-9
33	1267052	208140	-122.345624	47.560549	0.6	-36
34	1267214	208118	-122.344965	47.560498	0.7	-16
35	1267256	207737	-122.344764	47.559456	0.7	-30
36	1266974	207912	-122.345923	47.559921	0.7	-25
37	1266553	207785	-122.347617	47.559549	0.7	na
38	1266280	207918	-122.348734	47.559899	0.6	2
39	1266162	207665	-122.349189	47.5592	0.7	-2
40	1266004	207450	-122.349814	47.558601	0.7	-1
41	1266368	207458	-122.348338	47.558642	0.7	na
42	1266895	207571	-122.346214	47.558982	0.7	-13
43	1267121	207330	-122.345282	47.558332	0.8	-19

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 59

Location ID	x	Y	Longitude	Latitude	River Mile	Estimated Depth Above or Below MLLW (ft)
44	1267607	207351	-122.343312	47.558415	0.8	3
45	1266041	207151	-122.349639	47.557782	0.8	-1
46	1266091	206997	-122.349426	47.557363	0.8	-1
47	1266488	206523	-122.347779	47.556085	0.9	0
48	1266751	206205	-122.346691	47.555229	1.0	-7
49	1267016	206290	-122.345624	47.555476	1.0	-30
50	1267297	206453	-122.344499	47.555939	1.0	-27
51	1266912	207202	-122.346115	47.557969	0.8	-10
52	1267110	207107	-122.345306	47.557719	0.8	-15
53	1267406	207198	-122.344117	47.557985	0.8	-34
54	1267118	206844	-122.345254	47.556999	0.9	3
55	1267692	206785	-122.342924	47.556869	0.9	-33
56	1268139	206923	-122.341128	47.557272	0.9	na
57	1268401	206659	-122.340044	47.556562	1.0	-13
58	1268244	206523	-122.340667	47.556181	1.0	-25
59	1267487	206483	-122.34373	47.556029	1.0	-31
60	1267555	206299	-122.343442	47.555531	1.0	-31
61	1267893	206373	-122.342077	47.555752	1.0	-15
62	1267652	205843	-122.343012	47.554284	1.1	-30
63	1268115	205914	-122.341143	47.554505	1.1	-16
64	1267854	205272	-122.342151	47.55273	1.2	-29
65	1268082	205536	-122.341248	47.553467	1.2	-25
66	1267894	205058	-122.341971	47.552148	1.2	na
67	1268140	205193	-122.340985	47.55253	1.2	-34
68	1268073	204702	-122.341217	47.55118	1.3	-24
69	1268369	204547	-122.340005	47.550771	1.4	-29
70	1268565	204399	-122.339201	47.550375	1.4	-5
71	1268176	204196	-122.340761	47.549798	1.4	-20
72	1268034	203890	-122.341312	47.548952	1.5	na
73	1268462	203887	-122.339578	47.548966	1.5	-36
74	1268695	203965	-122.338641	47.549194	1.5	-3
75	1268489	203423	-122.339432	47.547695	1.6	-35
76	1268728	203668	-122.338481	47.54838	1.5	-12

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 60

Location ID	x	Y	Longitude	Latitude	River Mile	Estimated Depth Above or Below MLLW (ft)
77	1268579	203250	-122.339055	47.547226	1.6	-34
78	1268935	203260	-122.337613	47.547275	1.6	na
79	1268510	202888	-122.339303	47.546231	1.7	-12
80	1269029	202885	-122.337203	47.546251	1.7	-25
81	1269420	203071	-122.335634	47.546782	1.7	-17
82	1269240	202747	-122.336338	47.545885	1.7	-13
83	1269216	202424	-122.336411	47.544997	1.8	na
84	1268686	202557	-122.338563	47.545334	1.7	-30
85	1268959	202210	-122.337431	47.544397	1.8	-27
86	1269283	202016	-122.336106	47.543884	1.9	-16
87	1269122	201791	-122.33674	47.543256	1.9	-17
88	1269507	201780	-122.335181	47.543248	1.9	-10
89	1269417	201489	-122.335521	47.542446	2.0	-13
90	1269724	201445	-122.334274	47.54234	2.0	-25
91	1269631	200964	-122.334612	47.541018	2.1	na
92	1269926	201145	-122.333436	47.541529	2.1	-25
93	1270676	201561	-122.330431	47.54271	2.1	-12
94	1270278	201326	-122.332025	47.542044	2.1	-17
95	1270077	201196	-122.332826	47.541679	2.1	-18
96	1270025	200739	-122.333001	47.540421	2.2	-12
97	1270241	201060	-122.332153	47.541314	2.1	-18
98	1270417	200365	-122.331387	47.539418	2.3	-11
99	1270602	200609	-122.330656	47.540098	2.3	-12
100	1270766	200063	-122.329947	47.53861	2.4	-12
101	1270882	200164	-122.329487	47.538893	2.4	-21
102	1271153	200301	-122.328401	47.539282	2.4	-8
103	1270932	199850	-122.329259	47.538033	2.4	-18
104	1271465	199584	-122.32708	47.537334	2.5	-21
105	1271190	199632	-122.328198	47.537451	2.5	-16
106	1271771	199291	-122.32582	47.536546	2.6	-15
107	1271637	199143	-122.326349	47.536134	2.6	na
108	1271805	199040	-122.325663	47.535861	2.6	-17
109	1272075	198943	-122.324563	47.535608	2.7	-18

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 61

Location ID	x	Y	Longitude	Latitude	River Mile	Estimated Depth Above or Below MLLW (ft)
110	1272289	198524	-122.323664	47.534472	2.8	-12
111	1272408	198862	-122.323208	47.535406	2.7	-1
112	1272495	198268	-122.32281	47.533782	2.8	-3
113	1273377	198991	-122.319296	47.535809	2.9	-10
114	1273308	198798	-122.319561	47.535275	2.9	-8
115	1272764	198446	-122.321735	47.534283	2.8	-17
116	1272726	198037	-122.321857	47.53316	2.9	na
117	1273138	198092	-122.320193	47.533332	2.9	-1
118	1273061	197783	-122.320481	47.532483	3.0	-8
119	1273404	197864	-122.3191	47.532721	3.0	-1
120	1273339	197476	-122.319332	47.531656	3.0	-1
121	1273991	197425	-122.316688	47.53155	3.1	2
122	1273879	197159	-122.31712	47.530814	3.2	-18
123	1274130	197272	-122.316114	47.531138	3.2	2
124	1274272	196754	-122.315498	47.529725	3.3	-13
125	1274746	196687	-122.313577	47.529567	3.3	-4
126	1274626	196474	-122.314046	47.528976	3.3	-10
127	1275014	196340	-122.312464	47.528629	3.4	-14
128	1274828	196306	-122.313214	47.528526	3.4	-13
129	1275208	196106	-122.311663	47.527997	3.5	-18
130	1275003	196019	-122.312484	47.527748	3.5	na
131	1275656	195800	-122.309825	47.527184	3.6	-7
132	1275797	195631	-122.309242	47.526727	3.6	-8
133	1275631	195313	-122.309888	47.525847	3.7	-1
134	1276003	195042	-122.308362	47.525124	3.7	-3
135	1275839	194644	-122.308996	47.524025	3.8	-6
136	1276120	194452	-122.30784	47.523514	3.8	-8
137	1275935	194525	-122.308596	47.523704	3.8	-15
138	1276137	194052	-122.30774	47.522416	3.9	-15
139	1275959	193974	-122.308456	47.522194	3.9	-1
140	1276224	193542	-122.307351	47.521024	4.0	-14
141	1275992	193564	-122.308293	47.521072	4.0	-4
142	1276531	193336	-122.306093	47.520476	4.1	2

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 62

Location ID	x	Y	Longitude	Latitude	River Mile	Estimated Depth Above or Below MLLW (ft)
143	1276205	193099	-122.307391	47.519809	4.1	-9
144	1276443	193101	-122.306429	47.519826	4.1	-8
145	1276137	192780	-122.307642	47.51893	4.1	na
146	1277290	192883	-122.302987	47.519274	4.2	-13
147	1276875	192673	-122.304649	47.518676	4.2	-9
148	1276648	192704	-122.30557	47.518748	4.2	-7
149	1276475	192369	-122.306243	47.51782	4.2	-13
150	1276712	192337	-122.305281	47.517746	4.3	-3
151	1276553	192135	-122.30591	47.517184	4.3	-15
152	1276733	191901	-122.305166	47.516552	4.3	-6
153	1276605	191548	-122.305655	47.515578	4.4	-6
154	1276842	191610	-122.304701	47.51576	4.4	-2
155	1276697	191198	-122.305254	47.514625	4.5	-7
156	1276962	191212	-122.304186	47.514675	4.5	1
157	1276780	190739	-122.304885	47.513371	4.6	-7
158	1276923	190811	-122.304309	47.513575	4.5	-12
159	1276938	190529	-122.30423	47.512802	4.6	-12
160	1276639	190539	-122.30544	47.512814	4.6	2
161	1277142	190006	-122.303364	47.51138	4.7	na
162	1277501	190103	-122.301917	47.511665	4.7	na
163	1277409	190229	-122.302298	47.512004	4.7	0
164	1277374	190425	-122.302456	47.512541	4.7	-6
165	1277714	190378	-122.301075	47.512428	4.8	-7
166	1278097	190240	-122.299515	47.512072	4.8	na
167	1278334	190209	-122.298556	47.512	4.9	na
168	1278730	189879	-122.296929	47.511114	5.0	na
169	1266890	209821	-122.346414	47.565148	0.3	-23
170	1267205	208553	-122.345038	47.561689	0.6	-7
171	1266888	208414	-122.34631	47.561291	0.6	-35
172	1265998	208009	-122.349882	47.560133	0.6	0
173	1267053	207802	-122.345593	47.559622	0.7	-29
174	1266158	207265	-122.349175	47.558102	0.7	na
175	1267252	207364	-122.344753	47.558433	0.8	-33

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 63

Location ID	X	Y	Longitude	Latitude	River Mile	Estimated Depth Above or Below MLLW (ft)
176	1267698	206352	-122.342866	47.555683	1.0	-33
177	1267971	203884	-122.341565	47.548933	1.5	na
178	1268747	203540	-122.338396	47.548031	1.6	-26
179	1269985	201460	-122.33322	47.542396	2.1	-14
180	1270227	200361	-122.332154	47.539397	2.2	4
181	1270186	200341	-122.332318	47.53934	2.2	na
182	1270183	200299	-122.332327	47.539225	2.2	na
183	1271056	199592	-122.328738	47.537333	2.5	na
184	1273135	197679	-122.320173	47.5322	3.0	0
185	1276034	194947	-122.308228	47.524865	3.7	-2
186	1275959	193974	-122.308456	47.522194	3.9	-1
187	1276803	190894	-122.304803	47.513796	4.5	-10
188	1278792	189794	-122.296671	47.510885	5	na

ID - identification

MLLW – mean lower low water

na - bathymetry is not available to estimate the depth

Sediment from the 0- to 10-cm depth interval represent the biologically active zone; such sediment will allow a direct comparison with sediment collected during previous surface sediment studies in the LDW. Sediment grab samples that are predominately composed of gravel will be rejected.

The surface sediment samples will be collected using a pneumatic sampler as described in the following steps:

- 1) Using a global positioning system (GPS), maneuver the sampling vessel to the sampling location.
- 2) Open the decontaminated grab sampler jaws to the deployment position.
- 3) Guide the sampler overboard until it is clear of the vessel.
- 4) Using GPS, position the sampling vessel such that the GPS receiver (located on top of the sampling frame) is within 1 to 2 m of the target sampling location.

- 5) Lower the sampler through the water column to the bottom at a speed of approximately 0.3 m/s.
- 6) Record the GPS location of the boat when the sampler reaches the bottom.
- 7) Record the water depth and time.

- 8) Retrieve the sampler, raising it at a speed of approximately 0.3 m/s.
- 9) Guide the sampler aboard the vessel and place it on the work stand on the deck, taking care to avoid jostling that might disturb the integrity of the sample.

10) Examine the sample using the following sediment acceptance criteria:

- Sample contains sediment; samples that are predominately gravel will be rejected.
- Sediment is not extruding from the upper face of the sampler.
- Overlying water is present (indicating minimal leakage).
- Sediment surface is relatively flat (indicating minimal disturbance or winnowing).
- A penetration depth of at least 11 cm has been achieved.

If these sample acceptance criteria are not met, the sample will be rejected. If an acceptable grab sample cannot be obtained in three attempts, the sampling location will be moved as close as possible to the original target location and no further than 10 m (32 ft) away. If it is not possible to obtain a sample at this second location, EPA will be consulted to discuss repositioning the location.

After sample acceptance, the following observations will be noted in the field logbook:

- GPS location
- Depth as read by the boat's depth sounder and sample collection time
- Gross characteristics of the surficial sediment, including texture, color, biological structures, odor, and presence of debris or oily sheen
- Gross characteristics of the vertical profile (i.e., changes in sediment characteristics and redox layer, if visible)
- Maximum penetration depth (nearest 0.5 cm)
- Comments relative to sample quality

The sediment from the grab at each location will be transferred directly from the sampler into a pre-cleaned stainless steel bowl or cauldron, and stirred with a dedicated, clean, stainless steel spoon or spatula until texture and color homogeneity have been achieved (PSEP 1997). The required sediment volume for each sample will range from 24 oz. (if a location is sampled for baseline composite only) to 92 oz. (if a location is also sampled for RAO 3 and *ex situ* porewater investigation) (see Appendix C). Each sediment grab will collect approximately 135 oz. (4 L) of sediment.

Following homogenization, 3 8-oz. jars³³ will be filled at each of the 168 0–10-cm sample locations, with 1 jar for sediment to be used for the composite sample, 1 jar for archive, and 1 jar for the NOAA split sample.³⁴ Samples that will be analyzed as individual locations (DQOs 3, 4, and 5) will require additional jars, as specified in Appendix C (Table C-4). Composite samples will be prepared at ARI as described in Section 4.4.1.1. All jars will be stored in coolers on ice ($\leq 4 \pm 2^{\circ}$ C) and transported to the laboratory at the end of the sampling day. Excess sediment will be returned to the sampling location. For decontamination procedures between collection activities, see Section 4.3.4.

4.2.2.2 Source samples (bank and outfall)

Surface sediment samples (0–10 cm) will be collected near 22 outfalls based on the selection process discussed in Section 4.1.2.1. The sediment samples will be collected following the methods discussed in Section 4.2.2.1 for samples collected by boat. Outfall locations that are accessible by boat will be sampled during the surface sediment Sampling Event 1. Outfall locations that are best sampled from land at low tide will be hand collected³⁵ in conjunction with intertidal sediment collection during Sampling Event 2.

The target outfall sediment locations are provided in Table 4-10. If a target location based on the coordinates below is not sampleable because of obstructions, or if three sampling attempts fail, then an alternate location will be identified within the target sampling area of 50 ft (for outfalls with a diameter less than or equal to 24 in.) or 100 ft (for outfalls with diameters greater than 24 in.) of the outfall. If a sample cannot be obtained after three attempts have been made at the alternate location, then either the deepest sample collected will be retained (3 to 10 cm in depth) or LDWG and EPA will be notified that no sample could be obtained within the targeted sampling area for that outfall, and the field crew will proceed to the next sampling location. In the case of unsafe sampling conditions, including derelict overwater structures or boat traffic, the field coordinator may deem a sampling area unsafe. Sampling will stop, conditions will be recorded in the field notes, and the sampling effort will continue at the next outfall. In the case of boat traffic, the field crew will return to the outfall at another time or on another day during that sampling event to reassess accessibility and will conduct sampling if possible.

³³ DQOs 1 and 2 require 2 8-oz. jars. A 3rd 8-oz. jar will be filled for the NOAA split sample at each of the 168 0–10-cm locations, as sample volume allows.

³⁴ Through EPA, NOAA has requested split samples for baseline 0–10-cm surface sediment samples. NOAA will provide labelled jars and will be responsible for the handling and custody of these samples following sample collection.

³⁵ Each sample will be collected by hand from the 0- to-10-cm depth, transferred to a pre-cleaned stainless steel bowl or cauldron, and homogenized. Any large non-sediment items, such as rocks, shells, wood chips, or debris, will be removed prior to homogenization.

Outfall ID	Location (approximate RM)	Sample	x	Y	Longitude	Latitude
2003	0.7 E	1	1267411	207959	-122.344157	47.560072
FedCtrS	0.8 E	1	1267479	207635	-122.343854	47.559188
GlacierNW-CBP	1.7 E	1	1269290	203021	-122.336156	47.546639
GenBiodiesel	1.7 E	1	1269568	203122	-122.335038	47.54693
Seattle Dist Ctr	2.1 E	1	1270759	201529	-122.330094	47.542626
Dawn Foods	2.3 E	1	1270793	200470	-122.329871	47.539725
CleanScapes B	2.7 E	1	1272373	198901	-122.323354	47.535509
8134	0.0 W	1	1265847	211069	-122.350737	47.568512
2226	0.5 W	1	1266089	208734	-122.349571	47.562126
T107 Park	0.6 W	1	1265912	207963	-122.350225	47.560003
2507	2.1 W	1	1269590	200843	-122.334769	47.540685
2510	2.1 W	1	1269490	200552	-122.335154	47.539881
2509	2.1 W	1	1269768	200745	-122.334044	47.540426
2114	2.4 W	1	1271013	199638	-122.328916	47.537456
5th Ave S	2.5 W	1	1271195	199431	-122.328161	47.5369
2109	2.9 W	1	1272875	197873	-122.321241	47.532718
2109	2.9 W	2	1272872	197814	-122.321247	47.532558
2215	3.4 W	1	1274590	196290	-122.314177	47.528471
2101	4.0 W	1	1275923	193792	-122.308588	47.521694
2100A	4.2 W	1	1275957	192684	-122.308363	47.518659
2100A	4.2 W	2	1276056	192766	-122.30797	47.518887
Delta Marine	4.2 W	1	1276282	192344	-122.307023	47.517743
DuwSD#3	4.4 W	1	1276394	191558	-122.306511	47.515595
Ditch #2	4.9 W	1	1278276	189978	-122.298772	47.511361

Table 4-10. Target coordinates for near-outfall surface sediment samples

ID - identification

RM – river mile

Bank samples will be collected from the six bank areas identified in Section 4.1.2.2. Each bank sample will be a discrete sample collected from a depth of 0–10 cm. Photographs will be taken of each bank area and each individual bank sample location.

The bank samples will be collected at the locations identified in Table 4-11. These locations are strictly target locations. Before sampling, the field crew will survey the bank to determine which areas are sampleable. If the target locations are not sampleable, the field crew will move the sampling location to a nearby area within the same bank (and property to the extent possible).

Table 4-11. Target coordinates for bank samples

IDLocation IDXYLongitudeLatitudeXY1LDW18-BNK11265858208162-122.35046147.560545126589520792LDW18-BNK11265568206212-122.3514947.550545126679620613LDW18-BNK31269498200911-122.33543647.559847126959620053LDW18-BNK31269420200541-122.33543647.539847126959620053LDW18-BNK31269420200793-122.33543647.539847126959620053LDW18-BNK31269632200793-122.33543647.530649126977620094LDW18-BNK41271407199154-122.32728447.536152127172119884LDW18-BNK41271647198950-122.32629547.534956127172119885LDW18-BNK61271829198950-122.32629547.534956127172119886LDW18-BNK61271829198950-122.32629547.534956127172119886LDW18-BNK61271829198950-122.32629547.534956127172119886LDW18-BNK61271829198950-122.32629547.534956127172119886LDW18-BNK61271829198950-122.30209347.51141127749319016LDW18-BNK61277457190047-122.30209347.51197419736LDW18-BNK6	Bank	Sample		S	entroid			Upstrea	im Boundary			Downstre	am Boundary	
1 LDW18-BNK1 1265858 208162 -122.350461 47.560545 1265895 2079 2 LDW18-BNK2 1266568 206212 -122.34743 47.555237 1266796 2061 3 LDW18-BNK3 1269498 200911 -122.335149 47.556537 1269547 2007 3 LDW18-BNK3 1269420 200793 -122.335436 47.530847 1269596 2005 3 LDW18-BNK3 1269632 200793 -122.335436 47.530847 1269596 2005 4 LDW18-BNK4 1271407 199154 -122.3354597 47.536152 1271530 1990 4 LDW18-BNK4 1271407 199154 -122.326295 47.534956 1271721 1988 4 LDW18-BNK4 1271829 198950 -122.325545 47.534956 1271721 1988 5 LDW18-BNK6 1271829 198700 -122.319836 47.514956 1271721 1988 6 LDW18-BNK6 1277451	₽	Location ID	×	۲	Longitude	Latitude	×	۲	Longitude	Latitude	×	۲	Longitude	Latitude
2LDW18-BNK21266568206212-122.3374347.555237126679620613LDW18-BNK31269498200911-122.33514947.559847126959620053LDW18-BNK31269420200541-122.33543647.539847126959620053LDW18-BNK31269420200593-122.33543647.539847126959620053LDW18-BNK31269420200793-122.33543647.530649126977620094LDW18-BNK41271407199154-122.32728447.536152127153019904LDW18-BNK41271647198950-122.32629547.535605127172119885LDW18-BNK41271647198950-122.32629547.534956127172119886LDW18-BNK61271829198710-122.32629547.5314956127172119736LDW18-BNK61277457190047-122.30209347.5115112774931901	~	LDW18-BNK1	1265858	208162	-122.350461	47.560545	1265895	207993	-122.350296	47.560082	1265834	208329	-122.350573	47.561
3LDW18-BNK31269498200911-122.33514947.540865126954720073LDW18-BNK31269420200541-122.33543647.539847126959620053LDW18-BNK31269632200793-122.335459747.530847126977620094LDW18-BNK41271407199154-122.33759447.536152127153019904LDW18-BNK41271647198950-122.32728447.535605127172119884LDW18-BNK41271647198950-122.32554447.535605127172119885LDW18-BNK51271829198710-122.32554547.534956127172119886LDW18-BNK61277457190047-122.31983647.511413127749319736LDW18-BNK61277450189850-122.30209347.5115112774931901	5	LDW18-BNK2	1266568	206212	-122.34743	47.555237	1266796	206143	-122.346501	47.555062	1266419	206359	-122.348046	47.555633
3LDW18-BNK31269420200541-122.33543647.539847126959620053LDW18-BNK31269632200793-122.33459747.540549126977620094LDW18-BNK41271407199154-122.32728447.536152127153019904LDW18-BNK41271647198950-122.32629547.536152127172119884LDW18-BNK41271647198950-122.32629547.534956127172119885LDW18-BNK51271829198710-122.3255447.534956127190519856LDW18-BNK61277457190047-122.30209347.51151127327419736LDW18-BNK612774560189850-122.3016647.51097412777031901	3	LDW18-BNK3	1269498	200911	-122.335149	47.540865	1269547	200733	-122.334937	47.54038	1269515	201171	-122.3351	47.541579
3LDW18-BNK31269632200793-122.33459747.540549126977620094LDW18-BNK41271407199154-122.32728447.536152127153019904LDW18-BNK41271647198950-122.32629547.535605127172119884LDW18-BNK41271647198950-122.32629547.535605127172119885LDW18-BNK41271829198710-122.32629547.534956127190519856LDW18-BNK612774231973074-122.31983647.531443127779319736LDW18-BNK61277457190047-122.30209347.5115112774931901	3	LDW18-BNK3	1269420	200541	-122.335436	47.539847	1269596	200529	-122.334723	47.539825	1269547	200733	-122.334937	47.54038
4 LDW18-BNK4 1271407 199154 -122.327284 47.536152 1271530 1990 4 LDW18-BNK4 1271647 198950 -122.326295 47.535605 1271721 1988 4 LDW18-BNK4 1271829 198710 -122.32554 47.534956 1271905 1985 5 LDW18-BNK5 1271829 198710 -122.319836 47.534956 1271905 1985 6 LDW18-BNK6 1277457 190047 -122.302093 47.51151 1277493 1900 6 LDW18-BNK6 12774560 189850 -122.30166 47.51151 1277493 1900	3	LDW18-BNK3	1269632	200793	-122.334597	47.540549	1269776	200908	-122.334022	47.540872	1269596	200529	-122.334723	47.539825
4 LDW18-BNK4 1271647 198950 -122.326295 47.535605 1271721 1988 4 LDW18-BNK4 1271829 198710 -122.32554 47.534956 1271905 1985 5 LDW18-BNK5 1273213 197401 -122.319836 47.531443 1273274 1973 6 LDW18-BNK6 1277457 190047 -122.302093 47.51151 1277493 1900 6 LDW18-BNK6 12774560 189850 -122.30166 47.510974 1277703 1901	4	LDW18-BNK4	1271407	199154	-122.327284	47.536152	1271530	199057	-122.326776	47.535892	1271355	199298	-122.327506	47.536544
4 LDW18-BNK4 1271829 198710 -122.32554 47.534956 1271905 1985 5 LDW18-BNK5 12773213 197401 -122.319836 47.531443 1273274 1973 6 LDW18-BNK6 1277457 190047 -122.302093 47.51151 1277493 1900 6 LDW18-BNK6 1277560 189850 -122.30166 47.510974 1277703 1901	4	LDW18-BNK4	1271647	198950	-122.326295	47.535605	1271721	198834	-122.325986	47.535292	1271530	199057	-122.326776	47.535892
5 LDW18-BNK5 1273213 197401 -122.319836 47.531443 1273274 1973 6 LDW18-BNK6 1277457 190047 -122.302093 47.51151 1277493 1900 6 LDW18-BNK6 1277560 189850 -122.30166 47.510974 1277703 1901	4	LDW18-BNK4	1271829	198710	-122.32554	47.534956	1271905	198578	-122.325223	47.534598	1271721	198834	-122.325986	47.535292
6 LDW18-BNK6 1277457 190047 -122.302093 47.51151 1277493 1900 6 LDW18-BNK6 1277560 189850 -122.30166 47.510974 1277703 1901	5	LDW18-BNK5	1273213	197401	-122.319836	47.531443	1273274	197395	-122.319589	47.53143	1273169	197458	-122.320019	47.531598
6 LDW18-BNK6 1277560 189850 -122.30166 47.510974 1277703 1901	9	LDW18-BNK6	1277457	190047	-122.302093	47.51151	1277493	190006	-122.301944	47.511399	1277275	189885	-122.302814	47.511054
	9	LDW18-BNK6	1277560	189850	-122.30166	47.510974	1277703	190100	-122.301099	47.511666	1277398	189601	-122.302295	47.510284

Note: These are target locations only. As described above, the field crew will use discretion to target sampleable locations. ID – identification

Surface Sediment QAPP May 31, 2018 68

FINAL

Lower Duwamish Waterway Group

If the GPS does not work in a bank area, bank samples will be collected as close to the target location as possible using Map 4-8 as guidance. Sample locations will be recorded using distances from landmarks. Additional photographs will be taken as needed in order to record the sample location.

As described in Section 4.1.2.2, in addition to the proposed discrete samples, additional discrete samples will be collected at any location in the bank areas that appears to be a unique potential source, or at banks where samples are being collected from more than one elevation, as appropriate.

Each bank sample will be collected by hand from the 0- to-10-cm depth, transferred to a pre-cleaned stainless steel bowl or cauldron, and homogenized. Any large non-sediment items, such as rocks, shells, wood chips, or debris, will be removed prior to homogenization.

Following homogenization, jars will be filled as specified in Appendix C (Table C-6). All outfall and bank samples will require 52 oz. of sediment/soil. Four 8-oz. jars, one 4-oz. jar, and one 16-oz. jar will be filled at each sampling location. All jars will be stored on ice in coolers ($\leq 4 \pm 2^{\circ}$ C) and transported to the laboratory at the end of the sampling day.

4.2.2.3 0–45-cm samples (beach and potential clamming areas)

Intertidal (0–45-cm) sediment samples will be collected at low tide at each of the potential clamming subareas and beach play areas shown on Maps 4-9 and 4-10 using a transect approach to identify sampling locations. The subsections below describe the approach for establishing transects and how the 0-45 cm samples will be collected.

Establishing Transects

Transects will be set using pre-determined endpoints (or adjusting those endpoints as needed based on conditions in the field) and setting a specified number of points along each transect. Depending on the shape and size of a given area, multiple transects may be used to identify sampling locations in a given area. In general, transects were developed to run parallel to the shoreline and low-tide water line (see Maps 4-9 and 4-10 showing the potential clamming subareas and beach play area transects, respectively). For the beach play areas, the number of points along the transect line will remain the same, regardless of whether the sample-able area is smaller or larger than anticipated, because each beach is its own exposure area with a required number of sample density will remain the same regardless of the size of the intertidal area (i.e., the number of sample locations will be reduced if the sample-able area is smaller), because it will be important to represent the various potential clamming areas proportionally in the site-wide mean. Although the clamming and beach play areas overlap, transects established for these areas will be separate (i.e., different holes will be dug). A random

number table will be used to set specific locations to the left and right of each transect. Figure 4-3 provides a general schematic for intertidal sediment sampling.

Figure 4-3. Schematic of intertidal sediment transect and sampling locations

Transects will be established prior to field sampling; both transect lines and target sampling locations will be loaded onto the GPS units for use by the field team. The following describes how transect lines were established and how target sampling points will be determined prior to the field event.

- **Transects** Transect endpoints were established based on the size of the potential clamming subarea or beach play area. Based on the length of the transect lines, equally spaced points were placed along the transect lines, as shown in Maps 4-9 and 4-10.
- Sampling locations To determine actual sampling locations prior to sampling, a random number table will be used. The range of possible numbers for a given area will be based on the approximate width of the area. At the first location along the transect line, a random number will be selected from the list; this number will indicate the distance (in meters) of that sampling location to the left or right of the transect line. At the second location along the line, the next number from the random number table will be selected; this number will indicate the distance (in meters) of that sampling location in the opposite direction of the transect line. These steps will be repeated, alternating station placement to the left or right of the transect line, until all locations are determined. The same process will be followed for both beach play and potential clamming areas.

Prior to the field event, transect lines and target sampling locations will be loaded onto the GPS unit for use by the field team. During sampling, the field team will locate and flag a target sampling location as shown on the GPS, moving the location as necessary to find a sampleable area. For example, if debris (e.g., a log or large rock) is obstructing the sampling location or the location is outside of the sampleable area (e.g., the area is too unconsolidated to safely sample or is below the low tide line), the sampling location will be relocated as near as possible to the original location, and the new location and reason for movement will be noted. GPS coordinates will be recorded in the field for all sampling locations.

In the event that the intertidal area is smaller than anticipated (i.e., the pre-established transect endpoints cannot be reached), it may be necessary to modify the transect lines and sampling locations in the field. For the potential clamming subareas, points that are not accessible will not be sampled, and no adjustment of the other transect points will be needed. However, for the beach play areas, smaller intertidal areas will result in the need to modify the transect lines. The following describes the steps that will be used to set transects for the beach play areas if needed:

- 1. **Locate transect endpoints** If the intertidal area is smaller than anticipated (i.e., the pre-established endpoints cannot be reached), the transect endpoints will be re-located to the end of the available intertidal area.
- 2. **Determine spacing of sampling locations** The spacing of the sampling locations will be determined as described below, and locations along the transect line will be marked with one color flag.
 - a. Determine length of transect using rangefinder.
 - b. Determine the distance needed between each point along the transect line to maintain the same total number of sampling locations at a given beach (the total number of samples at a given beach play area will always be a multiple of three; see Map 4-10).
 - c. Mark these points along the transect line with the first color flag. For example, if the transect is 100 m in length and a total of 6 locations are specified, the distance between each location will be 20 m (i.e., one point at each end of the transect line, and four locations along the transect line at 20-m intervals along the transect line; see Figure 4-4).

Figure 4-4. Schematic of spacing between intertidal sediment sampling locations in beach play areas

- 3. **Determine sampling locations** As described above, a random number table will then be used to determine specific sampling locations at varying distances to the right and left of the transect line. These points will be marked with a second color flag.
- 4. **Record information on intertidal sediment transect form –** All relevant information will be recorded on the intertidal sediment transect form for the revised transect (e.g., transect length, distance between samples, and random numbers used to determine specific sampling locations). In addition, coordinates for each sampling location will be documented.

Sample Collection

The following steps will be taken to collect a sample at each individual sampling location identified during the establishment of transects. For samples located near the water line, the field crew will preferentially sample these locations during the time when the tide is lowest to ensure that the samples are successfully collected prior to the tide level rising. The field crew will have the discretion to use either of the following two options that is most suitable to the sampling location conditions. In addition, the field crew may use a combined or hybrid approach of the two methods, if necessary.

Option 1: Use shovel to dig 45-cm hole

One sampling option is to dig a hole using a shovel and collect the sample directly from the sidewall of the hole. This process is described as follows.

- 1. **Dig hole** Using a transplanting spade (i.e., a shovel with a narrow blade), dig a 45 cm hole at the flagged location, or as near to the flag as possible based on the substrate and debris. If it is not possible to reach a depth of 45 cm, after up to three attempts, the deepest hole will be sampled using the methodology described below, and the depth of refusal will be recorded on the intertidal surface sediment collection form. At least one side of the hole should be approximately vertical to allow for the collection of the sample. Record any necessary revisions of the sampling location.
- 2. **Prepare for sampling** Divide the vertical extent of hole into three 15-cm sections (i.e., the bottom section from 30-45 cm below the surface, the middle section from 15-30 cm below the surface, and the top section from the surface down to 15 cm). If possible, use a spoon to draw a line in the sidewall of the hole at these breakpoints. The bottom section will be sampled first to ensure that the sample is collected prior to the hole filling with water.
- 3. **Collect sediment** Collect the same amount of sediment from each of the three 15 cm subsections along the vertical extent of the hole. When filling the jar as described in steps 3a-3c, exclude any debris larger than approximately 5 mm in width. If differences around the diameter of the hole are apparent (e.g., the

presence of different colored material), the resulting sample should proportionally represent all material in the hole.

- a. Starting with the bottom section of the hole (i.e., 45 cm to 30 cm), use a small spoon to carefully collect an even amount of sediment from the sidewall of the hole by scraping the sidewall from the bottom of the hole to the marked 30-cm line. Fill the first third of the jar³⁶ using this method.
- b. Repeat process in the middle section of the hole (i.e., scrape the sidewall from the 30-cm to the 15-cm line) and fill the next third of the jar.
- c. Repeat process in the top third of the hole (15 cm to the surface) and fill the final third of the jar, making sure to capture the full extent of this layer, including the surface material.
- 4. **Record information on the intertidal surface sediment collection form** Record information regarding the depth of the hole (generally 45 cm), sediment characteristics (e.g., color, smell, grain size, presence of debris, etc.), presence/approximate depth of clams, and necessary revisions to the sampling location on the intertidal surface sediment collection form. Take photographs of anything of note.

Option 2: Use hand core tube to collect 45-cm core

Another sampling option is to use a hand-core to collect a 45-cm core, extrude the core, and then collect the sample from the interior of the core. This process is described as follows:

- 1. **Collect core** Drive the hand core tube (internal diameter of 7 cm) into the sediment to 45 cm at the flagged location, or as near to the flag as possible based on the substrate and debris. Re-attach and tighten the top of the core tube and pull core out of the sediment. If it is not possible to reach a depth of 45 cm, up to three attempts should be made in that area (initial attempts will be retained in the core tube or extruded onto a piece of foil). After the third attempt, the deepest core will be sampled using the same methodology described below, and the depth of refusal will be recorded on the intertidal surface sediment collection form. Record any necessary movement of the sampling location.
- 2. **Prepare for sampling** Extrude core on an aluminum foil-lined tray, and split core length-wise using a stainless steel spatula (or other similar stainless steel tool) to allow sample to be collected from the interior of the core (i.e., to avoid the outer material that has contacted the core tube). Lay ruler marked at 15-cm

³⁶ For potential clamming areas, a 4-oz jar will be filled at each sampling location. For the beach play areas, an either 8-oz (for areas 5, 7, and 8) or 16-oz jar (for areas 1, 2, 3, 4, and 6) will be filled at each sampling location, depending on the total number of samples collected in a given beach play area (jar size based on sufficient mass to meet analytical requirements).

increments next to core and divide into three segments (i.e., 0-15 cm, 15-30 cm, and 30-45 cm).

- 3. **Collect sediment** Following the procedures described in Step 3 above (for the shovel collection method), use a small spoon to collect an equal volume from each third of the core (starting with the bottom increment), and place sediment into the jar. Fill the first third of the jar using this method. Repeat process for the middle and top sections of the core to fill the remaining two thirds of the jar.
- 4. **Record information on the intertidal surface sediment collection form** Record information regarding the depth of the core (generally 45 cm), sediment characteristics (e.g., color, smell, grain size, presence of debris, etc.), and necessary revisions to the sampling location on the intertidal surface sediment collection form. Take photographs of anything of note.

One 4-oz jar will be filled at each of the potential clamming area locations (up to 216 locations). For the beach play areas (129 locations), an either 8-oz (for areas 5, 7, and 8) or 16-oz jar (for areas 1, 2, 3, 4, and 6) will be filled at each sampling location, depending on the total number of samples collected in a given beach play area (jar size based on sufficient mass to meet analytical requirements).³⁷ All jars will be stored on ice in coolers ($\leq 4 \pm 2^{\circ}$ C) and transported to the laboratory at the end of the sampling day. Following completion of the field effort, a compositing memorandum will be prepared for EPA approval to identify the samples selected for inclusion in each composite. Composite samples will be prepared at ARI as described in Section 4.4.1.2.

4.2.2.4 Sediment samples for ex situ porewater investigation

Twenty locations have been identified for the *ex situ* porewater investigation based on the range of PCB concentrations previously reported for these locations (Table 4-2). The *ex situ* porewater exposure investigation requires 1 kg wet weight (ww) of sediment. Based on an average sediment density of 2.0 g/ml, the required sediment volume is 18 oz.

At each of the 20 locations where sediment will be collected for the *ex situ* porewater investigation, a split sample will be collected from the homogenized sediment (Appendix C, Table C-4) and transported, on ice to ARI, for the *ex situ* porewater investigation. Sample packing, transport information, and custody procedures are described in Section 4.3, and the *ex situ* testing protocols are described in Section 4.5.

³⁷ More sediment is needed for the beach play composite samples (i.e., an extra 4 to 12 oz per location as compared with the clamming locations) because fewer samples will be composited in the beach play areas.

4.3 SAMPLE HANDLING AND CUSTODY REQUIREMENTS

Sample custody is a critical aspect of environmental investigations. Sample possession and handling must be traceable from the time of sample collection, through laboratory and data analyses, to delivery of the sample results to the recipient. Procedures to be followed for sample handling, custody, and shipping are detailed in this section. In addition, procedures for the decontamination of equipment and disposal of field-generated waste are described.

4.3.1 Sample handling procedures

At each laboratory, a unique sample identifier (termed either project ID or laboratory ID) will be assigned to each sample. The laboratory will ensure that a sample tracking record follows each sample through all stages of laboratory processing. The sample tracking record must contain, at a minimum, the name/initials of responsible individuals performing the analyses, dates of sample extraction/preparation and analysis, and types of analyses being performed.

4.3.1.1 Sediment samples

The FC will be responsible for reviewing sediment sample information recorded on field collection forms (Appendix B) and will correct any improperly recorded information. Sample labels will contain the project number, sampling personnel, date, time, and sample ID. A complete sample label will be affixed to each individual sample jar. Labels will be filled out as completely as possible prior to each sampling event.

Samples will be placed on ice after collection for transport to ARI, ALS, and Axys. Sample packaging and transport information is summarized in Section 4.3.3.

4.3.1.2 Porewater passive samplers

Following the 28-day porewater exposure, each strip will then be wrapped in clean aluminum foil envelopes, labeled, and inserted into a resealable plastic bag with corresponding labels. All resealable bags will be placed on ice in a cooler for transport to Axys. Sample packaging, transport information, and custody procedures are described in Section 4.3. Upon receipt, Axys will store all samplers in the freezer until analysis.

4.3.2 Sample custody procedures

Samples are considered to be in custody if they are: 1) in the custodian's possession or view; 2) in a secured place (under lock) with restricted access; or 3) in a container and secured with an official seal(s) such that the sample cannot be reached without breaking the seal(s). Custody procedures, described below, will be used for all samples throughout the collection, transportation, and analytical processes, and for all data and data documentation, whether in hard copy or electronic format. Custody procedures will be initiated during sample collection.

A chain of custody form will accompany all samples to the analytical laboratory. Each person who has custody of the samples will sign the chain of custody form and ensure that the samples are not left unattended unless properly secured. During the 28-day *ex situ* porewater exposure period, sediment samples will be agitated in a secure room at ARI and will be monitored daily by ARI staff. Minimum documentation of sample handling and custody will include:

- Sample location, project name, and unique sample ID
- Sample collection date and time
- Any special notations on sample characteristics or problems
- Name of the person who initially collected the sample
- Date sample was sent to the laboratory
- Shipping company name and waybill number

In the field and during the *ex situ* exposure, the FC or a designee will be responsible for all sample tracking and custody procedures. The FC will also be responsible for final sample inventory and will maintain sample custody documentation. The FC or a designee will complete chain of custody forms prior to transporting samples. At the end of each day, and prior to sample transfer, chain of custody entries will be made for all samples. Information on the sample labels will be checked against sample log entries, and sample tracking forms and samples will be recounted. Chain of custody forms, which will accompany all samples, will be signed at each point of transfer. Copies of all chain of custody forms will be retained and included as appendices to the data reports. Samples will be shipped in sealed coolers.

ARI, ALS, and Axys will ensure that chain of custody forms are properly signed upon receipt of the samples, and will note any questions or observations concerning sample integrity on the chain of custody forms. ARI, ALS, and Axys will contact the FC and project QA/QC coordinator immediately if discrepancies are discovered between the chain of custody forms and the sample shipment upon receipt.

4.3.3 Shipping requirements

Sediment samples will be transported directly to ARI (i.e., by field staff), composite and individual sediment samples will be shipped to ALS, and passive samplers and sediments will be transported to Axys via courier. Prior to shipping, containers with sediment samples will be wrapped in bubble wrap and securely packed inside a cooler with ice packs. Passive samplers will be wrapped in foil, placed in resalable plastic bags, and securely packed inside a cooler with ice packs. The original signed chain of custody forms will be placed in a sealed plastic bag and taped to the inside lid of the cooler. Fiber tape will be wrapped completely around the cooler. On each side of the cooler, a *This Side Up* arrow label will be attached; a *Handle with Care* label will be

attached to the top of the cooler, and the cooler will be sealed with a custody seal in two locations.

The temperature inside the cooler(s) containing the sediment samples and *ex situ* samplers will be checked by the laboratory upon receipt of the samples. The laboratory will specifically note any coolers that do not contain ice packs, or that are not sufficiently cold³⁸ ($\leq 4 \pm 2^{\circ}$ C) upon receipt. All samples will be handled so as to prevent contamination or sample loss. Any remaining sediment samples will be disposed of upon receipt of written notification by the Windward PM. Holding times will vary by analysis and are summarized in Section 4.4.2. Passive samplers will be held until the laboratory is notified by the Windward PM.

4.3.4 Decontamination procedures

Sampling requires strict measures to prevent contamination. Sources of extraneous contamination can include sampling gear, grease from ship winches or cables, spilled engine fuel (gasoline or diesel), engine exhaust, dust, ice chests, and ice used for cooling. All potential sources of contamination in the field will be identified by the FC, and appropriate steps will be taken to minimize or eliminate contamination. For example, during retrieval of sampling gear, the boat will be positioned, when feasible, so that engine exhaust does not fall on the deck. Ice chests will be scrubbed clean with Alconox[®] detergent and rinsed with distilled water after use to prevent potential cross contamination. To avoid contamination from melting ice, the wet ice will be placed in separate plastic bags.

All sediment sampling and homogenizing equipment, including the mixing bowl and stainless steel implements, will be decontaminated between sampling locations per PSEP guidelines (1997) and the following procedures:

- 1. Rinse with site water and wash with a scrub brush until free of sediment.
- 2. Wash with phosphate-free detergent.
- 3. Rinse with site water.
- 4. Rinse with distilled water.

Acid or solvent washes will not be used in the field because of safety considerations and problems associated with rinsate disposal and sample integrity, specifically:

- Use of acids or organic solvents may pose a safety hazard to the field crew.
- Disposal and spillage of acids and solvents during field activities pose an environmental concern.

³⁸ As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory with an internal temperature within the advisory range of $4 \pm 2^{\circ}$ C; however, due to the short transit distance and time from the site to ARI, all samples may not have reached this temperature by the time they arrive at the laboratory.

• Residues of solvents and acids on sampling equipment may affect sample integrity for chemical testing.

Any sampling equipment that cannot be cleaned to the satisfaction of the FC will not be used for further sampling activities.

4.3.5 Field-generated waste disposal

Excess sediment, generated equipment rinsates, and decontamination water³⁹ will be returned to each sampling location after sampling has been completed for that location. All disposable sampling materials and personal protective equipment (PPE) used in sample processing, such as disposable coveralls, gloves, and paper towels, will be placed in heavyweight garbage bags or other appropriate containers. Disposable supplies will be removed from the site by sampling personnel and placed in a normal refuse container for disposal as solid waste.

4.4 LABORATORY METHODS

ARI, ALS, and Axys will meet the sample handling requirements and follow the procedures described in this section. In addition, analytical methods and data quality indicator (DQI) criteria are provided herein.

4.4.1 Laboratory sample handling

Samples will be stored initially at ARI at $\leq 4 \pm 2^{\circ}$ C. Sediment compositing will be conducted in the laboratory for both the surface sediment composite samples and the intertidal sediment samples.

ARI, ALS, and Axys will preserve and store samples as described in Section 4.4.2. Once prepared, samples for Axys will be packed in coolers on ice and delivered via courier service, and samples for ALS will be shipped in coolers on ice. Archive samples will be stored, frozen, at ARI.

4.4.1.1 Surface sediment (0–10-cm) compositing

Surface sediment samples will be composited in the laboratory (Figure 4-5). For those samples collected for DQOs 1 and 2, the contents of the seven 8-oz. jars for the composite will be combined in a stainless steel bowl or cauldron and stirred with a clean stainless steel spoon or spatula until texture and color homogeneity have been achieved (PSEP 1997). Homogenized sediment will then be split into the appropriate sample containers as described in Appendix C, Table C-5. Excess sediment will be disposed at the laboratory.

³⁹ Because decontamination water is an Alconox®/water solution (that is phosphate-free), it can be returned to the sampling location for disposal.

Figure 4-5. Compositing approach for 0–10-cm surface sediment samples

4.4.1.2 Intertidal sediment (0-45-cm) compositing

Intertidal 0-45-cm sediment composites will be created in the laboratory. Three potential clamming area composite samples (DQOs 7 and 8) will be created according to the SOP in Appendix D and as illustrated in Figure 4-6. Specifically, all of the sediment samples assigned to the first composite will be combined in stainless steel cauldron and

homogenized using a motorized paddle mixer. Sediment will be homogenized for a minimum of 20 minutes. The homogenization will be considered complete when the sediment is visually uniform in color and consistency. Following homogenization, approximately equal volumes of sediment will be transferred into two stainless steel baking trays as described in the sediment compositing SOP (Appendix D). As specified in the SOP, a 30-square grid will be created and a stainless steel, square-edged scoop will be used to collect aliquots of the homogenized sediment from each grid to fill the analytical sample jars. The entire procedure will be repeated for the 2nd and 3rd composites. A triplicate sample will be collected for cPAH analysis for QC purposes (see Section 4.7.2.2).

Figure 4-6. Compositing approach for 0–45-cm potential clamming area samples

The beach play area composites (DQOs 9 and 10) will be created using sediment samples from each beach play area (the number of sediment samples per composite will

Lower Duwamish Waterway Group

range from three to nine per beach play area, depending on beach size) (Figure 4-7). Samples will be designated for inclusion in one of the three composites for each beach in a compositing memorandum.

Figure 4-7.Compositing approach for beach play sediment samples

The contents of the jars for the composite will be combined in a stainless steel bowl or cauldron and stirred with a clean stainless steel spoon or spatula until texture and color homogeneity have been achieved (PSEP 1997). Homogenized sediment will then be split into the appropriate sample containers, as described in Appendix C, Table C-5. All sediment sample containers will be filled leaving a minimum of 1 cm of headspace to prevent breakage during shipping and storage. Excess sediment will be disposed at the laboratory.

4.4.2 Analytical methods

Chemical analysis of the surface sediment samples will be conducted at three different laboratories (ARI, ALS, and Axys) (Table 4-12). Analytical methods and laboratory sample handling requirements for all measurement parameters are presented in Table 4-13. The analytes for the 0-10-cm and 0-45-cm surface sediment composite

Lower	Ľ	Juwamisł	n Wate	rw	ay	Group
Port of Seattle	1	City of Seattle /	King County	1	The	Boeing Company

samples are provided in Table 4-14. The analytes for each of the 30 individual surface sediment samples are provided in Table 4-15. The analytes for the near-outfall sediment samples and the bank samples are provided in Table 4-16.

Laboratory	Analyses to be Conducted	Individual Analytes
	conventionals	TOC, percent solids, grain size
	Metals	arsenic, cadmium, chromium, copper, lead, silver, zinc, mercury
ARI	PAHs	acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, and pyrene
	PCB Aroclors ^a	Aroclor 1016, Aroclor 1221, Aroclor 1232, Aroclor 1242, Aroclor 1248, Aroclor 1254, Aroclor 1260
	SVOCs	1,2-dichlorobenzene, 1,2,4-trichlorobenzene, 1,4-dichlorobenzene, 2,4-dimethylphenol, 4-methylphenol, benzoic acid, benzyl alcohol, bis(2-ethylhexyl)phthalate, butyl benzyl phthalate, dibenzofuran, dimethyl phthalate, hexachlorobenzene, n-nitrosodiphenylamine, PCP, and phenol
	toxaphene	toxaphene
Axys	dioxin/furan congeners	2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2,3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, and OCDF
	PCB congeners	all 209 congeners (refer to Appendix C)
ALS	black carbon	black carbon

 Table 4-12.
 Sediment analyses to be conducted at each analytical laboratory

^a If none of the PCB Aroclors are detected, then the sample will be submitted to Axys for analysis of PCB congeners.

ALS – ALS Environmental-Kelso	PAH –polycyclic aromatic hydrocarbon
ARI – Analytical Resources, Inc.	PCB – polychlorinated biphenyl
Axys – Axys Analytical Services Ltd.	PCP – pentachlorophenol
HpCDD – heptachlorodibenzo- <i>p</i> -dioxin	PeCDD – pentachlorodibenzo- <i>p</i> -dioxin
HpCDF – heptachlorodibenzofuran	PeCDF – pentachlorodibenzofuran
HxCDD – hexachlorodibenzo- <i>p</i> -dioxin	SVOC – semivolatile organic compound
HxCDF – hexachlorodibenzofuran	TOC – total organic carbon
OCDD – octachlorodibenzo- <i>p</i> -dioxin	TCDD – tetrachlorodibenzo-p-dioxin
OCDF – octachlorodibenzofuran	TCDF – tetrachlorodibenzofuran

anie 4-13.	Allalyucai			inellie				
Parameter ^a	Method	Reference	Extraction Solvent	Cleanup	Laboratory	Container	Preservative	Sample Holding Time
00	high- temperature combustion	EPA 9060	ца	Ла	ARI	glass jar	cool to ≤ 4 ± 2°C	28 days
ercent solids	drying oven	SM 2540G	Па	na	ARI	glass jar	cool to ≤ 4 ± 2°C	6 months
irain size	Pipette/sieve	PSEP (1986)	па	na	ARI	plastic jar	cool to ≤ 4 ± 2°C	6 months
letals	ICP-MS	EPA 3050B EPA 6020A UCT-KED	ца	па	ARI	glass jar	cool to ≤ 4 ± 2°C	6 months
lercury	CV-AFS	EPA 7471B	Па	na	ARI	glass jar	cool to ≤ 4 ± 2°C	28 days
SHAc	GC/MS	EPA 3550C/ EPA 8270D-SIM	DCM/acetone	silica gel	ARI	glass jar	freeze to ≤ - 10°C	1 year to extract if frozen;14 days until extraction if refrigerated or when thawed, 40 days after extraction; store extracts at $\le 6^{\circ}$ C and in the dark
CB Aroclors	GC/ECD	EPA 3550C Mod EPA 8082A	hexane/acetone	silica gel sulfuric acid/ permanganate sulfur or acid/base partition (optional)	ARI	glass jar	freeze to ≤ - 10°C	1 year to extract; analyze within 1 year of extraction
svocs	GC/MS	EPA 3550C/ EPA 8270D	DCM/acetone	GPC (optional)	ARI	glass jar	freeze to ≤ - 10°C	 tear to extract if frozen;14 days until extraction if refrigerated or when thawed, 40 days after extraction; store extracts at ≤ 6°C and in the dark
oxaphene	GC/ECD	EPA 3546/ EPA 8081B	hexane/acetone	GPC (optional)	ARI	glass jar	freeze to ≤ - 10°C	 tear to extract if frozen;14 days until extraction if refrigerated or when thawed, 40 days after extraction; store extracts at ≤ 6°C and in the dark

Table 4-13 Analytical methods and sample handling requirements for surface sediment samples

Surface Sediment QAPP May 31, 2018 83

FINAL

Lower Duwamish Waterway Group

olding Time	on, 1 year after dark at ≤ -10°C)	0–4°C; store extracts \$ 10°C	ling time; samples ig at 105°C, which biological action from
Sample H	1 year until extracti extraction (if in the	store in the dark at for up to 1 year at s	no established holc kept cold until dryin prevents potential t occurring
Preservative	freeze to ≤ - 10°C	freeze to ≤ - 10°C	cool to ≤ 4 ± 2°C
Container	glass jar	glass jar	glass jar
Laboratory	Axys	Axys	ALS
Cleanup	multi-layered acid/base silica, alumina, florisil	biobead multi-layered acid/base silica, florisil, alumina, carbon/celite	ца
Extraction Solvent	DCM Optional: Dean-Stark Soxhlet extraction with toluene, or Soxhlet extraction with 1:1 hexane:acetone	80:20 toluene:acetone or Dean-Stark with toluene	Па
Reference	EPA 1668c	EPA 1613b	Gustafsson (2001) - CTO Pretreatment/ Combustion (950°C)/ EPA 440.0
Method	HRGC/HRMS	HRGC/HRMS	infrared
Parameter ^a	PCB congeners	Dioxins/ furans	Black carbon

Table 4-13. Analytical methods and sample handling requirements for surface sediment samples

Individual analytes are listed in Table 4-12. m

Axys – Axys Analytical Services Ltd. ALS – ALS Environmental-Kelso ARI – Analytical Resources, Inc. CTO – chemothermal oxidation

CV-AFS – cold vapor atomic fluorescence spectroscopy GC/ECD – gas chromatography/electron capture EPA – US Environmental Protection Agency DCM – dichloromethane

detection

HRGC/HRMS – high-resolution gas chromatography/high-ICP-MS – inductively coupled plasma-mass spectrometry GC/MS – gas chromatography/mass spectrometry PAH – polycyclic aromatic hydrocarbon GPC – gel permeation chromatography na - not applicable or not available resolution mass spectrometry IR – infrared spectroscopy

SVOC – semivolatile organic compound PSEP – Puget Sound Estuary Program UCT-KED – universal cell technologykinetic energy discrimination PCB – polychlorinated biphenyl SIM – selected ion monitoring TOC – total organic carbon SM – Standard Methods

Surface Sediment QAPP May 31, 2018

FINAL

84

Lower Duwamish Waterway Group

Sample Type	No. of Samples	PCB Aroclors, Arsenic, cPAHs, and Dioxins/Furans	Black Carbon	Toxaphene	Conventionals (TOC, Grain Size, and Total Solids)
0–10-cm surface sediment composite	24	Х	Х		Х
0–45-cm intertidal beach play area composite	24	Х		x	Х
0–45-cm intertidal potential clamming area composite	3	Х		x	х

Table 4-14. Analytes for composites samples (0–10-cm and 0–45-cm samples)

cPAH – carcinogenic polycyclic aromatic hydrocarbon

PCB – polychlorinated biphenyl

TOC – total organic carbon

Table 4-15. Analytes for each individual sediment sample (0–10-cm samples)

Sample ID	SMS Analytes ^a	PCB Aroclors	PCB Congeners	Black Carbon	Conventionals (TOC, Grain Size and Total Solids)
LDW18-SS08	Х	Х	-	-	Х
LDW18-SS23	Х	Х	-	-	Х
LDW18-SS40	Х	Х	-	-	Х
LDW18-SS52	Х	Х	-	-	Х
LDW18-SS69	Х	Х	-	-	Х
LDW18-SS91	Х	Х	-	-	Х
LDW18-SS101	Х	Х	-	-	Х
LDW18-SS130	Х	Х	-	-	Х
LDW18-SS143	Х	Х	-	-	Х
LDW18-SS161	Х	Х	-	-	Х
LDW18-SS169	Х	Х	TBD⁵	Х	Х
LDW18-SS170	Х	Х	TBD⁵	Х	Х
LDW18-SS171	-	Х	TBD⁵	Х	Х
LDW18-SS172	-	Х	TBD⁵	Х	Х
LDW18-SS173	-	Х	TBD⁵	Х	Х
LDW18-SS174	Х	Х	TBD⁵	Х	Х
LDW18-SS175	-	Х	TBD⁵	Х	Х
LDW18-SS176	-	Х	TBD⁵	Х	Х
LDW18-SS177	-	Х	TBD⁵	Х	Х
LDW18-SS178	Х	Х	TBD⁵	Х	X
LDW18-SS179	Х	Х	TBD⁵	Х	X
LDW18-SS180	-	Х	TBD⁵	Х	Х

Surface Sediment QAPP May 31, 2018 85

Sample ID	SMS Analytes ^a	PCB Aroclors	PCB Congeners	Black Carbon	Conventionals (TOC, Grain Size and Total Solids)
LDW18-SS181	-	Х	TBD⁵	Х	Х
LDW18-SS182	-	Х	TBD⁵	Х	Х
LDW18-SS183	Х	Х	TBD⁵	Х	Х
LDW18-SS184	Х	Х	TBD⁵	Х	Х
LDW18-SS185	-	Х	TBD⁵	Х	Х
LDW18-SS186	Х	Х	TBD⁵	Х	Х
LDW18-SS187	Х	Х	TBD⁵	Х	Х
LDW18-SS188	Х	Х	TBD⁵	Х	X

^a SMS analytes include analytes listed in ROD Table 20 (metals, PAHs, and SVOCs).

^b PCB congeners will be analyzed in the 10 PCB porewater samples selected for analysis based on the PCB Aroclor results.

ID - identification

- PAH polycyclic aromatic hydrocarbon
- PCB polychlorinated biphenyl
- ROD Record of Decision

SMS – Washington State Sediment Management Standards

SVOC – semivolatile organic compound

- TBD to be determined
 - TOC total organic carbon

Table 4-16. Analytes for near-outfall and bank samples

Sample Type	No. of Samples	SMS Analytes ^a	Dioxins/Furans	Conventionals (TOC, Grain Size, and Total Solids)
Near-outfall sediment	24	х	X (Outfalls 2226, T107 Park, 2507, Seattle Dist Ctr, 5 th Ave South, CleanScapes B, and 2100A) ^b	Х
Bank	11 ^c	Х	X (Bank Area 2) ^d	Х

^a SMS analytes include analytes listed in ROD Table 20 (metals, PAHs, SVOCs, and PCB Aroclors).

^b At all other outfalls, sediment will be archived for dioxin/furan analysis per Section 4.1.2.1.

^c Additional discrete samples will be collected at any location in the bank areas that appears to be a unique potential source or from banks where samples are being collected from more than one elevation, as discussed in Section 4.1.2.2.

^d At all other bank areas, bank soil will be archived per Section 4.1.2.2.

PAH – polycyclic aromatic hydrocarbon	SVOC – semivolatile organic compound
PCB – polychlorinated biphenyl	SMS - Washington State Sediment Management Standar

ROD – Record of Decision

SMS – Washington State Sediment Management Standards TOC – total organic carbon

of Decision

4.5 Ex SITU POREWATER INVESTIGATION METHODS

This section describes the methods to be followed for the *ex situ* porewater investigation for PCBs.

4.5.1 Passive sampler preparation

Passive samplers will be prepared for exposure to the 20 sediment samples collected as discussed in Section 4.2.2.4. Ayxs will prepare the passive samplers and the exposures will be conducted at ARI.

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 86 Using methods based on those outlined by Gschwend et al. (2012), Axys will prepare the passive samplers by cleaning a known mass of 25-µm-thick PE sheeting using sequential extractions with solvent (e.g., dichloromethane [DCM], methanol) (Appendix D).

The cleaned PE sheeting will be loaded with PRCs to allow non-equilibrium conditions between the PE and the sediment porewater to be quantified. The degree of equilibrium reached by the PRCs during the exposure will be used to infer the degree of equilibrium reached by the target PCB analytes. This information will be used to correct for non-equilibrium conditions as described in Section 4.5.4. The carbon-13-labelled PCBs to be used for PRCs will include ¹³C-PCB8, ¹³C-PCB28, ¹³C-PCB95, ¹³C-PCB111, ¹³C-PCB153 and ¹³C-PCB178. These compounds represent a range of homologs, from dichlorobiphenyl (PCB8) to heptachlorobiphenyl (PCB178), and are representative of a wide range of hydrophobicities and kinetics. The dichlorophenyl and trichlorophenyl PRCs (PCB8 and PCB28, respectively) are expected to equilibrate fully, whereas the heptachlorobiphenyl PRC (PCB178) may not fully equilibrate over the period of exposure. The PRCs will be loaded by equilibrating the clean PE sheets with a methanol/water PRC solution in a glass container for at least seven days. Prior to delivery to ARI, the impregnated PE sheets will be submerged in ultra-clean water for three days to remove the methanol.

To accurately determine initial pre-exposure PRC concentrations, three 0.1-g PE strips will be cut from the PE sheets after the PRC loading is complete, wrapped in aluminum foil, and stored, frozen, at Axys. These day-zero PE strips will be analyzed along with the PE strips retrieved from the porewater exposure batch tests (Section 4.7.2.2). Pre- and post-exposure PRC concentrations will be used either to confirm that equilibrium has been reached for all PCB congeners, or to allow for the correction of non-equilibrium conditions between the PE and the sediment porewater.

The remaining clean PRC-impregnated PE sheets will be wrapped in aluminum foil and placed in a resealable plastic bag at $< 4 \pm 2^{\circ}$ C for shipment to ARI for use in the porewater exposures. Upon delivery, ARI will store the PE sheets in the refrigerator until the exposures are started.

4.5.2 Porewater exposure batch tests

Exposures will be conducted in accordance with design guidelines laid out by EPA et al. (2017), as detailed in Appendix D. The range of targeted PCB concentrations and TOC concentrations has been used to determine the appropriate PE sampler mass. The sampler mass must be sufficient to accumulate detectable PCB concentrations but must not be so large as to deplete the sediment PCB concentration (i.e., less than 1% of the mass of PCBs in sediment). In the event that any exposure exceeds the 1% by mass target, corrections for depletion will be made assuming a linear relationship for partitioning characteristics of the sediment organic matter as described in Fagervold et al. (2010) and Ghosh et al. (2014), and the resulting values will be J-flagged.

FINAL

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 87 Each sediment sample will be thoroughly homogenized, and approximately 1 kg ww of each sample will be placed in a wide-mouth glass jar with a Teflon[™]-lined cap. A 2-g/L sodium azide (biocide) solution will be added to each jar to achieve a well-formed slurry (80% water content) and inhibit microbial activity. A pre-weighed PRC-impregnated PE strip (0.1 g) will then be inserted into each jar. Sealed jars will be agitated in the dark on an orbital shaker table for 28 days to enhance contaminant mass transfer from the sediment porewater to the passive sampler, accelerating sampler equilibration rates. After the 28-day exposure period, the PE strips will be removed from their respective jars, rinsed with laboratory-grade deionized water, and gently wiped with clean laboratory wipes to remove any attached sediment. They will then be shipped to Axys as described in Section 4.3.3.

4.5.3 Passive sampler analysis

The PE strips will be extracted and analyzed for PCB congeners following EPA method 1668c (Table 4-13). The passive sampler handling protocols are provided in Appendix D.

The lowest possible DLs for PCB congeners in water based on the results from the PE passive samplers will be calculated using the laboratory analytical DLs for the PE strips, the partition coefficients between water and PE (from Gschwend et al. 2014), and equilibrium assumptions. Preliminary DLs calculated for each congener (assuming 100% equilibrium) are provided in Appendix C; however, these estimated DLs may be low and could be modified based on further analysis. Specifically, the more chlorinated PCB congeners may not achieve equilibrium. The actual DLs will be greater than those calculated for any PCB congener that does not reach equilibrium within the exposure period.

Chemical analyses of *ex situ* porewater samplers will be performed by Axys (Table 4-17).

Table 4-17.	Analytical methods and sample handling requirements for the	е
ex	situ porewater passive samplers	

Parameter	Method	Reference	Extraction Solvent	Cleanup	Labor- atory	Container	Preserv- ative	Sample Holding Time
PCB congeners	HRGC/ HRMS	EPA 1668c	DCM	multi-layered acid/base silica, alumina, florisil	Axys	PE strip/ aluminum foil	cool to ≤ 4± 2°C	na
Axys – Axys Analytical Services Ltd. DCM – dichloromethane EPA – US Environmental Protection Agency				HRGC/HRMS high-resoluti PCB – polychl PE – polycthy	– high-res on mass s orinated b lene	olution gas ch pectrometry iphenyl	nromatograpl	ny/

Lower Duwamish Waterway Group

4.5.4 Calculation of freely dissolved PCB congener concentrations from PE concentrations

Following PCB congener analysis of the PE strips by Axys, PCB congener concentrations in the PE strips will be used to calculate the concentrations of freely dissolved PCB congeners in the sediment porewater, as summarized in Figure 4-8.

Figure 4-8.Calculation method for freely dissolved PCB congeners in porewater from passive sampler

The first step to converting the measured PE concentrations to equilibrium PE concentrations is based on the PRC concentrations in the samplers. PRC concentrations remaining in the PE sampler after the *ex situ* exposures will be used to estimate the degree of equilibrium between the sampler and the sediment porewater.

PRCs of a wide range of hydrophobicities have been selected, because the rates of mass transfer in and out of the sampler will depend on the hydrophobic properties of each congener. Measured fractions of PRCs lost after deployment will be used to calculate a regression line between the model-estimated partitioning constant (K_D) and the octanol-water partitioning constant (K_{OW}) (Apell and Gschwend 2014). This K_{OW}/K_D fit will be used to calculate the fractional equilibration for each PCB congener

using a PRC correction calculator accessed via a graphical user interface, as described by EPA et al. (2017).

Appendix D presents the physical and chemical properties that will be used to correct for non-equilibrium conditions. PRC calculator default values will be used for the properties of the PCB congeners. If more than 90% loss is observed for a PRC, then analytes with a K_{OW} lower than or equal to this PRC will be assumed to be at equilibrium with porewater in that exposure (Gschwend et al. 2014). The equilibrium PE congener concentrations (C_{PE}) calculated using PRC data ,as described above, and the default PE-to-water partition constants (K_{PEW}) provided in Gschwend et al. (2014) (Appendix D), will then be used to calculate the freely dissolved PCB concentrations in porewater (C_{PW}) using the following equation:

Equation 1

4.6 ANALYTICAL DATA QUALITY OBJECTIVE AND CRITERIA

The analytical DQO for surface sediment samples and passive samplers is to develop and implement procedures that will ensure the collection of representative data of known, acceptable, and defensible quality. Parameters used to assess data quality are precision, accuracy, representativeness, completeness, comparability, and sensitivity (PARCCS). These parameters are discussed below, and specific DQIs are presented in Section 4.6.6.

4.6.1 Precision

Precision is the measure of reproducibility among individual measurements of the same property, usually under similar conditions, such as multiple measurements of the same sample. Precision is assessed by performing multiple analyses on a sample; it is expressed as a RPD when duplicate analyses are performed, and as a %RSD when more than two analyses are performed on the same sample (e.g., triplicates). Precision is assessed by laboratory duplicate analyses (e.g., duplicate samples, MSDs, and LCS duplicates) for all parameters. Precision measurements can be affected by the nearness of a chemical concentration to the DL, whereby the percent error (expressed as either %RSD or RPD) increases. The DQI for precision varies depending on the analyte. The equations used to express precision are as follows:

$$RPD = \frac{(\text{measured conc} - \text{measured duplicate conc})}{(\text{measured conc} + \text{measured duplicate conc}) \div 2} \times 100$$
 Equation 2a

%RSD=(SD/D_{ave}) × 100

Lower Duwamish Waterway Group

Where:

$$SD = \sqrt{\frac{\sum (D_n - D_{ave})^2}{(n-1)}}$$
Equation 2b

$$D = \text{sample concentration}$$

$$D_{ave} = \text{average sample concentration}$$

$$n = \text{number of samples}$$

$$SD = \text{standard deviation}$$

4.6.2 Accuracy

Accuracy is an expression of the degree to which a measured or computed value represents the true value. Accuracy may be expressed as a percentage recovery for MS and LCS analyses. The DQI for accuracy varies depending on the analyte. The equation used to express accuracy for spiked samples is as follows:

$$\frac{\text{spike sample results - unspiked sample results}}{\text{amount of spike added}} \times 100$$
 Equation 3

4.6.3 Representativeness

Representativeness is an expression of the degree to which data accurately and precisely represent an environmental condition. The sampling approach was designed to address the specific objectives described in Section 2.1. Assuming those objectives are met, the samples collected should be considered adequately representative of the environmental conditions they are intended to characterize.

4.6.4 Comparability

Comparability is an expression of the confidence with which one dataset can be evaluated in relation to another dataset. Therefore, the sample collection and chemical and physical testing will adhere to the most recent PSEP QA/QC procedures (PSEP 1997) and EPA and Standard Methods (SM) analysis protocols.

4.6.5 Completeness

Completeness is a measure of the amount of data that is determined to be valid in proportion to the amount of data collected. The equation used to calculate completeness is as follows:

$$Completeness = \frac{number of valid measurements}{total number of data points planned} \times 100 Equation 4$$

FINAL

The DQI for completeness for all components of this project is 90%. Data that have been qualified as estimated because the QC criteria were not met will be considered

Lower Duwamish Waterway Group

valid for the purpose of assessing completeness. Data that have been qualified as rejected will not be considered valid for the purpose of assessing completeness.

4.6.6 Sensitivity

Analytical sensitivity is the minimum concentration of an analyte above which a data user can be reasonably confident that the analyte was reliably detected and quantified. For this study, the MDL⁴⁰ or the LLOQ will be used as the measure of sensitivity for each analyte.

Tables 4-18 lists specific DQIs for laboratory analyses of sediment samples and *ex situ* porewater samplers.

			Accuracy ^b		
Parameter ^a	Unit	Precision ^b	SRM/LCS ^c	Spiked Samples	Completeness
TOC	%	± 20%	80-120%	na	90%
Percent solids	%	± 20%	na	na	90%
Grain size	%	± 20%	na	na	90%
Metals	mg/kg dw	± 20%	80-120%	75–125%	90%
Mercury	mg/kg dw	± 20%	80–120%	75–125%	90%
PAHs	µg/kg dw	± 35%	30–160%	30–160%	90%
PCB Aroclors	µg/kg dw	± 35%	50–120%	50–120%	90%
SVOCs	µg/kg dw	± 35%	10–160%	10–160%	90%
Toxaphene	µg/kg dw	± 35%	30–160%	30–160%	90%
PCB congeners	µg/kg dw	± 20%	30–150% ^d / 60–135%	5–145% ^e	90%
Dioxins/ furans	ng/kg dw	± 20%	70–130% ^d / 63–170%	13–328% ^e	90%
Black carbon	wt%	± 20%	80–120%	na	90%

Table 4-18. Data quality indicators for laboratory analyses

^a Individual analytes are listed in Table 4-12.

^b Values listed are performance-based limits provided by ARI, ALS, and Axys.

^c An LCS may be used to assess accuracy when SRM is unavailable. An SRM will be analyzed for PAHs, PCB Aroclors, PCB congeners, and dioxins/furans only.

^d The satisfactory acceptance limit for SRM recovery will include the uncertainty value of the CRM mean as well as the method measurement uncertainty.

e Labelled compound percent recovery range.

ALS – ALS Environmental-Kelso

ARI – Analytical Resources, Inc.

Axys – Axys Analytical Services Ltd.

na – not applicable PAH - polycyclic aromatic hydrocarbon PCB – polychlorinated biphenyl

FINAL

⁴⁰ The term MDL includes other types of DLs, such as EDL values calculated for PCB congeners and dioxin/furan congeners. Recent revisions to EPA SW846 methods no longer require the calculation of MDLs.

Surface Sediment QAPP May 31, 2018 92

CRM – certified reference material	SRM – standard reference material
dw – dry weight	SVOC - semivolatile organic compound
LCS – laboratory control sample	TOC – total organic carbon

The laboratory MDL and RL values for each analytical method are compared to their respective cleanup level values in Tables 4-19 and 4-20. All of the analytical methods are sufficiently sensitive, with the exception of the PCB Aroclor method. For PCBs, the PCB Aroclor method (EPA 8082A) RL of 20 μ g/kg dw is higher than the RAO 1 cleanup level of 2 μ g/kg dw. However, PCBs in baseline sediment samples are likely to be detected at concentrations above 20 μ g/kg dw, since they were detected in 94% of the 1,390 sediment samples in the FS dataset using the PCB Aroclor method. If none of the PCB Aroclors are detected in a particular composite sample, then that sample will be analyzed for PCB congeners with a method RL of 0.004 μ g/kg dw.⁴¹

Table 4-19. RAO 1, 2, and 4 COCs and associated RLs and cleanup levels for baseline sediment samples

					Cleanup Levels	S
COC	Method	Unit	RL	RAO 1	RAO 2 ^a	RAO 4
DCPa	EPA 8082A (Aroclors) ^b	µg/kg dw	20	2	500	100
PCDS	EPA 1668c (congeners)	µg/kg dw	0.002 ^c	Ζ	500	120
Total arsenic	EPA 6020A	mg/kg dw	0.500	na	7	na
cPAH	EPA 8270D-SIM	µg TEQ/kg dw	4.5 ^d	na	90	na
Dioxins/furans	EPA 1613b	ng TEQ/kg dw	1.14 ^e	2	13	na

^a Cleanup level is minimum value for 0–10- or 0–45-cm compliance.

^b If none of the PCB Aroclors are detected in a sample, then the sample will be submitted for analysis of PCB congeners.

^c The PCB RL is based on the LMCL from Axys and represents the maximum value for an individual PCB congener. Individual congener LMCLs are listed in Appendix C. The reported LMCL will be adjusted based on the mass of each sample.

- ^d The RL for the cPAH TEQ value was calculated using one-half the RL for each of the cPAH compounds and the appropriate TEF values (California EPA 2009).
- ^e The dioxin/furan RL is based on the laboratory minimum calibration level from Axys; the dioxin/furan mammalian TEQ value was calculated using one-half the RL for each dioxin/furan compound and appropriate mammal TEF values (Van den Berg et al. 2006).

95UCL – 95% upper confidence limit for the mean	na – not applicable
Axys – Axys Analytical Services, Ltd.	PCB – polychlorinated biphenyl
COC – contaminant of concern	RAO – remedial action objective
cPAH – carcinogenic polycyclic aromatic hydrocarbon	ROD – Record of Decision
dw – dry weight	RL – reporting limit
EPA – US Environmental Protection Agency	SIM – selective ion monitoring
LDW – Lower Duwamish Waterway	TEF – toxic equivalency factor
LMCL – lower method calibration limit	TEQ – toxic equivalent

⁴¹ The PCB RL is based on the laboratory minimum calibration level (LMCL) from Axys and represents the maximum value for an individual PCB congener. Individual congener LMCLs are listed in Appendix C. The reported LMCL will be adjusted based on the mass of each sample.

Lower	Ľ	Juwami	sh	Water	rw	ay	G	roup
Port of Seattle	1	City of Seattle	1	King County	1	The	Boeing	Company

COC	Method	RL	Cleanup Levels for RAO 3 ^a
Metals (mg/kg dw)			
Arsenic	EPA 6020A	0.2	57
Cadmium	EPA 6020A	0.1	5.1
Chromium	EPA 6020A	0.5	260
Copper	EPA 6020A	0.5	390
Lead	EPA 6020A	0.1	450
Silver	EPA 6020A	0.2	6.1
Zinc	EPA 6020A	4	410
Mercury	EPA 7471B	0.025	0.41
PAHs and SVOCs (µg/kg dw)			
Benzo(a)anthracene	EPA 8270D	20.0	2,200 ^b
Benzo(a)pyrene	EPA 8270D	20.0	1,980 ^b
Total benzofluoranthenes	EPA 8270D	40.0	4,600 ^b
Chrysene	EPA 8270D	20.0	2,200 ^b
Dibenzo(a,h)anthracene	EPA 8270D	20.0	240 ^b
Indeno(1,2,3-cd)pyrene	EPA 8270D	20.0	680 ^b
Anthracene	EPA 8270D	20.0	4,400 ^b
Acenaphthene	EPA 8270D	20.0	320 ^b
Acenapthylene	EPA 8270D	20.0	1,320 ^b
Benzo(g,h,i)perylene	EPA 8270D	20.0	620 ^b
Fluoranthene	EPA 8270D	20.0	3,200 ^b
Fluorene	EPA 8270D	20.0	460 ^b
Naphthalene	EPA 8270D	20.0	1,980 ^b
Phenanthrene	EPA 8270D	20.0	2,000 ^b
Pyrene	EPA 8270D	20.0	20,000 ^b
Total HPAHs ^c	EPA 8270D	40.0	19,200 ^b
Total LPAHs ^d	EPA 8270D	20.0	7,400 ^b
2,4-dimethylphenol	EPA 8270D-SIM	25	29
2-methylnaphthalene	EPA 8270D	20.0	760 ^b
4-methylphenol	EPA 8270D	20.0	670
Benzoic acid	EPA 8270D-SIM	50.0	650
Benzyl alcohol	EPA 8270D-SIM	5	57
Bis(2-ethylhexyl)phthalate	EPA 8270D	50.0	940 ^b
Butyl benzyl phthalate	EPA 8270D	20.0	98 ^b
Dibenzofuran	EPA 8270D	20.0	300 ^b
Dimethyl phthalate	EPA 8270D	20.0	1,060 ^b
Hexachlorobenzene	EPA 8270D-SIM	5.0	7.6 ^b

Table 4-20. RAO 3 COCs and associated RLs and cleanup levels for individual 0–10-cm sediment samples

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 94
Table 4-20. RAO 3 COCs and associated RLs and cleanup levels for individual 0–10-cm sediment samples

COC	Method	RL	Cleanup Levels for RAO 3 ^a
n-Nitrosodiphenylamine	EPA 8270D-SIM	5	220 ^b
PCP	EPA 8270D-SIM	20	360
Phenol	EPA 8270D	20.0	420
1,2,4-trichlorobenzene	EPA 8270D-SIM	5.00	16.2 ^b
1,2-dichlorobenzene	EPA 8270D-SIM	5.00	46.0 ^b
1,4-dichlorobenzene	EPA 8270D -SIM	5.00	62.0 ^b
PCBs (µg/kg dw)			
PCBs	EPA 8082A (Aroclors) ^e	20.0	240 ^{b,c,f}

^a Per the ROD (EPA 2014b), cleanup levels for RAO 3 are based on the benthic SCO chemical criteria in the SMS (WAC 173-204-562). The compliance depth is the 0–10-cm interval.

^b Organic carbon-normalized criteria were converted to non-normalized values using 2% TOC. Cleanup levels are assessed on organic carbon normalized basis. These values are presented as dry weight values for purposes of comparing to RLs only.

^c HPAH compounds include fluoranthene, pyrene, benzo(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3 cd)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene.

^d LPAH compounds include naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and 2-methylnaphthalene.

If none of the PCB Aroclors are detected, then the sample will be submitted for analysis of PCB congeners by EPA method 1668c with an estimated RL of 0.002 µg/kg dw. The PCB RL is based on the LMCL from Axys and represents the maximum value for an individual PCB congener. Individual congener LMCLs are listed in Appendix C The reported LMCL will be adjusted based on the mass of each sample.

^f All 0–10-cm samples analyzed for PCB Aroclors will be archived for potential PCB congener analysis.

Axys – Axys Analytical Services, Ltd.	PCP – pentachlorophenol
COC – contaminant of concern	RAO – remedial action objective
dw – dry weight	RL – reporting limit
EPA – US Environmental Protection Agency	ROD – Record of Decision
HPAH – high-molecular-weight polycyclic aromatic	SCO – sediment cleanup objective
hydrocarbon	SIM – selective ion monitoring
LMCL – lower method calibration limit	SMS – Washington State Sediment Management
LPAH – low-molecular-weight polycyclic aromatic	Standards
hydrocarbon	SVOC – semivolatile organic compound
PAH – polycyclic aromatic hydrocarbon	TOC – total organic carbon
PCB – polychlorinated biphenyl	WAC – Washington Administrative Code

Standard mass requirements are specified to meet RLs for each particular analytical method. Table 4-21 summarizes the sample volume needed for each sample type. The masses listed include those required for QC samples. The total jar volume required for standard analyses is 60 oz. One additional 8-oz. jar will be collected for each sample and archived.

Lower Duwamish Waterway Group

Analyte	Sediment Mass (ww)	Jar Size
ТОС	6 g	
Percent solids	45 g	4-02. jai
Grain size	600 g	16-oz. jar
Metals	3 g	0 en ier
Mercury	1 g	8-02. jar
PAHs	60 g	0 er ier
Toxaphene	75 g	8-02. jar
PCB Aroclors	75 g	0 an ian
SVOCs	60 g	8-02. jar
PCB congeners	40 g	0 er ier
Dioxins/furan congeners	40 g	8-02. jar
Black carbon	30 g	8-oz. jar
Ex situ porewater	1 kg	32-oz. jar
Archive	na	8-oz. iar

Table 4-21. Sediment mass required per analysis

na - not applicable

PAH - polycyclic aromatic hydrocarbon

PCB – polychlorinated biphenyl

SVOC - semivolatile organic compound

TOC - total organic carbon

4.7 **QUALITY ASSURANCE/QUALITY CONTROL**

The types of samples analyzed and the procedures conducted for QA/QC in the field and laboratory are described in this section.

4.7.1 Field quality control samples

Field QA/QC samples, such as field duplicates, are generally used to evaluate the efficiency of field decontamination procedures and the variability attributable to sample handling. A minimum of 1 field duplicate for every 20 samples will be collected for each sample type (individual 0–10-cm surface sediments, near-outfall sediments, and bank soils). In addition, one replicate *ex-situ* porewater exposure will be conducted.

To evaluate the variability in the 0-45 cm composite samples, two beach play areas (i.e., beach play areas 1 and 6) were selected for the collection of field duplicate samples. At each sampling location in these areas, two 16-oz jars (rather than one) will be collected from each hole. The field duplicates will be composited following the same methods used for the beach composite samples.

FINAL

96

4.7.2 Laboratory quality control

Before analyzing the samples, the laboratory must provide written protocols for the analytical methods to be used, calculate RLs for each analyte in each matrix of interest as applicable, and establish an initial calibration curve for all analytes. The laboratory must also demonstrate its continued proficiency by participation in inter-laboratory comparison studies, and by repeated analysis of certified reference materials, calibration checks, laboratory reagent and rinsate blanks, and spiked samples.

For the *ex situ* porewater PE samples, a LCS and a duplicate sample will be included, as detailed in the QA/QC section of Appendix D. The inclusion of these samples will enable the evaluation of any potential contamination during laboratory procedures, and the assessment of the variability attributable to the laboratory method.

4.7.2.1 Sample delivery group

Project- and/or method-specific QC measures, such as MSs and MSDs or laboratory duplicates, will be used per sample delivery group (SDG) preparatory batch or per analytical batch, as specified in Table 4-22. A SDG is defined as no more than 20 samples, or a group of samples received at the laboratory within a 2-week period. Although a SDG may span two weeks, all holding times specific to each analytical method will be met for each sample in the SDG.

	Surrogate Spikes	а	а	а	а	а	ach sample	ach sample	ach sample	ach sample	ach sample	ach sample
	Method Blanks	1 per 20 samples or per r batch	na	na	1 per prep batch	1 per prep batch	1 per prep batch	1 per prep batch	1 per prep batch	1 per prep batch	1 per prep batch	1 per prep batch €
	MSDs	вп	па	na	na	na	1 per batch or SDG	1 per batch or SDG	1 per batch or SDG	1 per batch or SDG	na	na
	MSs	1 per 20 samples or per batch	na	na	1 per batch or SDG	1 per batch or SDG	1 per batch or SDG	1 per batch or SDG	1 per batch or SDG	1 per batch or SDG	na	na
ı	Laboratory Replicates	1 per 20 samples or per batch	1 per 20 samples or per batch	Triplicate per 20 samples	1 per batch or SDG	1 per batch or SDG	na	в	па	ца	1 per prep batch	1 per prep batch
ı	SRM or LCS ^a	1 per 20 samples or per batch ^b	na	na	1 per prep batch ^b	1 per prep batch ^b	1 per prep batch⁰	1 per prep batch ^d	1 per prep batch ^b	1 per prep batch ^b	1 per prep batch ^d	1 per prep batch ^d
	Continuing Calibration Verification	Па	na	na	every 10 samples	every 10 samples	every 12 hours	every 10–20 analyses or 12 hours	every 12 hours	every 10–20 analyses or 12 hours	every 12 hours	every 12 hours
1	Initial Calibration Verification (2 nd source)	ла	ла	na	after initial calibration	after initial calibration	after initial calibration	after initial calibration	after initial calibration	after initial calibration	after initial calibration	after initial calibration
1	Initial Calibration	в	па	na	prior to analysis	prior to analysis	prior to analysis	prior to analysis	prior to analysis	prior to analysis	prior to analysis	prior to analysis
	Analysis Type	TOC	Percent solids	Grain size	Metals	Mercury	PAHs	PCB Aroclors	SVOCs	Toxaphene	PCB congeners	Dioxins/furans

Table 4-22. Laboratory quality control sample analysis summary

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 98

Surrogate Spikes	ца
Method Blanks	1 per batch or SDG
MSDs	ца
MSs	ца
Laboratory Replicates	1 per batch or SDG
SRM or LCS ^a	3 (1 high and 2 low range) per batch or SDG
Continuing Calibration Verification	every 20 samples and at the end of run
Initial Calibration Verification (2 nd source)	after initial calibration
Initial Calibration	prior to analysis
Analysis Type	Black carbon

Note: A batch is a group of samples of the same matrix analyzed or prepared at the same time, not exceeding 20 samples.

^a An LCS may be used to assess accuracy when SRM is unavailable.

- ^b An LCS will be used to assess accuracy.
- CRM172-100G will be used to assess accuracy for PAHs.

Puget Sound Sediment Reference Material will be used to assess accuracy for PCB Aroclors. PCB congeners. and dioxins/furans. φ

CRM – certified reference material	PAH – polycyclic aromatic hydrocarbon	SRM – standard reference material
LCS – laboratory control sample	PCB – polychlorinated biphenyl	SVOC – semivolatile organic compound
MS – matrix spike	SDG – sample delivery group	TOC – total organic carbon
MSD – matrix spike duplicate		
na – not applicable or not available		

									Surface Sediment QAPP
/er	9	D uwamish		Nate	2	av	Grout	e FINAL	way 31, ∠018 99
attio	-	City of Seattle /	ž	ng County	-	Ê	Boeing Compan	*	

4.7.2.2 Laboratory quality control samples

The analyst will review the results of QC analyses from each sample group immediately after a sample group has been analyzed. The QC sample results will then be evaluated to determine whether control limits have been exceeded.

If control limits have been exceeded, then appropriate corrective action, such as recalibration followed by reprocessing of the affected samples, must be initiated before a subsequent group of samples is processed. The project QA/QC coordinator must be contacted immediately by the laboratory PM if satisfactory corrective action to achieve the DQIs outlined in this QAPP is not possible. All laboratory corrective action reports relevant to the analysis of project samples must be included in the data deliverable packages.

All primary chemical standards and standard solutions used in this project will be traceable to the National Institute of Standards and Technology (NIST), Environmental Resource Associates, National Research Council of Canada, or other documented, reliable, commercial sources. Standards will be validated to determine their accuracy by comparing them to independent standards. Laboratory QC standards are verified in a multitude of ways: second-source calibration verifications (i.e., same standard, two different vendors) are analyzed to verify initial calibrations; new working standard mixes (e.g., calibrations, spikes, etc.) are verified against the results of the original solution and must be within 10% of the true value; newly purchased standards are verified against current data. Any impurities found in the standard will be documented.

The following sections summarize the procedures that will be used to assess data quality throughout sample analysis. Table 4-22 summarizes the QC procedures to be performed by the laboratory, as well as the associated control limits for precision and accuracy.

Method Blanks

Method blanks are analyzed to assess possible laboratory contamination at all stages of sample preparation and analysis. A minimum of 1 method blank will be analyzed for each SDG or for every 20 samples, whichever is more frequent.

Axys has reported increased concentrations of PCB 11 in its method blank samples for the past year. The laboratory is actively working to resolve this issue and is monitoring the situation closely. In order to ensure the accuracy of the data, blank correction will be employed for PCB 11 on all samples.⁴² The blank correction will be based on the mean PCB 11 concentrations in sediment laboratory method blanks for the three months preceding the analysis of the samples.

⁴² If the increased concentrations of PCB 11 are resolved, then the blank correction will not be required. EPA will be consulted before any changes are made.

Standard Reference Material

SRMs are samples of similar matrices and known analyte concentrations, processed through the entire analytical procedure and used as an indicator of method accuracy. A minimum of 1 SRM will be analyzed for each SDG or for every 20 samples, whichever is more frequent. SRMs will be analyzed for PAHs, PCB Aroclors, PCB congeners, and dioxins/furans. An LCS sample can be used to assess accuracy if appropriate SRM is not available. An LCS will be analyzed for conventional and organic analyses.

Laboratory Control Samples

LCSs are prepared from a clean matrix using the same process as the project samples that are spiked with known amounts of the target compounds. The recoveries of the compounds are used as a measure of the accuracy of the test methods.

Laboratory Replicate Samples

Laboratory replicate samples provide information on the precision of the analysis and are useful in assessing potential sample heterogeneity and matrix effects. Laboratory replicates are subsamples of the original sample that are prepared and analyzed as a separate sample, assuming sufficient sample matrix is available. A minimum of 1 laboratory replicate sample will be analyzed for each SDG or for every 20 samples, whichever is more frequent, for metals, conventional parameters, dioxins/furans, and PCB congeners. In addition, in order to assess the variability of the composite samples, three samples will be created by subsampling the trays (described in Appendix D) three times to allow for a triplicate analysis of cPAHs for one of the three site-wide potential clamming area composite samples.

For the passive samplers, one sediment sample will be identified for replicate analysis. Two passive sampler samples will be inserted into one sample jar and analyzed as replicates. In order to ensure that doubling the samplers does not deplete the sediment PCB concentration (i.e., significantly affect the equilibrium), the replicate sample will be selected based on an assessment of the TOC.

Matrix Spikes and Matrix Spike Duplicates

The analysis of MS samples provides information on the extraction efficiency of the method on the sample matrix. By performing MSD analyses, information on the precision of the method is also provided for organic analyses. For organic analyses, a minimum of 1 MS/MSD pair will be analyzed for each SDG or for every 20 samples, whichever is more frequent, when sufficient sample volume is available, with the exception of PCB congeners and dioxins/furans. For inorganic analyses (i.e., metals), a minimum of one MS sample will be analyzed for each SDG, when sufficient sample volume is available.

Surrogate Spikes

All project samples analyzed for organic compounds will be spiked with appropriate surrogate compounds, as defined in the analytical methods. Surrogate recoveries will be reported by ARI, ALS, and Axys; however, no sample results will be corrected for recovery using these values.

Isotope Dilution Quantitation

All project samples analyzed for PCB and dioxin/furan congeners will be spiked with a known amount of surrogate compounds, as defined in the analytical methods. The labeled surrogate compounds will respond similarly to the effects of extraction, concentration, and gas chromatography. Data will be corrected for the recovery of the surrogates used for quantification.

Internal Standard Spikes

Internal standards may be used for calibrating and quantifying organic compounds and metals using MSs. If internal standards are required by the method, all calibration, QC, and project samples will be spiked with the same concentration of the selected internal standard(s). Internal standard recoveries and retention times must be within method and/or laboratory criteria.

Performance Reference Compounds

PRCs are used to determine the degree to which passive samplers have come to equilibrium during the period of deployment. The PE strips will be loaded with carbon-13-labelled PCBs prior to deployment. The carbon-13-labelled PCBs to be used for PRCs will include ¹³C-PCB8, ¹³C-PCB28, ¹³C-PCB95, ¹³C-PCB111, ¹³C-PCB153, and ¹³C-PCB178. The change in PRC concentration during deployment will be used to help quantify the non-equilibrium conditions between porewater and the PE for various PCB congeners.

PRC Day-zero Blank

PE samples will be set aside and analyzed to confirm PRC concentrations. These samples will be stored, frozen, at the laboratory and analyzed with the passive sampler replicates to measure PRC concentrations. PRC concentrations in the day-zero blanks will be used to establish pre-exposure PRC concentrations, which will be necessary to determine the fraction of PRC lost from each sampler during the sediment exposures. The change in PRC concentration during the exposures will be used to quantify non-equilibrium conditions, as described in Section 4.5.4.

Passive Sampler Exposure Blank

PE samples exposure blanks will be shipped from Axys to ARI and exposed only to double-distilled water on a shaker table throughout the passive sampler exposure period. The samplers will then be shipped to Axys and analyzed in order to determine

if there was any exposure to PCBs during shipping and exposure that was not associated with LDW sediment.

4.8 INSTRUMENT/EQUIPMENT TESTING, INSPECTION, AND MAINTENANCE

Prior to each field event, measures will be taken to test, inspect, and maintain all field equipment. All equipment used, including the differential global positioning system (DGPS) unit and digital camera, will be tested for accuracy before leaving for the field event.

The FC will be responsible for overseeing the testing, inspection, and maintenance of all field equipment. The laboratory PM will be responsible for ensuring laboratory equipment testing, inspection, and maintenance requirements are met. The methods used in calibrating the analytical instrumentation are described in Section 4.9.

4.9 INSTRUMENT/EQUIPMENT CALIBRATION AND FREQUENCY

Multipoint initial calibration will be performed on each analytical instrument at the start of the project, after each major interruption to the instrument, and when any continuing calibration does not meet the specified criteria. The number of points used in the initial calibration is defined in each analytical method. Continuing calibrations will be performed daily for organic analyses, every 10 samples for inorganic analyses, and with every sample batch for conventional parameters to ensure proper instrument performance.

Gel permeation chromatography (GPC) calibration verifications will be performed at least once every seven days, and corresponding raw data will be submitted by the laboratory with the data package. In addition, florisil performance checks will be performed for every florisil lot, and the resulting raw data will be submitted with the data package.

Calibration of analytical equipment used for chemical analyses includes the use of instrument blanks or continuing calibration blanks, which provide information on the stability of the baseline established. Continuing calibration blanks will be analyzed immediately after the continuing calibration verification, at a frequency of 1 blank for every 10 samples analyzed for inorganic analyses, and 1 blank every 12 hours for organic analyses. If the continuing calibration does not meet the specified criteria, the analysis must stop. Analysis may resume after corrective actions have been taken to meet the method specifications. All project samples analyzed by an instrument found to be out of compliance must be reanalyzed.

A Trimble[®] SPS461 or similar GPS receiver unit will be employed for the various sampling methods outlined in this QAPP. The GPS receiver will be calibrated daily to ensure that it is accurately recording positions from known benchmarks and functioning within the individual unit's factory specifications.

4.10 INSPECTION/ACCEPTANCE OF SUPPLIES AND CONSUMABLES

The FC will gather and check field supplies daily for satisfactory conditions before each field event. Batteries used in the digital camera will be checked daily and recharged as necessary. Supplies and consumables for the field sampling effort will be inspected upon delivery and accepted if the condition of the supplies is satisfactory.

4.11 DATA MANAGEMENT

All field data will be recorded on field forms, which the FC will check for missing information at the end of each field day and amend as necessary. A QC check will be done to ensure that all data have been transferred accurately from the field forms to the database. Field forms will be archived in the Windward library.

ARI, ALS, and Axys are required to submit data in an electronic format, as described in Section 3.7.2. The laboratory PM will contact the project QA/QC coordinator prior to data delivery to discuss specific format requirements.

A library of routines will be used to translate typical electronic output from laboratory analytical systems, and to generate data analysis reports. The use of automated routines will ensure that all data are consistently converted to the desired data structures, and that operator time is kept to a minimum. In addition, routines and methods for quality checks will be used to ensure such translations are correctly applied.

Written documentation will be used to clarify how field and analytical laboratory duplicates and QA/QC samples were recorded in the data tables, and to provide explanations of other issues that may arise. The data management task will include keeping accurate records of field and laboratory QA/QC samples so that project team members who use the data will have appropriate documentation. All data management files will be secured on the Windward network. Data management procedures outlined in Appendix C of the Work Plan will be followed (Windward and Integral 2017b).

5 Assessment and Oversight

5.1 COMPLIANCE ASSESSMENTS AND RESPONSE ACTIONS

EPA or its designees may observe field activities during each sampling event, as needed. If situations arise wherein there is a significant inability to follow the QAPP methods precisely, the Windward PM will determine the appropriate actions and consult EPA (or its designee).

5.1.1 Compliance assessments

Laboratory and field performance assessments will consist of on-site reviews conducted by EPA of QA systems and equipment for sampling, calibration, and measurement. EPA personnel may conduct a laboratory audit prior to sample analysis. Any pertinent laboratory audit reports will be made available to the project QA/QC coordinator upon request. ARI, ALS, and Axys will be required to have written procedures addressing internal QA/QC. All laboratories and QA/QC coordinators will be required to ensure that all personnel engaged in sampling and analysis tasks have appropriate training.

5.1.2 Response actions for field sampling

The FC, or a designee, will be responsible for correcting equipment malfunctions throughout field sampling, and for resolving situations in the field that may result in nonconformance or noncompliance with this QAPP. All corrective measures will be immediately documented in the field logbook, and protocol modification forms will be completed.

5.1.3 Corrective action for laboratory analyses

ARI, ALS, and Axys will be required to comply with their current written SOPs, laboratory QA plan, and analytical methods. All laboratory personnel will be responsible for reporting problems that may compromise the quality of the data. The analysts will identify and correct any anomalies before continuing with sample analysis. The laboratory PMs will be responsible for ensuring that appropriate corrective actions are initiated as required for conformance with this QAPP.

The project QA/QC coordinator will be notified immediately if any QC sample exceeds the DQIs outlined in this QAPP (Table 4-17) and the exceedance cannot be resolved through standard corrective action procedures. A description of the anomaly, the steps taken to identify and correct the anomaly, and the treatment of the relevant sample batch (i.e., recalculation, reanalysis, and re-extraction) will be submitted with the data package using the case narrative or corrective action form.

5.2 REPORTS TO MANAGEMENT

The FC will prepare a summary email for submittal to LDWG and EPA following each sampling day. The project QA/QC coordinator will also prepare progress reports for submittal by email to LDWG and EPA on the following occasions: 1) after sampling has been completed and samples have been submitted for analysis, 2) when information is received from the laboratory, and 3) when analyses are complete. The statuses of the samples and analyses will be indicated, with emphasis on any deviations from this QAPP. For each sampling event (Sampling Event 1 and Sampling Event 2), a data report will be written after validated data are available, as described in Section 2.2.

6 Data Validation and Usability

6.1 DATA VALIDATION

The data validation process will begin in the laboratory with the review and evaluation of data by supervisory personnel or QA specialists. The laboratory analyst will be responsible for ensuring that the analytical data are correct and complete, that appropriate procedures have been followed, and that QC results are within acceptable limits. The project QA/QC coordinator will be responsible for ensuring that all analyses performed by ARI, ALS, and Axys are correct, properly documented, and complete, and that they satisfy the project DQIs specified in this QAPP.

Data will not be considered final until validated. Data validation will be conducted following EPA guidance (EPA 2016a, b, 2014a; USEPA 2016).

Independent third-party data review and summary validation of the analytical chemistry data will be conducted by EcoChem or a suitable alternative. All data will undergo summary-level data validation and a minimum of 10% or one SDG will undergo full data validation. Full data validation parameters will include:

- QC analysis frequencies
- Analysis holding times
- Laboratory blank contamination
- Instrument calibration
- Surrogate recoveries
- LCS/SRM recoveries
- MS recoveries
- ◆ MS/MSD RPDs
- Compound identifications verification of raw data with the reported results (10% of analytes)
- Compound quantitations verification of calculations and RLs (10% of analytes)
- Instrument performance check (tune) ion abundances
- Internal standard areas and retention time shifts
- Ion abundance ratio compared to theoretical ratios for samples analyzed by EPA methods 1613b and 1668c

If no discrepancies are found between reported results and raw data in the dataset that undergoes full data validation, then a summary validation of the rest of the data can proceed using all of the QC forms submitted in the laboratory data package. QA

review of the sediment and passive sampler chemistry data will be performed in accordance with the QA requirements of the project, the technical specifications of the analytical methods indicated in Tables 4-18 through 4-21, and EPA guidance for organic and inorganic data review (EPA 2016a, b). The EPA PM may have EPA peer review the third-party validation or perform data assessment/validation on a percentage of the data.

All discrepancies and requests for additional, corrected data will be discussed with ARI, ALS, and Axys prior to issuance of the formal data validation report. The project QA/QC coordinator should be informed of all contacts with ARI, ALS, and Axys during data validation. Procedures used and findings made during data validation will be documented on worksheets. The data validator will prepare a data validation report that will summarize QC results, qualifiers, and possible data limitations. This data validation report will be appended to the data report. Only validated data with appropriate qualifiers will be released for general use.

6.2 RECONCILIATION WITH DATA QUALITY INDICATORS

Data QA will be conducted by the project QA/QC coordinator in accordance with EPA guidelines (EPA 2016a, b). The results of the third-party independent review and validation will be reviewed, and cases wherein the project DQIs were not met will be identified. The usability of the data will be determined in terms of the magnitude of the DQI exceedance.

7 References

- AECOM. 2012. Final feasibility study, Lower Duwamish Waterway. Prepared for Lower Duwamish Waterway Group. AECOM, Seattle, WA.
- Apell JN, Gschwend PM. 2014. Validating the use of performance reference compounds in passive samplers to assess porewater concentrations in sediment beds. Environ Sci Tech 48(17):10301-10307.
- California EPA. 2009. Technical support document for cancer potency factors: methodologies for derivation, listing of available values, and adjustments to allow for early life stage exposures. Air Toxicology and Epidemiology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA.
- Ecology. 2016. Lower Duwamish Waterway source control strategy. Publication No. 16-09-339. Washington State Department of Ecology, Olympia, WA.
- EPA. 2002. Guidance for quality assurance project plans. QA/G-5. EPA/240/R-02/009. Office of Environmental Information, US Environmental Protection Agency, Washington, DC.
- EPA. 2014a. R10 data validation and review guidelines for polychlorinated dibenzo-*p*dioxin and polychlorinated dibenzofuran data (PCDD/PCDF) using Method 1613B, and SW846 Method 8290A. EPA-910-R-14-003. US Environmental Protection Agency, Region 10 Office of Environmental Assessment, Seattle, WA.
- EPA. 2014b. Record of Decision. Lower Duwamish Waterway Superfund Site. US Environmental Protection Agency.
- EPA. 2016a. National functional guidelines for inorganic Superfund methods data review. OLEM 9355.0-133. EPA 540-R-2016-001. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washingon, D.C.
- EPA. 2016b. National functional guidelines for Superfund organic methods data review. OLEM 9355.0-134. EPA-540-R-2016-002. Office fo Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, D C.
- EPA. 2016c. Third Amendment to the Administrative Order on Consent for remedial investigation/feasibility study (AOC) for the Lower Duwamish Waterway (LDW), CERCLA-10-2001-0055. US Environmental Protection Agency, Region 10, Olympia, WA.

- EPA, SERDP, ESTCP. 2017. Laboratory, field, and analytical procedures for using passive sampling in the evaluation of contaminated sediments: user's manual. EPA/600/R-16/357. February 2017 final web version (1.0). US Environmental Protection Agency, US Department of Defense, Strategic Environmental Research and Development Program, and Environmental Security Technology Certification Program.
- Fagervold SK, Chai Y, Davis JW, Wilken M, Cornelissen G, Ghosh U. 2010. Bioaccumulation of polychlorinated dibenzo-*p*-dioxins/dibenzofurans in *E. fetida* from floodplain soils and the effect of activated carbon amendment. Environ Sci Tech 44(14):5546-5552.
- Ghosh U, Driscoll SK, Burgess RM, Jonker MTO, Reible D, Gobas F, Choi Y, Apitz SE, Maruya KA, Gala WR, Mortimer M, Beegan C. 2014. Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr Environ Assess Manag 10(2):210-223.
- Gschwend P, McacFarlane J, Palaia K, Reichenbacher S, Gouveia D. 2012. Passive PE sampling in support of in situ remediation of contaminated sediments (standard operating procedure for the preparation of polyethylene devices). ESTCP Project ER-200915. SERDP/ESTCP.
- Gschwend P, Tcaciuc P, Apell J. 2014. Passive PE sampling in support of in situ remediation of contaminated sediments passive sampler PRC calculation software user's guide. ESTCP Project ER-2000915. ESTCP.
- Gustafsson JP. 2001. Modeling the acid-base properties and metal complexation of humic substances with the Stockholm humic model. J Colloid Interface Sci 244:102-112.
- Hart Crowser. 2012. Lower Duwamish Waterway bank sampling summary report. Hart Crowser, Inc., Seattle, WA.
- HDR, SEE, KTA. 2013. Data report. Lower Duwamish Waterway, East Waterway, and West Waterway subsurface sediment characterization. HDR Engineering, Inc., Science and Engineering for the Environment, LLC, and Ken Taylor Associates, Inc.
- King County. [in prep]. King County Lower Duwamish Waterway source control 2016 annual report. Department of Natural Resources and Parks, Department of Transportation, and Department of Executive Services, Seattle, WA.
- LDWG. 2016. Personal communication (email from D. Schuchardt, LDWG, to K. Godtfredsen, Windward, regarding Leidos maps prepared for Ecology and provided to LDWG by EPA). Lower Duwamish Waterway Group, Seattle, WA. August 2, 2016.

- Leidos. 2014a. LDW technical support: sediment outfall sampling Phase 2 scoping (draft). Leidos, Bothell, WA.
- Leidos. 2014b. Lower Duwamish Waterway. Outfall inventory update January 2012 -February 2014. Leidos, Bothell, WA.
- Leidos. 2015. LDW NPDES inspection sampling support project. S 96th Street and Hamm Creek sediment trap and creek sampling data report. Prepared for Washington State Department of Ecology. Leidos, Bothell, WA.
- NOAA. 2013. Tides and currents. Datums for 9447130, Seattle WA [online]. National Oceanic and Atmospheric Administration. Updated November 15, 2013. Available from: https://tidesandcurrents.noaa.gov/datums.html?id=9447130.
- PSEP. 1986. Recommended protocols for measuring conventional sediment variables in Puget Sound. Prepared for the Puget Sound Estuary Program, US Environmental Protection Agency, Region 10. Tetra Tech, Seattle, WA.
- PSEP. 1997. Recommended guidelines for sampling marine sediment, water column, and tissue in Puget Sound. Prepared for the Puget Sound Estuary Program, US Environmental Protection Agency, Region 10. King County (METRO) Environmental Laboratory, Seattle, WA.
- SAIC. 2011. Surface sediment sampling at outfalls in the lower Duwamish Waterway. Science Applications International Corporation, Bothell, WA.
- SoundEarth. 2011. Terminal 107 environmental conditions report. SoundEarth Strategies, Inc., Seattle, WA.
- TIG. 2016. Data report. 2016 soil, sediment, and catch basin sampling and analysis. Lower Duwamish Waterway Superfund Site. The Intelligence Group, Seattle, WA.
- USEPA. 2016. National functional guidelines for high resolution Superfund methods data review. EPA 542-B-16-001. US Environmental Protection Agency, Washington, DC.
- Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE. 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223-241.
- Windward, Integral. 2017a. Pre-design studies work plan porewater addendum. Draft final. Submitted to EPA August 18, 2017. Windward Environmental LLC and Integral Consulting Inc., Seattle, WA.

Windward, Integral. 2017b. Pre-design studies work plan. Lower Duwamish Waterway Superfund site. Final. Prepared for the Lower Duwamish Waterway Group for submittal to EPA Region 10 on August 28, 2017. Windward Environmental LLC and Integral Consulting Inc., Seattle, WA.

Lower Duwamish Waterway Group

Surface Sediment QAPP May 31, 2018 112

LOWER DUWAMISH WATERWAY BASELINE SURFACE SEDIMENT COLLECTION AND CHEMICAL ANALYSES - QUALITY ASSURANCE PROJECT PLAN: APPENDIX A: HEALTH AND SAFETY PLAN

FINAL

Prepared for

Lower Duwamish Waterway Group

For submittal to

US Environmental Protection Agency

Prepared by:

200 West Mercer Street, Suite 401 s Seattle, Washington s 98119

HEALTH AND SAFETY PLAN

Title and Approval Page: LDW Surface Sediment Sampling Health and Safety Plan

By their signature, the undersigned certify that this health and safety plan is approved and that it will be used to govern health and safety aspects of fieldwork described in the quality assurance project plan to which it is attached.

Name Project Manager

Jusan Wird

Name Corporate Health and Safety Manager

111

Name Field Coordinator/Health and Safety Officer

5/31/18 Date

5/31/18 Date

5/31/18 Date

FINAL

Surface Sediment QAPP Appendix A A-i

Table of Contents

Та	bles	A-iii
Fig	gures	A-iii
Ac	cronyms	A-iv
1	Introduction	A-1
2	Site Description and Project Scope2.1SITE DESCRIPTION2.2SCOPE OF WORK	A-3 A-3 A-3
3	Health and Safety Personnel	A-5
4	 Hazard Evaluation and Control Measures 4.1 PHYSICAL HAZARDS 4.1.1 Slips, trips, and falls 4.1.2 Sampling equipment deployment 4.1.3 Falling overboard 4.1.4 Manual lifting 4.1.5 Heat stress 4.1.6 Hypothermia or frostbite 4.1.7 Weather 4.1.8 Vessel traffic 4.2 CHEMICAL HAZARDS 4.2.1 Exposure routes 4.2.2 Description of chemical hazards 4.3 ACTIVITY HAZARD ANALYSIS 	A-7 A-7 A-7 A-8 A-8 A-8 A-8 A-8 A-8 A-9 A-9 A-9 A-9 A-9 A-10 A-11
5	Work Zones and Shipboard Access Control5.1WORK ZONE5.2DECONTAMINATION STATION5.3ACCESS CONTROL	A-13 A-13 A-13 A-13
6	Safe Work Practices	A-15
7	 Personal Protective Equipment and Safety Equipment 7.1 LEVEL D PERSONAL PROTECTIVE EQUIPMENT 7.2 MODIFIED LEVEL D PERSONAL PROTECTIVE EQUIPMENT 7.3 SAFETY EQUIPMENT 	A-17 A-17 A-17 A-17
8	Monitoring Procedures for Site Activities	A-19
9	Decontamination9.1MINIMIZATION OF CONTAMINATION9.2PERSONNEL DECONTAMINATION	A-21 A-21 A-22

Lower Duwamish Waterway Group

Surface Sediment QAPP Appendix A A-ii

	9.3 SAMPLING EQUIPMENT DECONTAMINATION						
10	Dispo 10.1 10.2	esal of Contaminated Materials Personal Protective Equipment Excess Sample Materials	A-23 A-23 A-23				
11	Traini 11.1 11.2 11.3	ng Requirements Project-specific Training Daily Safety Briefings First Aid and CPR	A-25 A-25 A-25 A-26				
12	Medio	al Surveillance	A-27				
13	Repo	rting and Record Keeping	A-29				
14	Emer 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14 14 14 14 14.9 14.10 14.11	gency Response Plan PRE-EMERGENCY PREPARATION PROJECT EMERGENCY COORDINATOR EMERGENCY RESPONSE CONTACTS RECOGNITION OF EMERGENCY SITUATIONS DECONTAMINATION FIRE PERSONAL INJURY OVERT PERSONAL EXPOSURE OR INJURY 8.1 Skin contact 8.2 Inhalation 8.3 Ingestion 8.4 Puncture wound or laceration SPILLS AND SPILL CONTAINMENT BOATING HAZARDS EMERGENCY ROUTES TO THE HOSPITAL	A-31 A-31 A-32 A-32 A-32 A-33 A-33 A-33 A-33 A-34 A-34 A-34 A-34				
Attachment 1. Health and Safety Plan Acknowledgment Form							
Та	bles						
Tal	ole A-1	Activity hazard analysis	A-12				
Tal	ole A-2	Emergency response contacts	A-32				
Tal	ole A-3	Potential boat emergency hazards and responses	A-35				
Fi	gures						
Ма	р А-1.	Emergency routes to Harborview Medical Center	A-38				

Lower Duwamish Waterway Group Final Final Final

Acronyms

CFR	Code of Federal Regulations
CPR	cardiopulmonary resuscitation
FC	field coordinator
HSM	health and safety manager
HSO	health and safety officer
HSP	health and safety plan
LDW	Lower Duwamish Waterway
OSHA	Occupational Safety and Health Administration
РАН	polycyclic aromatic hydrocarbon
РСВ	polychlorinated biphenyl
PFD	personal flotation device
PM	project manager
PPE	personal protective equipment
QAPP	quality assurance project plan
ТВТ	tributyltin
TCDD	tetrachlorodibenzo-p-dioxin
USCG	US Coast Guard
Windward	Windward Environmental LLC

Lower Duwamish Waterway Group
1 Introduction

This site-specific health and safety plan (HSP) describes safe working practices for conducting field activities at potentially hazardous sites and for handling potentially hazardous materials/waste products. This HSP covers elements specified in 29 Code of Federal Regulations (CFR) 1910§120. The procedures and guidelines contained herein are based on generally recognized health and safety practices. Any changes or revisions to this HSP will be made by a written amendment that will become a permanent part of this document. The goal of this HSP is to establish procedures for safe working practices for all field personnel and visitors.

This HSP addresses all activities associated with the collection and handling of surface sediment and bank soil samples from the Lower Duwamish Waterway (LDW) for chemical analyses. During site work, this HSP is to be implemented by the field coordinator (FC), who is also the designated site health and safety officer (HSO), in cooperation with the Windward Environmental LLC (Windward) health and safety manager (HSM) and the Windward project manager (PM).

All personnel involved in fieldwork on this project are required to comply with this HSP. The contents of this HSP reflect anticipation of the types of activities to be performed, knowledge of the physical characteristics of the site, and consideration of preliminary chemical data from previous investigations at the site. This HSP may be revised based on new information and/or changed conditions during site activities. Revisions will be documented in the project records.

2 Site Description and Project Scope

2.1 SITE DESCRIPTION

The sampling area is in the LDW (see Maps 4-1 through 4-9 in the quality assurance project plan [QAPP]). The QAPP to which this HSP is appended provides complete details of the sampling program. This section summarizes the types of work that will be performed during field activities.

2.2 SCOPE OF WORK

Specific tasks to be performed are as follows:

- Collection of sediment samples from a boat using a pneumatic grab sampler
- Collection of sediment and soil samples from intertidal areas using a stainless steel spoon, hand corer, or shovel
- u Sample handling, processing, and shipping

Additional details on sampling design and methods are provided in Section 4 of the QAPP.

3 Health and Safety Personnel

Key health and safety personnel and their responsibilities are described below. These individuals are responsible for the implementation of this HSP; they will be responsible for informing all individuals who are assigned to work on the site, or who visit the site, of the contents of this plan, and for ensuring that each person signs the Health and Safety Plan Acknowledgment Form (Attachment 1). By signing the Health and Safety Plan Acknowledgment Form, individuals recognize the site health and safety hazards, known or suspected, and agree to adhere to the protocols required to minimize exposure to such hazards.

Project Manager: The PM will have overall responsibility for the successful outcome of the project. The PM will ensure that adequate resources and budget are provided for the health and safety staff to carry out their responsibilities during fieldwork. In consultation with the HSM, the PM will make final decisions concerning implementation of the HSP.

Field Coordinator/Health and Safety Officer: Because of the limited scope and duration of fieldwork for this project, the FC and HSO will be the same person. The FC/HSO will direct field sampling activities, coordinate the technical components of the field program with health and safety components, and ensure that work is performed according to the QAPP.

The FC/HSO will implement this HSP at the work location, and will be responsible for all health and safety activities and the delegation of duties to a health and safety technician in the field, if appropriate. The FC/HSO will also have stop-work authority, to be used if there is an imminent safety hazard or potentially dangerous situation. The FC/HSO or his designee will be present during sampling and operations.

Corporate Health and Safety Manager: The HSM will have overall responsibility for preparation, approval, and revisions of this HSP. The HSM will not necessarily be present during fieldwork, but will be readily available, if required, for consultation regarding health and safety issues during fieldwork.

Field Crew: All field crew members must be familiar and comply with the information in this HSP. They will also have the responsibility to report any potentially unsafe or hazardous conditions to the FC/HSO immediately.

Lower Duwamish Waterway Group

4 Hazard Evaluation and Control Measures

This section covers potential physical and chemical hazards that may be associated with the proposed project activities, and presents control measures for addressing these hazards. The activity hazard analysis, Section 4.3, lists the potential hazards associated with each site activity and the recommended site control to be used to minimize each potential hazard.

Confined space entry will not be necessary for this project. Therefore, hazards associated with this activity are not discussed in this HSP.

4.1 PHYSICAL HAZARDS

For this project, it is anticipated that physical hazards will present a greater risk of injury than chemical hazards. Physical hazards are identified and discussed below.

4.1.1 Slips, trips, and falls

As with all field work, caution should be exercised to prevent slips on slick surfaces. In particular, sampling from a boat or other floating platform requires careful attention to minimize the risk of falling down or overboard. The same care should be used in rainy conditions or on the shoreline where slick rocks or debris can be found. Slips can be minimized by wearing boots with good tread, made of material that does not become overly slippery when wet.

Trips are always a hazard on the uneven deck of a boat, in a cluttered work area, or in the intertidal zone where uneven substrate is common. Personnel will keep work areas as free as possible from items that interfere with walking.

Falls may be avoided by working as far from exposed edges as possible, by erecting railings, and by using fall protection when working on elevated platforms. For this project, open hatches may present a fall hazard, so hatches will remained closed when not being accessed for storage. Personnel should be aware of the area around any open hatches and use extra caution when accessing them.

4.1.2 Sampling equipment deployment

A pneumatic grab sampler deployed from a sampling vessel will be used to collect surface sediment samples, as described in Section 4.2.2 of the QAPP. Before sampling activities begin, there will be a training session for all field personnel for the equipment that will be onboard the sampling vessel. For locations that cannot be accessed from a vessel, samples will be hand-collected using a stainless steel spoon, hand corer or shovel.

4.1.3 Falling overboard

Sampling activities will be conducted from a boat. As with any work from a floating platform, there is a chance of falling overboard. US Coast Guard-approved Type II or III personal flotation devices (PFDs) will be worn while working on the deck of the boat.

4.1.4 Manual lifting

Equipment and samples must be lifted and carried. Back strain can result if lifting is done improperly. During any manual handling tasks, personnel should lift with the load supported by their legs and not their backs. For heavy loads, an adequate number of people will be used, or if possible, a mechanical lifting/handling device will be used.

4.1.5 Heat stress

Heat stress could be an issue during summer. Heat-related problems include heat rash, heat cramps, heat exhaustion, and heat stroke if the person does not ingest sufficient fluids. Heat rash can occur when sweat is not allowed to evaporate, leaving the skin wet most of the time and making it subject to irritation. Heat cramps are painful spasms of the muscles from excessive salt loss associated with sweating. Excessive sweating can also lead to heat exhaustion, resulting in moist, clammy skin. Physical signs and symptoms of heat exhaustion include headache, nausea, vertigo, weakness, thirst, and giddiness. Heat exhaustion may progress to heat stroke if a worker is unable to cool and re-hydrate his or her body. The primary signs and symptoms of heat stroke are confusion, irrational behavior, loss of consciousness, convulsions, a lack of sweating, hot dry skin, and an abnormally high body temperature. Workers should be aware of the key differences between the signs and symptoms of heat stroke and those of heat exhaustion, such as the lack of sweating, the color of the skin (red), and the rise in body temperature associated with the former. Heat stroke is a medical emergency that requires immediate medical attention.

A person exhibiting any of the signs of heat stress should be removed from the work area to a shaded area. Immediate steps that can be taken to reduce the symptoms include using a fan or soaking with water to increase cooling and promote evaporation, rehydrating with electrolyte replacement fluids, and removing outer layers of clothing.

4.1.6 Hypothermia or frostbite

Hypothermia occurs when the body's core temperature falls below 95°F. The sampling will occur during the time of year when cold and wet weather conditions may occur, making hypothermia a concern. Hypothermia is also a risk when someone becomes wet from falling overboard. The FC/HSO will monitor all crew members for early symptoms of hypothermia (e.g., shivering, muscle incoordination, mild confusion). If such symptoms are observed, the FC/HSO will take immediate steps to reduce heat loss by providing extra layers of clothing, or by temporarily moving the affected crew member to a warmer environment.

Lower Duwamish Waterway Group

All personnel will wear protective clothing appropriate for the weather conditions and physical activity. A person exhibiting any of the signs of hypothermia should be removed from the work area to a warmer environment. Immediate steps that can be taken to reduce the symptoms of hypothermia include minimizing exposure to cold and wet conditions, limiting sitting or standing still for long periods, rehydration with warm fluids, and the removal of any wet outer layers of clothing to permit sweat evaporation during rest periods in a warm environment.

Sampling operations and conditions that might result in the occurrence of frostbite are not anticipated. The sampling will take place during the time of year (i.e., August/September) when extreme weather conditions are not expected to occur.

4.1.7 Weather

In general, field team members will be equipped for the normal range of weather conditions. The FC/HSO will be aware of current weather conditions, and of the potential for those conditions to pose a hazard to the field crew. Some conditions that might force work stoppage are electrical storms, high winds, or high waves resulting from winds.

4.1.8 Vessel traffic

Because of the high volume of vessel traffic on the LDW, precautions and safe boating practices will be implemented to ensure that the field boat does not interrupt such traffic. As practical, the field boat will stay out of the navigation channel.

4.2 CHEMICAL HAZARDS

Previous investigations have shown that some chemicals are present at higher-than-background concentrations in the sampling area. For the purposes of discussing the potential exposure of individuals to chemicals in sediments, the chemicals of concern are metals, tributyltin (TBT), petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs).

4.2.1 Exposure routes

Potential routes of chemical exposure include inhalation, dermal contact, and ingestion. Exposure will be minimized by using safe work practices and by wearing the appropriate personal protective equipment (PPE). Further discussion of PPE requirements is presented in Section 7.

4.2.1.1 Inhalation

Inhalation is not expected to be an important route of exposure.

4.2.1.2 Dermal exposure

Dermal exposure to hazardous substances associated with sediments, surface water, or equipment decontamination will be controlled by the use of PPE, and by adherence to detailed sampling and decontamination procedures.

4.2.1.3 Ingestion

Incidental ingestion of sediment or surface water is not considered a major route of exposure for this project. Accidental ingestion of surface water is possible. However, careful handling of equipment and containers while onboard the boat should prevent water from splashing or spilling during sample collection and handling activities.

4.2.2 Description of chemical hazards

4.2.2.1 Metals and tributyltin

Exposure to metals may occur via ingestion or skin contact. As mentioned above, neither is a likely exposure route. Metal fumes or metal-contaminated dust will not be encountered during field and sample handling activities. Large amounts of sediment would need to be ingested for any detrimental effects to occur. Momentary skin contact allows little, if any, opportunity for metals to pass into the body. Field procedures require immediate washing of sediments from exposed skin.

4.2.2.2 Petroleum hydrocarbons and polycyclic aromatic hydrocarbons

Exposure to petroleum hydrocarbons and PAHs may occur via ingestion or skin contact. Inhalation, the most important human health exposure pathway for this group of chemicals, is not expected to occur at this site. Animal studies have also shown that PAHs can have harmful effects on the skin, body fluids, and the ability to fight disease after both short- and long-term exposure, but these effects have not been observed in humans. Some PAHs may reasonably be expected to be carcinogens. However, large amounts of sediment would need to be ingested for any detrimental effects to occur. Momentary skin contact allows little, if any, opportunity for compounds to pass into the body. Field procedures require immediate washing of sediments from exposed skin.

4.2.2.3 Polychlorinated biphenyls

Prolonged skin contact with PCBs may cause acne-like symptoms known as chloracne. Irritation to eyes, nose, and throat may also occur. Acute and chronic exposure can damage the liver and cause symptoms of edema, jaundice, anorexia, nausea, abdominal pains, and fatigue. PCBs are a suspected human carcinogen. Skin absorption may contribute substantially to the uptake of PCBs. Large amounts of sediment would need to be ingested for any detrimental effects to occur. Momentary skin contact allows little, if any, opportunity for compounds to pass into the body. Field procedures require immediate washing of sediments from exposed skin.

Lower Duwamish Waterway Group

4.2.2.4 Dioxins/furans

Prolonged skin contact with dioxins/furans may cause acne-like symptoms known as chloracne. Other effects on the skin, such as red skin rashes, have been reported to occur in people following exposure to high concentrations of

2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD). Acute and chronic exposure can damage the liver, increase the risk of diabetes and abnormal glucose tolerance, and possibly increase the risk for reproductive and developmental effects. 2,3,7,8-TCDD is a possible human carcinogen, and a mixture of dioxins/furans with six chlorine atoms (four of the six chlorine atoms at the 2-, 3-, 7-, and 8-positions) is a probable human carcinogen. Skin absorption may substantially contribute to the uptake of dioxins/furans. Large amounts of sediment would need to be ingested for any detrimental effects to occur. Momentary skin contact allows little, if any, opportunity for the passage of any of the compounds into the body. Field procedures require the immediate washing of sediments from exposed skin.

4.3 ACTIVITY HAZARD ANALYSIS

The activity hazard analysis summarizes the field activities to be performed during the project, outlines the hazards associated with each activity, and presents controls that can reduce or eliminate the risk of the hazard occurring.

Table 1 presents the activity hazard analysis for tissue sampling from a boat.

Table A-1. Activity hazard analysis

Activity	Hazard	Control
Sediment sampling ^a	slips and trips	Use extra care when walking on uneven and unstable surfaces along the shoreline, and under wet/slippery conditions. Wear boots with good tread.
	falling overboard	Use care in boarding/departing from the vessel. Deploy and recover the net or traps from the back deck of the boat. Wear a PFD.
	skin contact with contaminated sediments or liquids	Wear modified Level D PPE.
	back strain	Use appropriate lifting technique when deploying and retrieving pots, or seek help.
	overhead hazards	Use caution and be aware of overhead and gear hazards such as the grab sampler and A-frame. Wear a hard hat and modified Level D PPE when working on deck.
	open hatches	Keep hatches closed when not being accessed. Be aware around hatch area and use caution when entering/exiting hatch.
	heat stress	Monitor crew members for signs/symptoms of heat stress. Remove person to cool area and remove extra layers of clothing. Promote evaporative cooling and rehydrate with electrolytic fluids.
	hypothermia	Monitor crew members for signs/symptoms of hypothermia. Minimize prolonged exposure to wet and cold conditions. Remove person to warm area and remove wet clothing. Rehydrate with warm fluids.

^a Hazards related to sampling from a boat are also applicable.

PFD – personal flotation device

PPE - personal protective equipment

Lower Duwamish Waterway Group

Surface Sediment QAPP Appendix A A-12

5 Work Zones and Shipboard Access Control

During sampling and sample handling activities, work zones will be established to identify where sample collection and processing are actively occurring. The intent of the zones is to limit the migration of sample material out of its zone, and to restrict unauthorized access to active work areas by defining work zone boundaries.

5.1 WORK ZONE

A work zone will encompass the area where sample collection and handling activities are being performed. The FC/HSO will delineate the work zone as a particular area onboard the collection vessel or at each intertidal shoreline sampling location. Only persons with appropriate training, PPE, and authorization from the FC/HSO will be allowed to enter the work zone while work is in progress.

5.2 DECONTAMINATION STATION

A decontamination station where personnel will clean soiled boots and/or PPE prior to leaving the work zone will be set up. The station will have the buckets, brushes, soapy water, rinse water, or wipes necessary to clean boots, PPE, or other equipment leaving the work zone. Plastic bags will be provided for expendable and disposable materials. If the sampling location does not allow for the establishment of a decontamination station, the FC/HSO will provide alternatives to prevent the spread of contamination.

Decontamination of the boat will be completed at the end of each work day. Cockpit and crew areas will be rinsed down with water to minimize the accumulation of sediment.

5.3 ACCESS CONTROL

Security and control of access to the boat will be the responsibility of the FC/HSO and boat captain. Boat access will be granted to necessary project personnel and authorized visitors only. Any security or access control problems will be reported to the client or appropriate authorities.

Lower Duwamish Waterway Group

6 Safe Work Practices

Following common sense will minimize the risk of exposure or accidents at a work site. The following general safety rules will be adhered to on-site:

- Do not climb over or under obstacles of questionable stability (e.g., docks, piers).
- **u** Do not eat, drink, smoke, or perform other hand-to-mouth transfers in the work zone.
- **u** Work only in well-lighted spaces.
- Never enter a confined space without the proper training, permits, and equipment.
- Make eye contact with equipment operators when moving within the range of their equipment.
- Be aware of the movements of shipboard equipment when not in the operator's range of vision.
- Get immediate first aid for all cuts, scratches, abrasions, or other minor injuries.
- **u** Use the established sampling and decontamination procedures.
- **u** Always use the buddy system.
- **u** Be alert to your own and other workers' physical conditions.
- **u** Report all accidents, no matter how minor, to the FC/HSO.
- **u** Do not do anything dangerous or unwise even if ordered by a supervisor.

7 Personal Protective Equipment and Safety Equipment

Appropriate PPE will be worn as protection against potential hazards. In addition, a PFD will be required when working onboard the boat. Prior to donning PPE, the field crew will inspect their PPE for any defects that might render the equipment ineffective.

Fieldwork will be conducted in Level D or modified Level D PPE, as discussed in Sections 7.1 and 7.2. Situations requiring PPE beyond modified Level D are not anticipated. Should the FC/HSO determine that PPE beyond modified Level D is necessary, the HSM will be notified and an alternative selected.

New personnel or visitors will be informed of PPE requirements during their initial site briefing (see Section 3).

7.1 LEVEL D PERSONAL PROTECTIVE EQUIPMENT

Workers performing general activities during which skin contact with contaminated materials is unlikely will wear Level D PPE. Level D PPE includes the following:

- **u** Cotton overalls or lab coats
- u Chemical-resistant steel-toed boots
- u Chemical-resistant gloves
- u Safety glasses

7.2 MODIFIED LEVEL D PERSONAL PROTECTIVE EQUIPMENT

Workers performing activities during which skin contact with contaminated materials is possible, and during which inhalation risks are not expected, will be required to wear an impermeable outer suit. The type of outerwear will be chosen according to the types of chemical contaminants that might be encountered. Modified Level D PPE includes the following:

- Impermeable outer garb such as rain gear
- Waterproof and chemical-resistant steel-toed boots
- **u** Waders and wader boots
- u Chemical-resistant outer gloves
- **u** Heavy-duty waterproof gloves
- u Hard hats

7.3 SAFETY EQUIPMENT

In addition to PPE that will be worn by shipboard personnel, basic emergency and first aid equipment will be provided. Equipment for the field team will include:

- **u** A copy of this HSP
- **u** A first aid kit adequate for the number of personnel
- **u** Emergency eyewash
- u Sunscreen

The FC/HSO will ensure that the safety equipment is onboard. Equipment will be checked daily to ensure its readiness for use.

8 Monitoring Procedures for Site Activities

A monitoring program that addresses the potential site hazards will be maintained. For this project, air, dust, and noise monitoring will not be necessary. No volatile organic compounds have been identified among the expected contaminants, the sampled media will be wet and will not pose a dust hazard, and none of the equipment will emit high-amplitude (> 85 dBA) sound. For this project, the monitoring program will consist of all workers monitoring themselves and their co-workers for signs that might indicate physical stress or illness.

All personnel will be instructed to look for and inform each other of any deleterious changes in their physical or mental condition during the performance of all field activities. Examples of such changes are as follows:

- u Headaches
- u Dizziness
- u Nausea
- u Symptoms of heat stress
- u Blurred vision
- u Cramps
- u Irritation of eyes, skin, or respiratory system
- u Changes in complexion or skin color
- Changes in apparent motor coordination
- u Increased frequency of minor mistakes
- Excessive salivation or changes in papillary response
- u Changes in speech ability or speech pattern
- u Shivering
- u Blue lips or fingernails

If personnel develop any of these conditions, work will be halted immediately and the affected person(s) evaluated. If further assistance is needed, personnel at the local hospital will be notified, and an ambulance will be summoned if the condition is thought to be serious. If the condition is the direct result of sample collection or handling activities, procedures will be modified to address the problem.

Lower Duwamish Waterway Group

Surface Sediment QAPP Appendix A A-19

9 Decontamination

Decontamination is necessary to prevent the migration of contaminants from the work zone(s) into the surrounding environment, and to minimize the risk of exposure of personnel to contaminated materials that might adhere to PPE. The following sections discuss personnel and equipment decontamination. The following supplies will be available to perform decontamination activities:

- u Wash buckets
- u Rinse buckets
- u Scrub brushes
- **u** Clean water sprayers
- u Paper towels
- u Plastic garbage bags
- Alconox[®] or similar decontamination solution

9.1 MINIMIZATION OF CONTAMINATION

The first step in addressing contamination is to prevent or minimize exposure to existing contaminated materials and the spread of those materials. During field activities, the FC/HSO will enforce the following measures:

Personnel:

- **u** Do not walk through areas of obvious or known contamination, if avoidable.
- **u** Do not handle, touch, or smell contaminated materials directly.
- **u** Make sure PPE has no cuts or tears prior to use.
- Fasten all closures on outer clothing, covering with tape if necessary.
- Protect and cover any skin injuries.
- **u** Stay upwind of airborne dusts and vapors.
- **u** Do not eat, drink, chew tobacco, or smoke in the work zones.

Sampling equipment and boat:

- Place clean equipment on a plastic sheet or aluminum foil to avoid direct contact with contaminated media.
- Keep contaminated equipment and tools separate from clean equipment and tools.
- **u** Clean boots before entering the boat.

Lower Duwamish Waterway Group

9.2 PERSONNEL DECONTAMINATION

The FC/HSO will ensure that all site personnel are familiar with personnel decontamination procedures. Personnel will perform the following decontamination procedures, as appropriate, before eating lunch, taking a break, or leaving the work location:

- 1. If outer suit is heavily soiled, rinse it off.
- 2. Wash and rinse outer gloves and boots with water.
- 3. Remove outer gloves; inspect and discard if damaged.
- 4. Wash hands.

Before returning to work, personnel will re-don all necessary PPE. If leaving for the day, personnel will dispose of soiled, expendable PPE.

9.3 SAMPLING EQUIPMENT DECONTAMINATION

Sampling equipment will be decontaminated, as described in Section 4.4.4 of the QAPP, to minimize sample contamination and worker exposure to contamination from samples. The following practices will be followed:

- All utensils or equipment used directly in handling sediment (e.g., such as the grab sampler, hand corers, shovels, spoons and bowls) will be scrubbed with Alconox[®] detergent, rinsed with deionized water, and stored wrapped in aluminum foil until use.
- Sample processing surfaces will be cleaned and lined with aluminum foil to prevent direct contact with samples.
- Ice chests will be scrubbed with Alconox[®] detergent and rinsed with deionized water prior to any sampling activities.
- Wet ice used for sample storage during field activities will be contained in separate plastic bags, and samples will be placed in resealable, waterproof plastic bags to avoid contamination from melting ice.
- **u** Sampling equipment will be free from contaminants such as oils, grease, and fuels.

10 Disposal of Contaminated Materials

Contaminated materials that may be generated during field activities include PPE and excess sample material. These contaminated materials will be disposed of as an integral part of the project.

10.1 PERSONAL PROTECTIVE EQUIPMENT

Gross surface contamination will be removed from PPE. All disposable sampling materials and PPE—such as disposable coveralls, gloves, and paper towels used in sample processing—will be placed in heavyweight garbage bags. Filled garbage bags will be placed in a normal refuse container for disposal as solid waste.

10.2 EXCESS SAMPLE MATERIALS

At each sampling location, excess or unwanted sediment collected will be returned to the collection site.

11 Training Requirements

Individuals performing work at locations where potentially hazardous materials and conditions may be encountered must meet specific training requirements. It is not anticipated that hazardous concentrations of contaminants will be encountered in sampled material, so training will consist of site-specific instruction for all personnel and oversight of inexperienced personnel by an experienced person for one working day. The following sections describe the training requirements for this fieldwork.

11.1 PROJECT-SPECIFIC TRAINING

In addition to HAZWOPER training, as described in Section 3.6 of the QAPP, field personnel will undergo training specifically for this project. All personnel and visitors must read this HSP and be familiar with its contents before beginning work or providing oversight. They must acknowledge reading the HSP by signing the HSP review form in Attachment 1. The signed form will be kept in the project files.

The boat captain and FC/HSO will also be required to have the US Coast Guard (USCG) Auxiliary Boating Safety certification. The boat captain or a designee will provide project-specific training prior to the first day of fieldwork and whenever new workers arrive. Field personnel will not be allowed to begin work until project-specific training has been completed and documented by the FC/HSO. Training will address the HSP and all health and safety issues and procedures pertinent to field operations. Training will include, but not be limited to, the following topics:

- u Activities with the potential for exposure to chemicals
- Activities that pose physical hazards, and actions to control the hazards
- u Ship access control and procedures
- u Use and limitations of PPE
- u Decontamination procedures
- Emergency procedures
- **u** Use and hazards of sampling equipment
- Location of emergency equipment on the vessel
- u Vessel safety practices
- u Vessel evacuation and emergency procedures

11.2 DAILY SAFETY BRIEFINGS

The FC/HSO or a designee and the boat captain will present safety briefings before the start of each day's activities. These safety briefings will outline the activities expected for the day, update work practices and hazards, address any specific concerns

associated with the work location, and review emergency procedures and routes. The FC/HSO or designee will document all safety briefings in the logbook.

11.3 FIRST AID AND CPR

At least two members of the field team must have first aid and cardiopulmonary resuscitation (CPR) training. Documentation of which individuals possess first aid and CPR training will be kept in the project health and safety files.

12 Medical Surveillance

A medical surveillance program conforming to the provisions of 29 CFR 1910§120(f) is not necessary for field team members on this project, because they do not meet any of the following four criteria outlined in the regulations for implementation of a medical surveillance program:

- Employees who are or may be exposed to hazardous substances or health hazards at or above permissible exposure levels for 30 days or more per year (1910.120(f)(2)(I).
- Employees who must wear a respirator for 30 days or more per year (1910.120(f)(2)(ii)).
- Employees who are injured or become ill as a result of possible overexposures involving hazardous substances or health hazards from an emergency response or hazardous waste operation (1910.120(f)(2)(iii)).
- **u** Employees who are members of HAZMAT teams (1910.120(f)(2)(iv)).

As described in Section 8, employees will monitor themselves and each other for any deleterious changes in their physical or mental conditions during the performance of all field activities.

13 Reporting and Record Keeping

Each member of the field crew will sign the HSP review form (Attachment 1). If necessary, accident/incident report forms and Occupational Safety and Health Administration (OSHA) Form 200s will be completed by the FC/HSO.

The FC/HSO or a designee will maintain a health and safety field logbook with records of health- and safety-related details for the project. Alternatively, entries may be made in the field logbook, in which case a separate health and safety logbook will not be required. The logbook must be bound and the pages must be numbered consecutively. Entries will be made with indelible blue ink. At a minimum, each day's entries must include the following information:

- **u** Project name or location
- u Names of all personnel onboard
- u Weather conditions
- **u** Type of fieldwork being performed

The person maintaining the entries will initial and date the bottom of each completed page. Blank space at the bottom of an incompletely filled page will be lined out. Each day's entries will begin on the first blank page after the previous workday's entries.

14 Emergency Response Plan

As a result of the hazards onboard the sampling vessels and the conditions under which operations will be conducted, the potential exists for an emergency situation to occur. Emergencies may include personal injury, exposure to hazardous substances, fire, explosion, or release of toxic or non-toxic substances (spills). OSHA regulations require that an emergency response plan be available for use onboard to guide actions in emergency situations.

Onshore organizations will be relied upon to respond to emergency situations. Given the location of the site, the local fire department and ambulance service can provide timely response. Field personnel will be responsible for identifying an emergency situation, providing first aid if applicable, notifying the appropriate personnel or agency, and evacuating any hazardous area. Shipboard personnel will attempt to control only very minor hazards that could present an emergency situation, such as a small fire; otherwise, all personnel will rely on outside emergency response resources.

The following sections identify the onboard individual(s) who should be notified in case of emergency, provide a list of emergency telephone numbers, offer guidance for particular types of emergencies, and provide directions and a map for getting from any sampling location to a hospital.

14.1 PRE-EMERGENCY PREPARATION

Before the start of field activities, the FC/HSO will ensure that preparation has been made in anticipation of emergencies. Preparatory actions include the following:

- Meeting between the FC/HSO and equipment handlers concerning emergency procedures in the event that a person is injured
- A training session given by the FC/HSO informing all field personnel of emergency procedures, locations of emergency equipment and its uses, and proper evacuation procedures
- A training session given by senior staff on operating field equipment to apprise field personnel of operating procedures and specific risks associated with that equipment
- Ensuring that field personnel are aware of the existence of the emergency response plan in the HSP, and ensuring that a copy of the HSP accompanies the field team

14.2 PROJECT EMERGENCY COORDINATOR

The FC/HSO will serve as the project emergency coordinator in the event of an emergency. He will designate his replacement during those times when he is not onboard or is not serving as the project emergency coordinator; the designation will be

noted in the logbook. The project emergency coordinator will be notified immediately when an emergency is recognized. The project emergency coordinator will be responsible for evaluating the emergency situation, notifying the appropriate emergency response units, coordinating access with those units, and directing interim actions onboard before the arrival of emergency response units. The project emergency coordinator will notify the HSM and the Windward PM as soon as possible after initiating an emergency response action. The Windward PM will have responsibility for notifying the client.

14.3 EMERGENCY RESPONSE CONTACTS

All onboard personnel must know whom to notify in the event of an emergency situation, even though the FC/HSO has primary responsibility for notification. Table 2 lists the names and phone numbers for emergency response services and individuals.

Contact	Telephone Number	
Emergency Numbers		
Ambulance	911	
Police	911	
Fire	911	
Harborview Medical Center	206.323.3074	
Emergency Responders		
US Coast Guard		
Emergency	206.286.5400	
General information	206.442.5295	
	UHF Channel 16	
National Response Center	800.424.8802	
US Environmental Protection Agency	800.424.8802	
Washington State Department of Ecology – Northwest Region Spill Response (24-hour emergency line)	206.649.7000	
Emergency Contacts		
Windward Project Manager		
Kathy Godtfredsen	206.812.5413	
Windward Corporate Health and Safety Manager		
Susan McGroddy	206.812.5421	
Field Coordinator/ Field Health and Safety Officer		
Thai Do	206.812.5407	

Table A-2. Emergency response contacts

14.4 RECOGNITION OF EMERGENCY SITUATIONS

Emergency situations will generally be recognizable by observation. An injury or illness will be considered an emergency if it requires treatment by a medical professional and cannot be treated with simple first aid techniques.

14.5 DECONTAMINATION

In the case of evacuation, decontamination procedures will be performed only if doing so does not further jeopardize the welfare of site workers. If an injured individual is also heavily contaminated and must be transported by emergency vehicle, the emergency response team will be informed of the type of contamination. To the extent possible, contaminated PPE will be removed from the injured individual, but only if doing so does not exacerbate the injury. Plastic sheeting will be used to reduce the potential for spreading contamination to the inside of the emergency vehicle.

14.6 FIRE

Field personnel will attempt to control only small fires, should they occur. If an explosion appears likely, personnel will follow evacuation procedures specified during the training session. If a fire cannot be controlled with the onboard fire extinguisher that is part of the required safety equipment, personnel will either withdraw from the vicinity of the fire or evacuate the boat as specified in the training session.

14.7 PERSONAL INJURY

In the event of serious personal injury, including unconsciousness, possibility of broken bones, severe bleeding or blood loss, burns, shock, or trauma, the first responder will immediately do the following:

- **u** Designate an individual to call 911 and administer first aid, if qualified.
- If not qualified, seek out an individual who is qualified to administer first aid, if time and conditions permit.
- Notify the project emergency coordinator of the incident, the name of the injured individual(s), the location of the individual, and the nature of the injury.

The project emergency coordinator will immediately do the following:

- Notify the boat captain and the appropriate emergency response organization.
- **u** Assist the injured individual(s).
- Follow the emergency procedures for retrieving or disposing of equipment reviewed in the training session, and leave the site en route to the predetermined land-based emergency pickup.
- Designate someone to accompany the injured individual to the hospital.
- If a life-threatening emergency occurs (i.e., injury where death is imminent without immediate treatment), the FC/HSO or boat captain will call 911 and arrange to meet the ambulance unit at the nearest accessible dock.

- If a non-life-threatening emergency occurs (i.e., broken bones, minor lacerations, etc.), the project emergency coordinator will follow the procedures outlined above and proceed to the Harbor Island Marina, or to an alternative location of his choice if that would be more expedient.
- **u** Notify the HSM and the PM.

If the project emergency coordinator determines that an emergency response is not necessary, he may direct someone to decontaminate and transport the individual by vehicle to the nearest hospital. Directions showing the route to the hospital are in Section 14.11.

If a worker leaves the boat to seek medical attention, another worker should accompany him to the hospital. When in doubt about the severity of an injury or exposure, always seek medical attention as a conservative approach, and notify the project emergency coordinator.

The project emergency coordinator will be responsible for completing all accident/incident field reports, OSHA Form 200s, and other required follow-up forms.

14.8 OVERT PERSONAL EXPOSURE OR INJURY

If an overt exposure to toxic materials occurs, the first responder to the victim will initiate actions to address the situation. The following actions should be taken, depending on the type of exposure.

14.8.1 Skin contact

- Wash/rinse the affected area thoroughly with copious amounts of soap and water.
- If eye contact has occurred, rinse the eyes for at least 15 minutes using the eyewash that is part of the onboard emergency equipment.
- After initial response actions have been taken, seek appropriate medical attention.

14.8.2 Inhalation

- **u** Move victim to fresh air.
- **u** Seek appropriate medical attention.

14.8.3 Ingestion

u Seek appropriate medical attention.

14.8.4 Puncture wound or laceration

u Seek appropriate medical attention.

14.9 SPILLS AND SPILL CONTAINMENT

No bulk chemicals or other materials subject to spillage are expected to be used during this project. Accordingly, no spill containment procedure is required for this project.

14.10 BOATING HAZARDS

Emergency responses to boating hazards are described in Table 3.

Table A-3. Potential boat emergency	hazards and	responses
-------------------------------------	-------------	-----------

Potential Emergency Hazard	Response
Fire or explosion	If manageable, attempt to put out a small fire with a fire extinguisher. Otherwise, call the USCG or 911, evacuate the area (by life rafts, rescue boat, or swimming), and meet at a designated location. The HSO will take roll call to make sure everyone has evacuated safely. Emergency meeting locations will be determined in the field during the daily safety briefings.
Medical emergency/ personal injury	At least two people with current first aid and CPR training will be onboard the vessel at all times. This person will attempt to assess the nature and critical path of the injury, call 911 immediately, and apply first aid/CPR if necessary. Stop work and wait for medical personnel to arrive. Fill out a site accident report.
Falling into an open hatch	Stop work and rescue the person, if safe and necessary. Assess the nature of the injury, and follow the response for medical emergency/personal injury.
Person overboard	Immediately throw a life ring to the person in the water. Have one onboard person keep an eye on the victim and shout the distance (boat lengths) and direction (o'clock) of the victim from the vessel. Stop work and use the vessel to retrieve the person in the water.
Sinking vessel	Call the USCG immediately. If possible, wait for a rescue boat to arrive to evacuate vessel personnel. See fire/explosion section (above) for emergency evacuation procedures. The HSO will take roll call to make sure everyone has evacuated safely.
Hydraulic oil spill or leak	If the leak/spill is small, immediately apply absorbent pads to control the leak and continue work. If the leak/spill is uncontainable, stop work, call 911 immediately, and wait for assistance. The vessel operator will assess the personal safety hazard associated with the leak/spill and begin evacuation procedures if necessary.
Lack of visibility	If navigation visibility or personal safety is compromised because of smoke, fog, or other unanticipated hazards, stop work immediately. The vessel operator and HSO will assess the hazard and, if necessary, send out periodic horn blasts to notify other vessels potentially in the area of the sampling vessel's location. Move to a secure location (i.e., berth) and wait for visibility to clear.
Loss of power	Stop work and call the USCG for assistance. Vessel personnel should watch for potential collision hazards and notify vessel operator if hazards exist. Secure vessel to a berth, dock, or mooring as soon as possible.
Collision	Stop work and call the USCG for assistance. HSO and vessel operator will assess damage and potential hazards. If necessary, vessel will be evacuated and secured until repairs can be made.

CPR - cardiopulmonary resuscitation

HSO - health and safety officer

USCG - US Coast Guard

Lower Duwamish Waterway Group

14.11 EMERGENCY ROUTES TO THE HOSPITAL

The name, address, and telephone number of the hospital that will be used to provide medical care is as follows:

Harborview Medical Center 325 - 9th Avenue Seattle, WA 206.323.3074

Directions from the vicinity of the LDW to Harborview Medical Center are as follows (Figure 1):

From the 1st Avenue South boat launch:

- **u** Drive east on South River Street.
- **u** Turn left on Occidental Avenue South.
- u Turn left on East Marginal Way South.
- **u** Turn right on South Michigan Street.
- **u** Look for entrance ramps to I-5 Northbound.
- **u** Drive north on I-5.
- **u** Take the James Street exit.
- **u** Drive east on James Street to 9th Avenue.
- **u** Turn right on 9th Avenue.
- Emergency entrance will be two blocks south on the right.

From the Harbor Island Marina:

- From marina parking lot, turn sharp right onto Klickitat Way Southwest.
- u Turn slight right onto Southwest Spokane Street
- **u** Turn slight left to take the ramp toward WA-99 N/I-5/Columbian Way.
- **u** Keep left at the fork in the ramp.
- **u** Stay straight to go onto West Seattle Bridge.
- **u** Merge onto I-5 North via the ramp on the left.
- **u** Take the James Street exit.
- **u** Head east on James Street to 9th Avenue.
- **u** Turn right on 9th Avenue.
- Emergency entrance will be two blocks south on the right.

From South Park Marina:

Surface Sediment QAPP Appendix A A-36
- From marina parking lot, turn right onto Dallas Avenue South.
- **u** Turn right onto 16th Avenue South.
- **u** Turn left on East Marginal Way South.
- **u** Look for entrance ramps to I-5 Northbound.
- **u** Drive north on I-5.
- **u** Take the James Street exit.
- **u** Drive east on James Street to 9th Avenue.
- **u** Turn right on 9th Avenue.
- Emergency entrance will be two blocks south on the right.

Map A-1. Emergency routes to Harborview Medical Center

Lower Duwamish Waterway Group

Surface Sediment QAPP Appendix A A-38

Attachment 1. Health and Safety Plan Acknowledgment Form

I have read a copy of the Health and Safety Plan (HSP), which covers field activities that will be conducted to investigate potentially contaminated areas in the Lower Duwamish Waterway (LDW). I understand the health and safety requirements of the project, which are detailed in this HSP.

Signature	Date
Signature	Date

Surface Sediment QAPP Appendix A A-39

APPENDIX B. FIELD FORMS

- **u** Surface Sediment Collection Form
- **u** Bank Soil Collection Form
- **u** Intertidal Sediment Transect Form
- u Intertidal Surface Sediment Collection Form
- **u** Percent Moisture Benchsheet for *Ex Situ* Porewater Investigation
- **u** Exposure Setup Benchsheet for *Ex Situ* Porewater Investigation
- **u** Daily Conditions Benchsheet for *Ex Situ* Porewater Investigation
- **u** Protocol Modification Form

SURFACE SEDIMENT COLLECTION FORM

Project Name:	Project no.:	
Date:	Weather:	
Sampling Method:	Crew:	

LOCATION	Location ID:	Location ID:				
Latitude/Northing	(Y):			Longitude/Easting(X):		
Time of sample	Bottom depth (m)	Penetration depth (cm)	Acceptable sample (Y/N)	Comments		
SAMPLE DATA	Sample ID:					
Sediment type	Sediment color	Sediment of	dor	Comments:		
cobble	brown surface	none	H ₂ S			
gravel	drab olive	slight	petroleum			
sand (F M C)	brown	moderate	other:			
silt	gray	strong				
clay	black					

LOCATION	Location ID:			
Latitude/Northing	(Y):			Longitude/Easting(X):
Time of sample	Bottom depth (m)	Penetration depth (cm)	Acceptable sample (Y/N)	Comments
SAMPLE DATA	Sample ID:			
Sediment type	Sediment color	Sediment or	lor	Comments:
cobble	brown surface	none	H ₂ S	
gravel	drab olive	slight	petroleum	
sand (F M C)	brown	moderate	other:	
silt	gray	strong		
clay	black			

Lower Duwamish Waterway Group

BANK SOIL COLLECTION FORM

Project Name/Number:	Weather	
Date:	Crew	
Sampling Method:	Bank ID	
Composite Sample ID:		
	I	
Location ID:	Sample Time:	Sample Depth:
Location Description (coordinates or distances fro	om landmarks; elevation):	
Sample Description (i.e., including grain size, cold	or, odor):	
Comments:		

Location ID:	Sample Time:	Sample Depth:			
Location Description (coordinates or distances from landmarks; elevation):					
Sample Description (i.e., including grain size, color, odor):					
Comments:					

Location ID:	Sample Time:	Sample Depth:			
Location Description (coordinates or distances from landmarks; elevation):					
Sample Description (i.e., including grain size, colo	or, odor):				
Comments:					

INTERTIDAL SURFACE SEDIMENT COLLECTION FORM

Project Name:

LDW AOC3

Task No.:

Date:

Sampler(s):

LOCATION DATA	Area Type (circle): Clam Beac	h	Sampling Method (circle): shovel core other
Location ID:				Additional Notes
Sample Time	Penetration depth (cm)	Comn	nents	
SAMPLE DATA		1		
Sediment type	Sediment color	Sediment odor	r	
cobble	brown surface	none	H₂S	
gravel	drab olive	slight	petroleum	
sand (F M C)	brown	moderate	other:	
silt	gray	strong		
clay	black			

LOCATION DATA	Area Type (circle): Clam Beach		ch	Sampling Method (circle): shovel core other
Location ID:		-		Additional Notes
Sample Time	Penetration depth (cm)	tion cm) Comments		
SAMPLE DATA				
Sediment type	Sediment color	Sediment odo	r	
cobble	brown surface	none	H₂S	
gravel	drab olive	slight	petroleum	
sand (F M C)	brown	moderate	other:	
silt	gray	strong		
clay	black			

INTERTIDAL SEDIMENT TRANSECT FORM

Project Name:	LDW AOC3		Weather:	
Date:			Crew:	
Beach Type (circle):	clam	beach play	Beach No.	
Transect No.			No. of Points:	
Transect Length:			Distance betwee	en Points:

Transect Details	Notes
	Start coordinates:
	Latitude/Northing(Y)
	Longitude/Easting(X):
	N
	End coordinates:
	Latitude/Northing(Y)
	Longitude/Easting(X):

Surface Sediment QAPP Appendix B B-4

PERCENT MOISTURE BENCHSHEET

Pan ID	Sample ID	Tare (g)	Wet Wt. (g)	Tare + Dry Wt. (g)	Dry Wt. (g)	% Moisture
	1	I	1	1		I
Oven ID:		Thermometer ID:		-		
Date/Time Out		Temp In:				
Analyst		Balance ID:		Calibration Date		
Anaryst.		Balance iD.				-

Lower Duwamish Waterway Group

Surface Sediment QAPP Appendix B B-5

EXPOSURES SETUP BENCHSHEET

Sample ID	Sediment Mass (g ww)	Passive Sampler Mass (g)	Biocide Solution Volume (mL)

Start Date:

Stop Date:

Analyst:

DAILY CONDITIONS BENCHSHEET

Date	Room Temperature	Orbital Shaker Performance Acceptable (Y/N)	Jars and Lids Intact (Y/N)	Comments	Analyst

Thermometer ID:

Orbital Shaker ID:

Surface Sediment QAPP Appendix B B-7

PROTOCOL MODIFICATION FORM

Project Name and Number:	
Material to be Sampled:	
Measurement Parameter:	
Standard Procedure for Field Collection & Laboratory Anal	lysis (cite reference):
Reason for Change in Field Procedure or Analysis Variation	on:
Variation from Field or Analytical Procedure:	
On a sight Frankrauer (Mataniala an Dana ann al Dana ina da	
Special Equipment, Materials of Personnel Required:	
Initiator's Name:	Date:
Project Officer:	Date:

Lower Duwamish Waterway Group

QA Officer:

FINAL

Date:

APPENDIX C. ANALYTICAL METHODS, REPORTING LIMITS, AND SEDIMENT COLLECTION JAR SUMMARIES

Tables

Table C-1.	Methods and RL goals for PCB Aroclors, cPAHS, metals, SVOCs, and conventionals in sediment/soil	d C-1
		0-1
Table C-2.	Method and RL goals for PCB congeners in sediment	C-5
Table C-3.	Method and RL goals for dioxins/furan congeners in sediment	C-10
Table C-4.	Jars for 0–10-cm grab samples	C-11
Table C-5.	0–10- and 0–45-cm composite sample jars	C-12
Table C-6.	Near-outfall sediment and individual bank sample collection jars	C-12

Analyta	Mothod	Unit	MDI	ы
PCBs as Aroclors (based on 1)	2.5-g dw sample)	Unit	WIDL	RL
Aroclor 1016	EPA 8082A	ua/ka dw	8 00ª	20 0 ^b
Aroclor 1221	EPA 8082A	µg/kg dw	8.00 ^a	20.0 ^b
Arodor 1221	EDA 9092A	µg/kg dw	0.00	20.0
		µg/kg uw	0.00-	20.0 ²
Aroclor 1242	EPA 8082A	µg/kg dw	8.00 ^a	20.0°
Aroclor 1248	EPA 8082A	µg/kg dw	8.00 ^a	20.0 ^b
Aroclor 1254	EPA 8082A	µg/kg dw	8.00 ^a	20.0 ^b
Aroclor 1260	EPA 8082A	µg/kg dw	9.28ª	20.0 ^b
cPAHs (based on 10-g dw sam	iple)			
Benzo(a)anthracene	EPA 8270D-SIM	µg/kg dw	0.537	5.00
Benzo(a)pyrene	EPA 8270D-SIM	μg/kg dw	0.915	5.00
Benzo(b)fluoranthene	EPA 8270D-SIM	µg/kg dw	1.37	5.00
Benzo(k)fluoranthene	EPA 8270D-SIM	μg/kg dw	0.760	5.00
Chrysene	EPA 8270D-SIM	μg/kg dw	0.488	5.00
Dibenzo(a,h)anthracene	EPA 8270D-SIM	µg/kg dw	1.53	5.00
Indeno(1,2,3-cd)pyrene	EPA 8270D-SIM	µg/kg dw	0.575	5.00
PAHs (based on 10-g dw samp	ole)			
Acenaphthened	EPA 8270D	µg/kg dw	5.13ª	20.0 ^b
Acenaphthylened	EPA 8270D	µg/kg dw	4.77 ^a	20.0 ^b
Anthracened	EPA 8270D	µg/kg dw	5.93ª	20.0 ^b
Benzo(a)anthracenec	EPA 8270D	µg/kg dw	5.18ª	20.0 ^b
Benzo(a)pyrene ^c	EPA 8270D	µg/kg dw	6.48ª	20.0 ^b
Benzo(b)fluoranthenec	EPA 8270D	µg/kg dw	7.02 ^a	20.0 ^b

Table C-1. Methods and RL goals for PCB Aroclors, cPAHS, metals, SVOCs, and conventionals in sediment/soil

• • •				
Analyte	Method	Unit	MDL	RL
Benzo(k)fluoranthene ^c	EPA 8270D	µg/kg dw	5.01ª	20.0 ^b
Total benzofluoranthenes ^c	EPA 8270D	µg/kg dw	10.2ª	40.0 ^b
Benzo(g,h,i)perylene ^c	EPA 8270D	µg/kg dw	5.82ª	20.0 ^b
Chrysene ^c	EPA 8270D	µg/kg dw	5.22ª	20.0 ^b
Dibenzo(a,h)anthracene ^c	EPA 8270D	µg/kg dw	6.16ª	20.0 ^b
Fluoranthene ^c	EPA 8270D	µg/kg dw	4.52ª	20.0 ^b
Fluorene ^d	EPA 8270D	µg/kg dw	4.95ª	20.0 ^b
Indeno(1,2,3-cd)pyrene ^c	EPA 8270D	µg/kg dw	5.99ª	20.0 ^b
2-methylnaphthalened	EPA 8270D	µg/kg dw	5.67ª	20.0 ^b
Naphthalene ^d	EPA 8270D	µg/kg dw	5.25ª	20.0 ^b
Phenanthrene ^d	EPA 8270D	µg/kg dw	4.69ª	20.0 ^b
Pyrene ^c	EPA 8270D	µg/kg dw	5.55ª	20.0 ^b
Metals (based on 1-g ww unles	s otherwise noted)			
Arsenic	EPA 6020A UCT-KED	mg/kg dw	na ^e	0.2 ^b
Cadmium	EPA 6020A UCT-KED	mg/kg dw	na ^e	0.1 ^b
Chromium	EPA 6020A	mg/kg dw	na ^e	0.5 ^b
Copper	EPA 6020A UCT-KED	mg/kg dw	na ^e	0.5 ^b
Lead	EPA 6020A	mg/kg dw	na ^e	0.1 ^b
Silver	EPA 6020A	mg/kg dw	na ^e	0.2 ^b
Zinc	EPA 6020A UCT-KED	mg/kg dw	na ^e	4 ^b
Mercury (based on 0.2-g ww sample)	EPA 7471B	mg/kg dw	nae	0.025 ^b
SVOCs (based on 10-g dw sam	iple)			
2,4-dimethylphenol	EPA 8270D-SIM	µg/kg dw	10.2	25.0

Table C-1. Methods and RL goals for PCB Aroclors, cPAHS, metals, SVOCs, and conventionals in sediment/soil

Analyte	Method	Unit	MDI	BI
4-methylphenol	EPA 8270D	µg/kg dw	14.7ª	20.0 ^b
Benzoic acid	EPA 8270D-SIM	µg/kg dw	13.4	50.0
Benzyl alcohol	EPA 8270D-SIM	µg/kg dw	12.1	20.0
Bis(2-ethylhexyl)phthalate	EPA 8270D	μg/kg dw	28.8ª	50.0 ^b
Butyl benzyl phthalate	EPA 8270D	µg/kg dw	8.05ª	20.0 ^b
Dibenzofuran	EPA 8270D	µg/kg dw	4.61ª	20.0 ^b
Dimethyl phthalate	EPA 8270D	µg/kg dw	6.44 ^a	20.0 ^b
Hexachlorobenzene	EPA 8270D-SIM	µg/kg dw	2.11	5.00
n-Nitrosodiphenylamine	EPA 8270D-SIM	µg/kg dw	2.31	5.00
PCP	EPA 8270D-SIM	µg/kg dw	10.4	20.0
Phenol	EPA 8270D	µg/kg dw	8.23ª	20.0 ^b
1,2,4-trichlorobenzene	EPA 8270D-SIM	µg/kg dw	1.51	5.00
1,2-dichlorobenzene	EPA 8270D-SIM	µg/kg dw	1.32	5.00
1,4-dichlorobenzene	EPA 8270D -SIM	µg/kg dw	1.91	5.00
Toxaphene (based on 12.5-g dw sample)	EPA 8081B	µg/kg dw	4.48ª	25.0 ^b
Conventionals				
Grain size	PSEP 1986	%	na	0.1
Percent solids	SM 2540G	% dw	na	0.040
TOC (based on 1-g dw sample)	EPA 9060	% dw	0.018	0.02
Black carbon (based on 10-g dw sample)	Gustafsson, 2001 - CTO Pretreatment / Combustion (950°C) / IR detect EPA 440.0	wt%	0.2	0.6

Table C-1. Methods and RL goals for PCB Aroclors, cPAHS, metals, SVOCs, and conventionals in sediment/soil

- ^a SW 846 no longer requires MDL values. The laboratories have the option to use these values to assess sensitivity for EPA 8000 series methods. ARI has continued to maintain MDL studies for these analytes.
- ^b RL values are consistent with the LLOQ values required under EPA SW-846.
- ^c Compound is a component of the HPAH sum.
- ^d Compound is a component of the LPAH sum.
- ^e SW 846 no longer requires MDL values.
- BEHP bis(2-ethylhexyl) phthalate
- BHC benzene hexachloride
- cPAH carcinogenic polycyclic aromatic hydrocarbon
- DDD dichlorodiphenyldichloroethane
- ${\sf DDE-dichlorodiphenyldichloroethylene}$
- DDT dichlorodiphenyltrichloroethane
- dw-dry weight
- EPA US Environmental Protection Agency
- HPAH high-molecular-weight polycyclic aromatic hydrocarbon
 LLOQ – lower limit of quantitation
 MDL – method detection limit
 LPAH – low-molecular-weight polycyclic aromatic hydrocarbon
 na – not available
- PCB polychlorinated biphenyl
- PCP pentachlorophenol

PSEP - Puget Sound Estuary Program RL – reporting limit SIM – selective ion monitoring SVOC – semivolatile organic compounds TBT – tributyltin TOC – total organic carbon total DDx – DDT isomers (2,4'-DDD, 4,4'-DDD, 2,4'-DDE, 4,4'-DDE, 2,4'-DDT and 4,4'-DDT) ww – wet weight

	EPA Method 1668C				
	Sediment (ng/kg g dw	l dw) Based on 10- sample	Passive Sar Based on 1-	mpler (pg/g) g PE sample	Estimated
Analyte	EDL ^a	LMCL ^b	EDL ^a	LMCL ^b	(ug/L)°
PCB-1	0.1	2.0	1.0	4.0	0.6714
PCB-2	0.1	2.0	1.0	4.0	0.3954
PCB-3	0.1	2.0	1.0	4.0	0.7907
PCB-4	0.2	2.0	2.0	4.0	0.8670
PCB-5	0.2	2.0	2.0	4.0	0.4150
PCB-6	0.2	2.0	2.0	4.0	0.3373
PCB-7	0.2	2.0	2.0	4.0	0.3296
PCB-8	0.2	2.0	2.0	4.0	0.3296
PCB-9	0.2	2.0	2.0	4.0	0.3373
PCB-10	0.2	2.0	2.0	4.0	0.5598
PCB-11	0.2	2.0	2.0	4.0	0.2032
PCB-12/13	0.2	2.0	2.0	4.0	0.2160 ^d
PCB-14	0.2	2.0	2.0	4.0	0.2032
PCB-15	0.2	2.0	2.0	4.0	0.1941
PCB-16	0.1	2.0	1.0	4.0	0.1340
PCB-17	0.1	2.0	1.0	4.0	0.1089
PCB-19	0.1	2.0	1.0	4.0	0.1849
PCB-21/33	0.1	2.0	1.0	4.0	0.0542 ^d
PCB-22	0.1	2.0	1.0	4.0	0.0509
PCB-23	0.1	2.0	1.0	4.0	0.0521
PCB-24	0.1	2.0	1.0	4.0	0.0865
PCB-25	0.1	2.0	1.0	4.0	0.0414
PCB-26/29	0.1	2.0	1.0	4.0	0.0486 ^d
PCB-27	0.1	2.0	1.0	4.0	0.0703
PCB-28/20	0.1	2.0	1.0	4.0	0.0486 ^d
PCB-30/18	0.1	2.0	1.0	4.0	0.0909 ^d
PCB-31	0.1	2.0	1.0	4.0	0.0414
PCB-32	0.1	2.0	1.0	4.0	0.0703
PCB-34	0.1	2.0	1.0	4.0	0.0424
PCB-35	0.1	2.0	1.0	4.0	0.0293
PCB-36	0.1	2.0	1.0	4.0	0.0255
PCB-37	0.1	2.0	1.0	4.0	0.0286
PCB-38	0.1	2.0	1.0	4.0	0.0337
PCB-39	0.1	2.0	1.0	4.0	0.0249
PCB-41/40/71	0.1	2.0	1.0	4.0	0.0341 ^d
PCB-42	0.1	2.0	1.0	4.0	0.0337

Lower Duwamish Waterway Group

Surface Sediment QAPP Appendix C C-5

	Sediment (ng/k g dw	g dw) Based on 10- / sample	Passive Sa Based on 1-	mpler (pg/g) -g PE sample	Estimated
Analyte	EDL ^a	LMCL ^b	EDL ^a	LMCL ^b	(ug/L)°
PCB-43	0.1	2.0	1.0	4.0	0.0344
PCB-44/47/65	0.1	2.0	1.0	4.0	0.0295 ^d
PCB-45/51	0.1	2.0	1.0	4.0	0.0399 ^d
PCB-46	0.1	2.0	1.0	4.0	0.0571
PCB-48	0.1	2.0	1.0	4.0	0.0321
PCB-50/53	0.1	2.0	1.0	4.0	0.0459 ^d
PCB-52	0.1	2.0	1.0	4.0	0.0280
PCB-54	0.1	2.0	1.0	4.0	0.1194
PCB-55	0.1	2.0	1.0	4.0	0.0150
PCB-56	0.1	2.0	1.0	4.0	0.0150
PCB-57	0.1	2.0	1.0	4.0	0.0131
PCB-58	0.1	2.0	1.0	4.0	0.0131
PCB-59/62/75	0.1	2.0	1.0	4.0	0.0213 ^d
PCB-60	0.1	2.0	1.0	4.0	0.0150
PCB-61/70/74/76	0.1	2.0	1.0	4.0	0.0141 ^d
PCB-63	0.1	2.0	1.0	4.0	0.0131
PCB-64	0.1	2.0	1.0	4.0	0.0217
PCB-66	0.1	2.0	1.0	4.0	0.0122
PCB-67	0.1	2.0	1.0	4.0	0.0122
PCB-68	0.1	2.0	1.0	4.0	0.0106
PCB-69/49	0.1	2.0	1.0	4.0	0.0225 ^d
PCB-72	0.1	2.0	1.0	4.0	0.0106
PCB-73	0.1	2.0	1.0	4.0	0.0177
PCB-77	0.1	2.0	1.0	4.0	0.0085
PCB-78	0.1	2.0	1.0	4.0	0.0086
PCB-79	0.1	2.0	1.0	4.0	0.0074
PCB-80	0.1	2.0	1.0	4.0	0.0064
PCB-81	0.1	2.0	1.0	4.0	0.0085
PCB-82	0.1	2.0	1.0	4.0	0.0122
PCB-83/99	0.1	2.0	1.0	4.0	0.0093 ^d
PCB-84	0.1	2.0	1.0	4.0	0.0177
PCB-88/91	0.1	2.0	1.0	4.0	0.0154 ^d
PCB-89	0.1	2.0	1.0	4.0	0.0165
PCB-92	0.1	2.0	1.0	4.0	0.0086
PCB-94	0.1	2.0	1.0	4.0	0.0144
PCB-95/100/93/102/98	0.1	2.0	1.0	4.0	0.0142 ^d

Lower Duwamish Waterway Group

FINAL

Surface Sediment QAPP Appendix C C-6

	Sediment (ng/k g dw	g dw) Based on 10- / sample	Passive Sa Based on 1	Passive Sampler (pg/g) Based on 1-g PE sample	
Analyte	EDL ^a	LMCL ^b	EDL ^a	LMCL ^b	(ug/L)°
PCB-96	0.1	2.0	1.0	4.0	0.0378
PCB-103	0.1	2.0	1.0	4.0	0.0117
PCB-104	0.1	2.0	1.0	4.0	0.0300
PCB-105	0.1	2.0	1.0	4.0	0.0043
PCB-106	0.1	2.0	1.0	4.0	0.0044
PCB-108/124	0.1	2.0	1.0	4.0	0.0037 ^d
PCB-109/119/86/97/125/87	0.1	2.0	1.0	4.0	0.0081 ^d
PCB-107	0.1	2.0	1.0	4.0	0.0038
PCB-110/115	0.1	2.0	1.0	4.0	0.0063 ^d
PCB-111	0.1	2.0	1.0	4.0	0.0034
PCB-112	0.1	2.0	1.0	4.0	0.0069
PCB-113/90/101	0.1	2.0	1.0	4.0	0.0074 ^d
PCB-114	0.1	2.0	1.0	4.0	0.0043
PCB-117/116/85	0.4	2.0	1.0	4.0	0.0085 ^d
PCB-118	0.4	2.0	1.0	4.0	0.0035
PCB-120	0.4	2.0	1.0	4.0	0.0031
PCB-121	0.4	2.0	1.0	4.0	0.0044
PCB-122	0.4	2.0	1.0	4.0	0.0044
PCB-123	0.4	2.0	1.0	4.0	0.0035
PCB-126	0.4	2.0	1.0	4.0	0.0025
PCB-127	0.4	2.0	1.0	4.0	0.0022
PCB-128/166	0.4	2.0	1.0	4.0	0.0029 ^d
PCB-130	0.4	2.0	1.0	4.0	0.0031
PCB-131	0.4	2.0	1.0	4.0	0.0051
PCB-132	0.4	2.0	1.0	4.0	0.0051
PCB-133	0.4	2.0	1.0	4.0	0.0027
PCB-134/143	0.4	2.0	1.0	4.0	0.0052 ^d
PCB-136	0.4	2.0	1.0	4.0	0.0117
PCB-137	0.4	2.0	1.0	4.0	0.0029
PCB-138/163/129/160	0.4	2.0	1.0	4.0	0.0027 ^d
PCB-139/140	0.4	2.0	1.0	4.0	0.0041 ^d
PCB-141	0.4	2.0	1.0	4.0	0.0029
PCB-142	0.4	2.0	1.0	4.0	0.0060
PCB-144	0.4	2.0	1.0	4.0	0.0041
PCB-145	0.4	2.0	1.0	4.0	0.0109
PCB-146	0.4	2.0	1.0	4.0	0.0025

Lower Duwamish Waterway Group

FINAL

Surface Sediment QAPP Appendix C C-7

	Sediment (ng/kg g dw	g dw) Based on 10- sample	Passive Sa Based on 1-	Passive Sampler (pg/g) Based on 1-g PE sample	
Analyte	EDLª	LMCL ^b	EDLª	LMCL ^b	(ug/L)°
PCB-147/149	0.4	2.0	1.0	4.0	0.0043 ^d
PCB-148	0.4	2.0	1.0	4.0	0.0036
PCB-150	0.4	2.0	1.0	4.0	0.0091
PCB-151/135/154	0.4	2.0	1.0	4.0	0.0041 ^d
PCB-152	0.4	2.0	1.0	4.0	0.0117
PCB-153/168	0.4	2.0	1.0	4.0	0.0019 ^d
PCB-155	0.4	2.0	1.0	4.0	0.0075
PCB-156/157	0.4	4.0	1.0	8.0	0.0013 ^d
PCB-158	0.4	2.0	1.0	4.0	0.0018
PCB-159	0.4	2.0	1.0	4.0	0.0011
PCB-161	0.1	2.0	1.0	4.0	0.0016
PCB-162	0.1	2.0	1.0	4.0	0.0011
PCB-164	0.1	2.0	1.0	4.0	0.0018
PCB-165	0.1	2.0	1.0	4.0	0.0017
PCB-167	0.1	2.0	1.0	4.0	0.0010
PCB-169	0.1	2.0	1.0	4.0	0.0007
PCB-170	0.1	2.0	1.0	4.0	0.0010
PCB-171/173	0.1	2.0	1.0	4.0	0.0017 ^d
PCB-172	0.1	2.0	1.0	4.0	0.0009
PCB-174	0.1	2.0	1.0	4.0	0.0015
PCB-175	0.1	2.0	1.0	4.0	0.0013
PCB-176	0.1	2.0	1.0	4.0	0.0034
PCB-177	0.1	2.0	1.0	4.0	0.0016
PCB-178	0.1	2.0	1.0	4.0	0.0014
PCB-179	0.1	2.0	1.0	4.0	0.0036
PCB-180/193	0.1	2.0	1.0	4.0	0.0007 ^d
PCB-181	0.1	2.0	1.0	4.0	0.0015
PCB-182	0.1	2.0	1.0	4.0	0.0012
PCB-183/185	0.1	2.0	1.0	4.0	0.0014 ^d
PCB-184	0.1	2.0	1.0	4.0	0.0027
PCB-186	0.1	2.0	1.0	4.0	0.0040
PCB-187	0.1	2.0	1.0	4.0	0.0013
PCB-188	0.1	2.0	1.0	4.0	0.0029
PCB-189	0.1	2.0	1.0	4.0	0.0004
PCB-190	0.1	2.0	1.0	4.0	0.0007
PCB-191	0.1	2.0	1.0	4.0	0.0005

Lower Duwamish Waterway Group

FINAL

Surface Sediment QAPP Appendix C C-8

	Sediment (ng/kg dw) Based on 10- g dw sample		Passive Sampler (pg/g) Based on 1-g PE sample		Estimated
Analyte	EDLª	LMCL ^b	EDL ^a	LMCL ^b	(ug/L)°
PCB-192	0.1	2.0	1.0	4.0	0.0006
PCB-194	0.1	2.0	1.0	4.0	0.0003
PCB-195	0.1	2.0	1.0	4.0	0.0005
PCB-196	0.1	2.0	1.0	4.0	0.0004
PCB-197/200	0.1	2.0	1.0	4.0	0.0010 ^d
PCB-198/199	0.1	2.0	1.0	4.0	0.0008 ^d
PCB-201	0.1	2.0	1.0	4.0	0.0005
PCB-202	0.1	2.0	1.0	4.0	0.0011
PCB-203	0.1	2.0	1.0	4.0	0.0004
PCB-204	0.1	2.0	1.0	4.0	0.0010
PCB-205	0.1	2.0	1.0	4.0	0.0002
PCB-206	0.1	2.0	1.0	4.0	0.0002
PCB-207	0.1	2.0	1.0	4.0	0.0004
PCB-208	0.1	2.0	1.0	4.0	0.0004
PCB-209	0.1	2.0	1.0	4.0	0.0001

^a EDL is a sample-specific DL. The value provided here is an estimate, and the sample-specific values will vary based on sample mass and the analytical conditions at the time of analysis.

^b LMCL is Axys's lowest calibration limit. Detected values below the LMCL are J-qualified. The reported LMCL will be adjusted based on the sample mass of each sample.

^c Assuming 0.1g of PE and that full equilibrium is reached for all congeners.

^d Detection limits for co-elutions were calculated based on the mean of the partition coefficients for the co-eluting congeners.

Axys – Axys Analytical Services, Ltd.

DL - detection limit

dw-dry weight

- EPA US Environmental Protection Agency
- EDL estimated detection limit

J – estimated concentration

LMCL – lower method calibration limit PCB – polychlorinated biphenyl RAO – remedial action objective RL – reporting limit ww – wet weight

Table C-3. Method and RL goals for dioxins/furan congeners in sediment

	EPA Method 1613B				
	Sediment (ng/kg dw) Based on 10-g sample EDL ^a LMCL ^b		TEQ (ng/kg)		
Analyte			TEF	TEQ°	
2,3,7,8-TCDD	0.05	0.2	1	0.025	
1,2,3,7,8-PeCDD	0.05	1.0	1	0.025	
1,2,3,4,7,8-HxCDD	0.05	1.0	0.1	0.0025	
1,2,3,6,7,8-HxCDD	0.05	1.0	0.1	0.0025	
1,2,3,7,8,9-HxCDD	0.05	1.0	0.1	0.0025	
1,2,3,4,6,7,8-HpCDD	0.05	1.0	0.01	0.00025	
OCDD	0.05	2.0	0.0003	0.0000075	
2,3,7,8-TCDF	0.05	0.2	0.1	0.0025	
1,2,3,7,8-PeCDF	0.05	1.0	0.03	0.00075	
2,3,4,7,8-PeCDF	0.05	1.0	0.3	0.0075	
1,2,3,4,7,8-HxCDF	0.05	1.0	0.1	0.0025	
1,2,3,6,7,8-HxCDF	0.05	1.0	0.1	0.0025	
1,2,3,7,8,9-HxCDF	0.05	1.0	0.1	0.0025	
2,3,4,6,7,8-HxCDF	0.05	1.0	0.1	0.0025	
1,2,3,4,6,7,8-HpCDF	0.05	1.0	0.01	0.00025	
1,2,3,4,7,8,9-HpCDF	0.05	1.0	0.01	0.00025	
OCDF	0.05	2.0	0.0003	0.0000075	

^a EDL is a sample-specific DL. The value provided here is an estimate, and the sample-specific values will vary based on sample mass and the analytical conditions at the time of analysis.

^b LMCL is Axys's lowest calibration limit. Detected values below the LMCL are J-qualified. The reported LMCL will be adjusted based on the sample mass of each sample.

^c TEQ calculated using ½ RL value multiplied by the TEF.

Axys – Axys Analytical Services, Ltd. DL – detection limit dw – dry weight EPA – US Environmental Protection Agency EDL – estimated detection limit HpCDD – heptachlorodibenzo-p-dioxin HpCDF – heptachlorodibenzofuran HxCDD – hexachlorodibenzofuran HxCDF – hexachlorodibenzofuran LMCL – lower method calibration limit OCDD – octachlorodibenzo-p-dioxin OCDF – octachlorodibenzofuran PeCDD – pentachlorodibenzo-p-dioxin PeCDF – pentachlorodibenzofuran RAO – remedial action objective RL – reporting limit TCDD – tetrachlorodibenzo-p-dioxin TCDF – tetrachlorodibenzofuran TEF – toxic equivalency factor TEQ – toxic equivalent ww – wet weight

Location	Baseline Composite DQOs 1 and 2 2-8-oz Jars	SMS Analysis (DQOs 3 and 4) 1–4-oz. Jar 2–8-oz. Jar 1–16-oz. Jar	PCB Porewater and SMS Analysis (DQOs 3-5) 4–8-oz. Jar 3–16-oz. Jars	PCB Porewater (DQO 5) 3–8-oz. Jar 3–16-oz. Jar
1 through 168	Xa			
8	-	Х	-	-
23	-	Х	-	-
40	-	Х	-	-
52	-	Х	-	-
69	-	Х	-	-
91	-	Х	-	-
101	-	Х	-	-
130	-	Х	-	-
143	-	Х	-	-
161	-	Х	-	-
169	-	-	Х	
170	-	-	Х	
171	-	-	-	Х
172	-	-	-	Х
173	-	-	-	Х
174	-	-	Х	
175	-	-	-	Х
176	-	-	-	Х
177	-	-	-	Х
178	-	-	Х	
179	-	-	Х	
180	-	-	-	Х
181	-	-	-	Х
182	-	-	-	Х
183	-	-	Х	
184	-	-	Х	
185	-	-	-	Х
186	-	-	Х	
187	-	-	Х	
188	-	-	X	

Table C-4. Jars for 0–10-cm grab samples

^a An additional 8-oz jar for NOAA will be filled at each location as sample volume allows.

DQO – data quality objective

PCB – polychlorinated biphenyl

NOAA – National Oceanic and Atmospheric Administration SMS – Sediment Management Standards

Table C-5. 0–10- and 0–45-cm composite sample jars

Sample	PCB Aroclors/cPAHs 1-8-oz. Jar	PCB Aroclors/ cPAHs/Toxaphene 1-8-oz. Jar	Arsenic/ TOC/TS 1-8-oz. Jar	Black Carbon 1-8-oz. Jar	Dioxin/Furan 1–8-oz. Jar ^a	Grain Size 1-16-oz. Jar	Archive 1–8-oz. Jar	Summary of Jars Needed
0–10-cm sediment	х	-	х	х	х	х	x	5–8-oz. jars 1–16-oz. jar
0-45 cm sediment	-	х	х	-	х	x	x	4–8-oz. jars 1–16-oz. jar

^a If none of the PCB Aroclors are detected, then sediment from the dioxin/furan jar will be analyzed for PCB congeners.

cPAH – carcinogenic polycyclic aromatic hydrocarbon

PCB – polychlorinated biphenyl

TOC – total organic carbon

TS - total solids

Table C-6. Near-outfall sediment and individual bank sample collection jars

Sample	SMS Analysis (DQOs 3 and 4) 1–4-oz. Jar, 2–8-oz. Jar 1–16-oz. Jar	Dioxin/Furan 1–8-oz. Jar	Archive 1–8-oz. Jar	Summary of Jars Needed
Near-outfall 0–10-cm sediment	Х	Х	x	1–4-oz. jar 4–8-oz. jars 1–16-oz. jar
Individual bank samples	Х	Х	x	1–4-oz. jar 4–8-oz. jars 1–16-oz. jar

DQO – data quality objective

SMS – Washington State Sediment Management Standards

APPENDIX D. STANDARD OPERATING PROCEDURES FOR PASSIVE SAMPLERS AND SUBSAMPLING SEDIMENT

u Attachment D-1

- Standard Operating Procedure LB-16: Ex Situ Determination of Porewater PCBs using Polyethylene Passive Samplers
- Guidance Document: Passive Polyethylene Sampling in Support of In Situ Remediation of Contaminated Sediments: Standard Operating Procedure for PED Preparation
- u Attachment D-2
 - Standard Operating Procedure: Lower Duwamish Waterway Clamming Area Sediment Compositing, Homogenization, and Aliquoting

Attachment D-1

STANDARD OPERATING PROCEDURE (SOP) LB-16

EX SITU DETERMINATION OF POREWATER PCBS USING POLYETHYLENE PASSIVE SAMPLERS

Note: This SOP is based upon guidance for the use of passive sampling in the evaluation of contaminated sediments (EPA et al., 2017).

METHOD DESCRIPTION

This SOP provides instruction on the use of polyethylene (PE) passives samplers in the laboratory for the estimation of polychlorinated biphenyl (PCB) porewater concentrations in sediments. PE samplers will be equilibrated with sediments for 1 month using an orbital shaker, ensuring that there is sufficient mass of PE sampler to achieve the lowest possible PCB detection limits, and utilizing sufficient mass of sediment in each exposure so the addition of the PE sampler does not deplete PCBs from the sediment significantly (i.e., < 1% of the mass of the PCBs in the sediment should be absorbed by the sampler).

Pre-cleaned and performance reference compound (PRC) impregnated PE sheets will be prepared by Axys Analytical Services Ltd. (Axys) using procedures described in Gschwend et al. 2012 (Attachment D1). The PE sheets will then be transported to Analytical Resources, Inc. (ARI) on ice as detailed in the accompanying Surface Sediment Quality Assurance Project Plan (QAPP), and stored in a freezer (<-4 °C) until the aqueous equilibrium exposures are started.

Sediment samples will be collected, transported and stored at ARI as detailed in the accompanying QAPP. Before starting the aqueous equilibrium exposures, a small sub-sample of each stored sediment sample will be taken to determine moisture content. This information will be used to determine the volume of sodium azide (biocide) solution to be added to the exposures to achieve a well-formed slurry (80% water content).

PCB analysis of the samplers will be conducted by Axys following methods described in the accompanying QAPP. PCB concentrations in the samplers will be used to estimate porewater concentration as described in the accompanying QAPP, using the physical and chemical properties presented in Table D-1.

MOISTURE CONTENT

Calibration

1. Verify the balance was calibrated by the laboratory prior to use.

Sample Preparation

- 1. Initiate a Percent Moisture Benchsheet and complete the required information.
- 2. Record the Analyst, Oven ID, Thermometer ID, and Balance ID on the Percent Moisture Benchsheet.
- 3. Label an aluminum dish with a unique numerical ID (1, 2, 3...) for each sample.
- 4. Weigh the aluminum dish using a calibrated analytical balance and record the weight measurement on the benchsheet to the nearest 0.01g in the "Tare" column.
- 5. Thoroughly mix the sample then measure 5-10 g of sample into the pre-weighed, prelabeled aluminum dish. Weigh to the nearest 0.01 g and record the weight measurement onto the benchsheet in the "Wet Wt." column.
- 6. Place the dish in the drying oven maintained at a temperature of $105 \pm 2^{\circ}$ C. Record the date and the time the samples were placed in the oven.
- 7. Dry the sample for a minimum of 12 hours but do not exceed 24 hours. After this time has elapsed, remove the samples from the oven and allow them to cool in a desiccator before weighing.
- 8. Reweigh the samples and record the weight measurements in the "Tare+Dry Wt." column of the benchsheet.
- 9. Record the oven temperature and time out of the oven on the benchsheet.
- 10. Calculate sediment moisture content using formula below and record on the benchsheet.

Calculations

Percent moisture = $100 - \left(\frac{\left[(Tare+Dry Wt.)-(Tare)\right]}{(Wet Wt.)} \times 100\right)$

AQUEOUS EQUILIBRIUM EXPOSURES

Passive Sampler Preparation

1. Prior to starting the equilibrium exposures, remove PE sheets from the freezer.

EQUIPMENT

- Drying Oven: Capable of maintaining a temperature of 105 ±2°C
- Aluminum Weighing Boats
- Top loading balance (readability = 0.01 g, capacity = 4000 g)
- · Desiccator
- Laboratory grade deionized water
- · Sodium azide
- Top loading balance (readability = 0.0001 g, capacity = 200 g)
- Pre-cleaned, PRC impregnated PE sheets
- Orbital shaker (capacity = > 20 kg)
- Stainless steel scissors
- · Methanol

PERSONAL PROTECTIVE EQUIPMENT (PPE)

The analyst will be attired in the following PPE:

- · Safety glasses
- Lab coat
- Nitrile gloves
- · Long pants
- · Closed-toe shoes

ATTACHMENTS

• Attachment D1 (Gschwend et al., 2012)
- 2. Cut PE sheets into 0.1 g PE strips using methanol wiped stainless steel scissors. Always handle the PE sheets and strips wearing nitrile gloves.
- 3. Wrap all PE strips in aluminum foil and store at $4^{\circ}C \pm 2^{\circ}C$ until all sediment slurries are ready as described below.

Exposure Preparation

- 1. Initiate an Exposure Setup Benchsheet and complete the required information.
- 2. Label 1 L wide mouth glass jars, with Teflon-lined caps, with unique sediment sample IDs.
- 3. Thoroughly homogenize the sediment samples with a stainless steel spoon in a stainless steel bowl, and place approximately 1 kg wet weight of each sample into its corresponding labeled jar.
- 4. Record the mass of sediment in each jar in the Exposure Setup Benchsheet to the nearest 0.1 g.
- Accounting for the moisture content of each sediment sample, calculate the volume of 2 g/L sodium azide solution to be added to each glass jar to achieve a sediment slurry of 80% moisture content (see formula below). Add the corresponding volume of solution to each jar, and record the volume added in the Exposure Setup Benchsheet to the nearest ml.

Volume (ml) = (80% - percent moisture) x sediment mass (g)

- 6. Add a pre-weighed 0.1 g PE strip to each jar. Record the weight of each strip to 4 decimal points in the Exposure Setup Benchsheet.
- 7. Tightly seal the lid of each jar, and securely load all jars onto the orbital shaker. Jars should be positioned securely, ensuring they will be able to safely withstand 1 month of agitation without breakage.
- 8. Turn on the orbital shaker and gradually increase the shaking speed to around 100 rpm.
- 9. Monitor jars for the first hour to ensure jars remain securely in place during shaking, and make any packing adjustments if necessary.
- 10. Initiate a Daily Conditions Benchsheet and complete the required information.
- Monitor temperature, shakers, and jars daily for 1 month, and record observations on the Daily Conditions Benchsheet. Jars should be maintained at room temperature (20-25°C) for the duration of the exposure.

Exposure Termination

- 1. After 1 month, stop the orbital shaker and remove all glass jars.
- 2. Gradually empty the contents of each jar into a beaker to recover each PE strip.
- 3. Rinse each PE strip with laboratory grade deionized water to remove all attached sediment.
- 4. Wipe each PE strip with clean laboratory wipes to remove any remaining sediment and water.
- 5. Wrap each PE strip in a clean labeled aluminum foil envelope. Insert each envelope in a resealable plastic bag with corresponding sample ID label.
- 6. Insert all resealable plastic bags into a larger resealable plastic bag, and place the large bag on ice in a cooler for transport to Axys for analysis. Sample packing, transport information, and sample custody procedures are described in accompanying QAPP.

QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

The following quality assurance and quality control samples will be included to support data validation and usability determination:

- Passive sampler exposure blank (5 percent frequency, or 1 per maximum 20 samples).
 For the laboratory blank, 900 ml laboratory grade deionized water and 100 ml of 2 g/L sodium azide solution will be added to a wide mouth glass jar. A pre-weighed 0.1 g PRC impregnated PE strip will be added to this jar, and the jar will be treated in the same way as jars containing sediment samples.
- Duplicate samples (5 percent frequency, or 1 per maximum 20 samples). Prepare duplicate aqueous equilibrium exposures for select samples.

DATA MANAGEMENT

All data will be recorded immediately, legibly and in ink on the appropriate benchsheets. Any recording mistakes will be struck out with a single line and initialed and dated by the analyst. Hard copies of completed forms will be compiled and stored. Forms will also be scanned electronically, and these electronic copies will be submitted to EPA as part of the Data Report.

WASTE DISPOSAL

The analyst will perform this analysis with the intent of obtaining the best quality analytical results while generating the minimum amount of waste.

Waste generated during this analysis will include the sediment from all aqueous equilibrium exposures. This waste will be composited and disposed appropriately per laboratory procedures.

REFERENCES

EPA, SERDP, ESTCP. 2017. Laboratory, field, and analytical procedures for using passive sampling in the evaluation of contaminated sediments: user's manual. EPA/600/R- 16/357. February 2017 final web version (1.0). US Environmental Protection Agency, US Department of Defense, Strategic Environmental Research and Development Program, and Environmental Security Technology Certification Program.

Gschwend P, MacFarlane J, Palaia K, Reichenbacher S, Gouveia D. 2012. Passive PE sampling in support of in situ remediation of contaminated sediments (standard operating procedure for the preparation of polyethylene devices). ESTCP Project ER-200915. SERDP/ESTCP

Constituent of Interest	CAS No.	$\log K_{ow}^{a}$	$\logK_{\rm PEW}(L_W/kg_{\rm PE})^a$	log D _{PE} (cm²/s) ^a
PCB Congeners				
PCB 1	2051-60-7	4.46	4.17	-8.46
PCB 2	2051-61-8	4.69	4.40	-8.46
PCB 3	2051-62-9	4.69	4.40	-8.46
PCB 4	13029-08-8	4.65	4.36	-8.64
PCB 5	16605-91-7	4.97	4.68	-8.64
PCB 6	25569-80-6	5.06	4.77	-8.64
PCB 7	33284-50-3	5.07	4.78	-8.64
PCB 8	34883-43-7	5.07	4.78	-8.64
PCB 9	34883-39-1	5.06	4.77	-8.64
PCB 10	33146-45-1	4.84	4.55	-8.64
PCB 11	2050-67-1	5.28	4.99	-8.64
PCB 12	2974-92-7	5.22	4.93	-8.64
PCB 13	2974-90-5	5.29	5.00	-8.64
PCB 14	34883-41-5	5.28	4.99	-8.64
PCB 15	2050-68-2	5.3	5.01	-8.64
PCB 16	38444-78-9	5.16	4.87	-8.81
PCB 17	37680-66-3	5.25	4.96	-8.81
PCB 18	37680-65-2	5.24	4.95	-8.81
PCB 19	38444-73-4	5.02	4.73	-8.81
PCB 20	38444-84-7	5.57	5.28	-8.81
PCB 21	55702-46-0	5.51	5.22	-8.81
PCB 22	38444-85-8	5.58	5.29	-8.81
PCB 23	55720-44-0	5.57	5.28	-8.81
PCB 24	55702-45-9	5.35	5.06	-8.81
PCB 25	55712-37-3	5.67	5.38	-8.81
PCB 26	38444-81-4	5.6	5.31	-8.81
PCB 27	38444-76-7	5.44	5.15	-8.81
PCB 28	7012-37-5	5.67	5.38	-8.81
PCB 29	15862-07-4	5.6	5.31	-8.81
	35693-92-6	5.44	5.15	-8.81
PCB 31	16606-02-3	5.67	5.38	-8.81
	38444-77-8	5.44 5.6	5.15	-8.81
	30444-00-9 27600 60 5	5.0 5.66	5.31	-0.01
	37000-00-0	5.00 5.00	0.37 5.52	-0.01
	37000-09-0	J.02 5 00	5.55	-0.01
	30444-07-0	0.00 5.92	5.59	-0.01
	53555-66-1	5.03	5.04	-0.01
PCB 30	38///-88-1	5.80	5.60	-0.01
PCB 40	38/1/1-03-8	5.69	5 37	-0.01
PCB 41	52663-59-0	5.60	5.40	-0.50
PCB 42	36559-22-5	5.05	5.40	-8.98
PCB 43	70362-46-8	5.76	5.46	-8.98
PCB 44	A1464-39-5	5 75	5.46	-8.98
PCB 45	70362-45-7	5 53	5.24	-8.98
PCB 46	41464-47-5	5 53	5 24	-8.98
PCB 47	2437-79-8	5.85	5.56	-8.98
PCB 48	70362-47-9	5 78	5 49	-8.98
PCB 49	41464-40-8	5.85	5.56	-8.98
PCB 50	62796-65-0	5.63	5 34	-8.98
PCB 51	68194-04-7	5.63	5.34	-8.98
PCB 52	35693-99-3	5.84	5.55	-8.98
PCB 53	41464-41-9	5.62	5.33	-8.98
PCB 54	15968-05-5	5.21	4.92	-8.98

Table D1. Physicochemical Properties of PCBs

Constituent of Interest	CAS No.	$\log K_{ow}^{a}$	$\log K_{PEW} (L_W/kg_{PE})^a$	log D _{PE} (cm²/s) ^a
PCB 55	74338-24-2	6.11	5.82	-8.98
PCB 56	41464-43-1	6.11	5.82	-8.98
PCB 57	74472-33-6	6.17	5.88	-8.98
PCB 58	41464-49-7	6.17	5.88	-8.98
PCB 59	74472-33-6	5.95	5.66	-8.98
PCB 60	33025-41-1	6.11	5.82	-8.98
PCB 61	33284-53-6	6.04	5.75	-8.98
PCB 62	54230-22-7	5.89	5.60	-8.98
PCB 63	74472-34-7	6.17	5.88	-8.98
PCB 64	52663-58-8	5.95	5.66	-8.98
PCB 65	33284-54-7	5.86	5.57	-8.98
PCB 66	32598-10-0	6.2	5.91	-8.98
PCB 67	73575-53-8	6.2	5.91	-8.98
PCB 68	73575-52-7	6.26	5.97	-8.98
PCB 69	60233-24-1	6.04	5.75	-8.98
PCB 70	32598-11-1	6.2	5.91	-8.98
PCB 71	41464-46-4	5.98	5.69	-8.98
PCB 72	41464-42-0	6.26	5.97	-8.98
PCB 73	74338-23-1	6.04	5.75	-8.98
PCB 74	32690-93-0	6.2	5.91	-8.98
PCB 75	32598-12-2	6.05	5.76	-8.98
PCB 76	70362-48-0	6.13	5.84	-8.98
PCB 77 - WHO 12	32598-13-3	6.36	6.07	-8.98
PCB 78	70362-49-1	6.35	6.06	-8.98
PCB 79	41464-48-6	6.42	6.13	-8.98
PCB 80	33284-52-5	6.48	6.19	-8.98
PCB 81 - WHO 12	70362-50-4	6.36	6.07	-8.98
PCB 82	52663-62-4	6.2	5.91	-9.16
PCB 83	60145-20-2	6.26	5.97	-9.16
PCB 84	52663-60-2	6.04	5.75	-9.16
PCB 85	65510-45-4	6.3	6.01	-9.16
PCB 86	55312-69-1	6.23	5.94	-9.16
PCB 87	38380-02-8	6.29	6.00	-9.16
PCB 88	55215-17-3	6.07	5.78	-9.16
PCB 89	73575-57-2	6.07	5.78	-9.16
PCB 90	68194-07-0	6.36	6.07	-9.16
PCB 91	68194-05-8	6.13	5.84	-9.16
PCB 92	52663-61-3	6.35	6.06	-9.16
PCB 93	73575-56-1	6.04	5.75	-9.16
PCB 94	73575-55-0	6.13	5.84	-9.16
PCB 95	38379-99-6	6.13	5.84	-9.16
PCB 96	73575-54-9	5.71	5.42	-9.16
PCB 97	41464-51-1	6.29	6.00	-9.16
PCB 98	60233-25-2	6.13	5.84	-9.16
PCB 99	38380-01-7	6.39	6.10	-9.16
PCB 100	39485-83-1	6.23	5.94	-9.16
PCB 101	37680-73-2	6.38	6.09	-9.16
PCB 102	68194-06-9	6.16	5.87	-9.16
PCB 103	60145-21-3	6.22	5.93	-9.16
PCB 104	56558-16-8	5.81	5.52	-9.16
PCB 105 - WHO 12	32598-14-4	6.65	6.36	-9.16
PCB 106	70424-69-0	6.64	6.35	-9.16
PCB 107	70424-68-9	6.71	6.42	-9.16
PCB 108	70362-41-3	6.71	6.42	-9.16
PCB 109	74472-35-8	6.48	6.19	-9.16

Table D1. Physicochemical Properties of PCBs

Constituent of Interest	CAS No.	$\log K_{ow}^{a}$	$\log K_{PEW} (L_W/kg_{PE})^a$	log D _{PE} (cm ² /s) ^a
PCB 110	38380-03-9	6.48	6.19	-9.16
PCB 111	39635-32-0	6.76	6.47	-9.16
PCB 112	74472-36-9	6.45	6.16	-9.16
PCB 113	68194-10-5	6.54	6.25	-9.16
PCB 114 - WHO 12	74472-37-0	6.65	6.36	-9.16
PCB 115	74472-38-1	6.49	6.20	-9.16
PCB 116	18259-05-7	6.33	6.04	-9.16
	08194-11-0	0.40 6.74	0.17 6.45	-9.16
PCB 110 PCB 110	56558-17-0	0.74	0.40 6.20	-9.10
PCB 120	68194-12-7	6 79	6 50	-9.10
PCB 121	56558-18-0	6 64	6.35	-9.16
PCB 122	76842-07-4	6.64	6.35	-9.16
PCB 123 - WHO 12	65510-44-3	6.74	6.45	-9.16
PCB 124	70424-70-3	6.73	6.44	-9.16
PCB 125	74472-39-2	6.51	6.22	-9.16
PCB 126 - WHO 12	57465-28-8	6.89	6.60	-9.16
PCB 127	39635-33-1	6.95	6.66	-9.16
PCB 128	38380-07-3	6.74	6.45	-9.33
PCB 129	55215-18-4	6.73	6 44	-9.33
PCB 130	52663-66-8	6.8	6.51	-9.33
PCB 131	61708-70-7	6.58	6.20	-0.33
	20200 05 1	0.00	0.29	-9.00
PCB 132	36360-05-1	0.00	6.29	-9.33
PCB 133	35694-04-3	6.86	6.57	-9.33
PCB 134	52704-70-8	6.55	6.26	-9.33
PCB 135	52744-13-5	6.64	6.35	-9.33
PCB 136	38411-22-2	6.22	5.93	-9.33
PCB 137	35694-06-5	6.83	6.54	-9.33
PCB 138	35065-28-2	6.83	6.54	-9.33
PCB 139	56030-56-9	6.67	6.38	-9.33
PCB 140	59291-64-4	6.67	6 38	-9.33
PCB 141	52712-04-6	6.82	6.53	-9.33
	41411_61_4	6.51	6.00	-0.33
PCD 142		0.01	0.22	-9.00
PCB 143	00194-15-0	0.0	6.31	-9.33
PCB 144	68194-14-9	6.67	6.38	-9.33
PCB 145	74472-40-5	6.25	5.96	-9.33
PCB 146	51908-16-8	6.89	6.60	-9.33
PCB 147	68194-13-8	6.64	6.35	-9.33
PCB 148	74472-41-6	6.73	6.44	-9.33
PCB 149	38380-04-0	6.67	6.38	-9.33
PCB 150	68194-08-1	6.33	6.04	-9.33
PCB 151	52663-63-5	6 64	6.35	-9.33
PCB 152	68104-09-2	6.22	5.02	-0.33
DCB 152	25065 27 1	6.02	0.93	-9.00
	00145 00 1	0.92	6.63	-9.33
PCB 154	60145-22-4	6.76	6.47	-9.33
PCB 155	33979-03-2	6.41	6.12	-9.33
PCB 156 - WHO 12	38380-08-4	7.18	6.89	-9.33
PCB 157 - WHO 12	69782-90-7	7.18	6.89	-9.33
PCB 158	74472-42-7	7.02	6.73	-9.33

Table D1. Physicochemical Properties of PCBs

Constituent of Interest	CAS No.	$\log K_{ow}^{a}$	$\log K_{PEW} \left(L_W/kg_{PE}\right)^a$	log D _{PE} (cm ² /s) ^a
PCB 159	39635-35-3	7.24	6.95	-9.33
PCB 160	41411-62-5	6.93	6.64	-9.33
PCB 161	74472-43-8	7.08	6.79	-9.33
PCB 162	39635-34-2	7.24	6.95	-9.33
PCB 163	74472-44-9	6.99	6.70	-9.33
PCB 164	74472-45-0	7.02	6.73	-9.33
PCB 165	74472-46-1	7.05	6.76	-9.33
PCB 166	41411-63-6	6.93	6.64	-9.33
PCB 167 - WHO 12	52663-72-6	7.27	6.98	-9.33
PCB 168	59291-65-5	7.11	6.82	-9.33
PCB 169	32774-16-6	7.42	7.13	-9.33
PCB 170	35065-30-6	7.27	6.98	-9.4
PCB 171	52663-71-5	7.11	6.82	-9.4
PCB 172	52663-74-8	7.33	7.04	-9.4
PCB 173	68194-16-1	7.02	6.73	-9.4
PCB 174	38411-25-5	7.11	6.82	-9.4
PCB 175	40186-70-7	7.17	6.88	-9.4
PCB 176	52663-65-7	6.76	6.47	-9.4
PCB 177	52663-70-4	7.08	6.79	-9.4
PCB 178	52663-67-9	7.14	6.85	-9.4
PCB 179	52663-64-6	6.73	6.44	-9.4
PCB 180	35065-29-3	7.36	7.07	-9.4
PCB 181	74472-47-2	7.11	6.82	-9.4
PCB 182	60145-23-5	7.2	6.91	-9.4
PCB 183	52663-69-1	7.2	6.91	-9.4
PCB 184	74472-48-3	6.85	6.56	-9.4
PCB 185	52712-05-7	7.11	6.82	-9.4
PCB 186	74472-49-4	6.69	6.40	-9.4
PCB 187	52663-68-0	7.17	6.88	-9.4
PCB 188	74487-85-7	6.82	6.53	-9.4
PCB 189 - WHO 12	39635-31-9	7.71	7.42	-9.4
PCB 190	41411-64-7	7.46	7.17	-9.4
PCB 191	74472-50-7	7.55	7.26	-9.4
PCB 192	74472-51-8	7.52	7.23	-9.4
PCB 193	69782-91-8	7.52	7.23	-9.4
PCB 194	35694-08-7	7.8	7.51	-9.66
PCB 195	52663-78-2	7.56	7.27	-9.66
PCB 196	42740-50-1	7.65	7.36	-9.66
PCB 197	33091-17-7	7.3	7.01	-9.66
PCB 198	68194-17-2	7.62	7.33	-9.66
PCB 199	52663-75-9	7.2	6.91	-9.66
PCB 200	52663-73-7	7.27	6.98	-9.66
PCB 201	40186-71-8	7.62	7.33	-9.66
PCB 202	2136-99-4	7.24	6.95	-9.66
PCB 203	52663-76-0	7.65	7.36	-9.66
PCB 204	74472-52-9	7.3	7.01	-9.66
PCB 205	74472-53-0	8	7.71	-9.66

Table D1. Physicochemical Properties of PCBs

	Table D1.	Physicochemica	I Properties	of PCBs
--	-----------	----------------	--------------	---------

Constituent of Interest	CAS No.	$\log K_{ow}^{a}$	$\log K_{PEW} \left(L_W/kg_{PE} ight)^a$	log D _{PE} (cm²/s) ^a
PCB 206	40186-72-9	8.09	7.80	-9.83
PCB 207	52663-79-3	7.74	7.45	-9.83
PCB 208	52663-77-1	7.71	7.42	-9.83
PCB 209	2051-24-3	8.18	7.89	-10

Notes:

PCB = polychlorinated biphenyl

 K_{OW} = Octanol to Water Partition Constant

 K_{PEW} = Polyethylene to Water Partition Constant

 D_{PE} = Polyethylene Diffusivity

SDL = Sample Detection Limit

^a Default values in PRC calculator: Gschwend, P.M., P. Tcaciuc, and J.N. Apell. 2014. Passive PE sampling in support of in situ remediation of contaminated sediments – Passive sampler PRC calculation software user's guide. ESTCP Project ER-200915..

^b Provided by AXYS

^c Assuming 0.1 gram of PE and that full equilibrium is reached. Note that full equilibrium may not be achieved for all congeners.

GUIDANCE DOCUMENT

Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments: Standard Operating Procedure for PED Preparation

ESTCP Project ER-200915

Philip Gschwend John MacFarlane **MIT**

Kevin Palaia Steve Reichenbacher Dean Gouveia **ICF International**

This document has been cleared for public release

December 2012

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188
The public reporting burden for this collection of i gathering and maintaining the data needed, and con information, including suggestions for reducing the that notwithstanding any other provision of law, n control number. PLEASE DO NOT RETURN YOUR FOR	information npleting and burden, to person sh M TO TH	is estimated to average 1 hour reviewing the collection of infoi the Department of Defense, Ex all be subject to any penalty fo E ABOVE ORGANIZATIO	per response, incl mation. Send com ecutive Services ar r failing to comply DN.	uding the time ments regardin d Communica with a collect	e for reviewing instructions, searching existing data sources, ng this burden estimate or any other aspect of this collection of tions Directorate (0704-0188). Respondents should be aware ion of information if it does not display a currently valid OMB
1. REPORT DATE (DD-MM-YYYY)	2. REPO	RT TYPE			3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE				5a. CON	TRACT NUMBER
				5b. GRA	NT NUMBER
				5c. PRO	GRAM ELEMENT NUMBER
6. AUTHOR(S)				5d. PRO	JECT NUMBER
				5e. TASI	K NUMBER
				5f. WOR	K UNIT NUMBER
7. PERFORMING ORGANIZATION NAM	ME(S) AN	ID ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGEN	CY NAMI	E(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STA	ATEMENT				
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:	S PAGF	17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAM	IE OF RESPONSIBLE PERSON
	,.GL		PAGES	19b. TELE	PHONE NUMBER (Include area code)

Standard Operating Procedure for the Preparation of Polyethylene (PE)

and Polyethylene Devices (PEDs) Used for Passive Sampling

1.0 SCOPE AND APPLICATION

- 1.1 This method describes a procedure for preparing and handling polyethylene (PE) films that will be cut into strips and used in polyethylene devices (PEDs) to passively sample hydrophobic organic compounds (HOCs) in environmental media.
- 1.2 This method generates PE that can be deployed within PEDs for passive sampling of HOCs in atmospheric, aqueous, or sediment-porewater systems.
- 1.3 PE that is prepared by this method is suitable for laboratory or *in situ* field deployment.

2.0 SUMMARY OF METHOD

- 2.1 A known mass of low density polyethylene (LDPE) sheet, usually gram quantities, is cleaned by sequentially extracting with methylene chloride, methanol, and ultrapure water in a closed glass vessel.
- 2.2 Clean PE is equilibrated with performance reference compounds (PRCs) dissolved in water or methanol-water (see Appendix 1 for possible PRCs).
- 2.3 Prepared PE is stored in contaminant-free, sealed, glass vessels.
- 2.4 Shortly before deployment, the PE is cut into strips and either placed in aluminum mesh bags for water sampling water or aluminum frames for sediment sampling. PEDs are transported to the field wrapped in clean aluminum foil.
- 2.5 In the field, the PE is exposed to the environmental medium of concern. HOCs in the medium diffuse into the PE, while PRCs diffuse out.

3.0 INTERFERENCES

3.1 PE is susceptible to contamination from atmospheric vapors and contact with surfaces (e.g., worker hands), so it must remain in clean sealed vessels until deployment.

4.0 APPARATUS AND MATERIALS

- 4.1 Extraction vessels: 1-L glass bottles or screw capped jars (foil-lined lids).
- 4.2 Storage vessels: bottles with glass stoppers or amber jars (foil-lined lids).
- 4.3 Bottle/jar tumbler, shaker table, bottle roller, or equivalent.
- 4.4 Low density polyethylene (LDPE): commercial grade, large sheet at 25μm (1 mil) or 51μm (2 mil) thickness. The thickness is chosen to be strong enough to withstand stresses during deployment (e.g., insertion into sediment), but thin enough to exchange a significant fraction (e.g., >20%) of its PRCs during the deployment time to be used.
- 4.5 Food grade aluminum foil (solvent cleaned and/or combusted to remove any organic residue from foil production)

- 4.6 Stainless steel forceps
- 4.7 Teflon (or similar non-contaminating material) cutting board

5.0 REAGENTS

- 5.1 Methylene chloride, CH₂Cl₂, pesticide grade or equivalent
- 5.2 Methanol, CH₃OH, pesticide grade or equivalent
- 5.3 Organic-free reagent water (as defined in SW-846 Chapter 1)
- 5.4 Research grade PRCs certified >98+% pure.

Note: Specific standard materials, concentrations, solvents, and solvent purity requirements will be determined based upon that target HOCs of concern for the particular application

6.0 PRESERVATION AND HANDLING

- 6.1 Clean PE should be stored in clean sealed glass vessels.
- 6.2 Until deployment, prepared PE (PE loaded with PRCs) is stored in sealed glass containers with a few mL of organic-free reagent water added to maintain 100% relative humidity within the storage vessels (minimizing sorptive losses of PRCs to glass vessel walls).
- 6.3 Laboratory and field personnel should wear nitrile or latex gloves whenever handling clean PE.
- 6.4 Methylene chloride-rinsed, stainless steel forceps and scissors are used when manipulation of clean PE is required.
- 6.5 Methylene chloride-rinsed, aluminum foil is used to cover any surface that clean PE may encounter.

7.0 PROCEDURE

- 7.1 Polyethylene Cleaning Procedure: LDPE is purchased from hardware/painting stores in large sheets ('dropcloth or plastic tarp' material) with thickness of 25μ m (1 mil) or 51μ m (2 mil), depending on the user's need for strength (choose thicker) and desire to use short deployment times (used thinner). The sheet is cut into strips sized for environment and frames to be used. An organic solvent cleaning sequence is then used to prepare the PE. This process ensures that extractable oligomers, plasticizers, and contaminating organic chemicals are removed from the PE prior to use. All extractions are performed sequentially in the same container.
- 7.1.1 Methylene chloride is placed into the extraction vessel, and the PE strips are immersed in the container for 24 hours to enable time for diffusive transfers out of the PE. The initial methylene chloride extract is discarded and a second methylene chloride extraction is performed for 24 hours. The second methylene chloride extract is discarded and replaced by methanol in order to remove methylene chloride from the PE. Methanol immersion is also done for 24 hours. The initial methanol extract is discarded and followed by a second methanol soak for 24 hours. Finally, the second methanol extract is discarded and the PE undergoes three 24-hour soaks with organic-free reagent water (within the same

extraction vessel) to remove residual methanol from the PE.

- 7.1.2 The cleaned PE is stored in organic-free reagent water in the extraction vessel until further processing.
- 7.2 Polyethylene Preparation with Performance Recovery Compounds (PRCs): PRCs are loaded into the clean PE, prior to its field deployment, by utilizing either aqueous (Fernandez et al. 2009) or 80:20 methanol:water equilibrations (Booij et al., 2002). Depending on the hydrophobic organic compounds of interest, PRCs should be chosen which mimic mass transfer phenomena governing exchanges during field deployments. It is important to avoid adding PRCs that the analytical laboratory already uses as surrogate or injection standards. PRC loading is performed by placed the PE in pre-cleaned glass vessels containing known PRC solutions made up in organic-free reagent water with or without pesticide-grade methanol. The PE user should estimate the expected accumulation of target compounds in the passive sampler and seek to load with similar levels of PRCs to facilitate the eventual chemical analyses. Sufficient PRC equilibration time during this PE preparation step is necessary to ensure uniform PE loading across the entire PE thickness; hence thicker PE sheet is more robust for field use, but takes longer to load with PRCs.
- 7.2.1 Isotopically labeled compounds are useful internal standards when Gas Chromatography-Mass Spectrometry (GCMS) is the method of separation and detection. For example, deuterated polycyclic aromatic hydrocarbons (PAHs) and C13-labeled PCBs are effective methodological standards for PE passive sampling. One subset of compounds, distributed across the range of PAHs to be assessed (e.g., d10-phenanthrene, d10-pyrene, and d12-chrysene), should be used as PRCs, while another set (e.g., d10-anthracene, d10-fluoranthene, and d12-benz(a)anthracene) is used as surrogate (recovery) compounds during later analysis of field-deployed PE. Finally, compounds such as d10-acenaphthene, d14-*m*-terphenyl, and d12-perylene can be used as injection standards. Similar sets of labeled compounds should be used for other compound classes (see Appendix 1). Note: if PE samples are eventually to be analyzed at a contract laboratory, PRC choices must be made so as not to conflict with recovery and injection standards used by that laboratory.
- 7.2.2 As subsequent analysis (e.g., GCMS) is best achieved with both PRCs and target HOCs present at like concentrations in the PE extracts, the optimal concentration level of the PRC loaded into the PE is dependent on the environment in which the PE is to be deployed. For example, if a target HOC is expected to occur in the water or pore water near 1 ng/L levels, one can use that compound's LDPE-water partition coefficient (e.g., Fernandez et al., 2009; Lohmann, 2012) to estimate the expected levels in the PE after deployment:

Concentration in PE (ng/kg) ~ $K_{LDPE-water}$ * concentration in (pore)water (ng/L)

So if the $K_{LDPE-water}$ for the target HOC of interest is 10⁵ (L/kg), then the concentration of the target HOC in the PE will approach 100 ug/kg. Based on this estimate, the PRCs are loaded into the PE at similar concentrations. Appendix 2 shows a typical calculation used to design a PRC-containing MeOH:H₂O solution of PCBs suited for causing an 0.82 g strip of PE to acquire about 100 ug of each PRC per kg of PE (equivalent to 100 ng/g PE).

- 7.2.3 Aqueous PRC Loading: A solvent-cleaned and dried glass container is filled with ultrapure water that has been spiked with known concentrations of PRCs (e.g., using calculations like those shown in Appendix 2). A known mass of pre-cleaned PE is then added and weighted to insure complete PE submersion. The vessel is agitated to remove any air pockets adhering to the submerged PE. Equilibration times vary for different PRC/PE thickness combinations and the PE-water phase ratio. For PAHs and PCBs, use at least 30 days to insure homogeneous distributions of the PRCs throughout the entire thickness of the PE film unless faster equilibration has been confirmed. Confirmation can be done by time course measures of PRC concentrations in the PE or by showing that concentrations of PRCs are the same for films of different thicknesses, but the same masses. Generally, PE is stored in the PRC solution until it is to be deployed.
- 7.2.4 Methanol-Aided PRC Loading: A solvent-cleaned and dried glass container is filled with an 80:20 mixture of pesticide grade methanol and ultrapure water that has been spiked with known concentrations of PRCs (e.g., see calculations in Appendix 2). A known mass of pre-cleaned PE is then added and weighted to insure complete submersion. The vessel should be agitated to remove any air pockets adhering to the submerged PE. Equilibration times vary for different PRC/PE thickness combinations and the PE-solvent phase ratio, but typically this step is completed within 7 days since methanol swells the PE and thereby speeds PRC diffusion into the polymer sheet (Booij et al., 2002). Generally, the PE is stored in the PRC-loaded PE is rinsed with ultrapure water, and then it is soaked in ultrapure water for 24 h to remove methanol from the PE. This methanol leaching step is repeated twice to insure complete methanol removal.
- 7.3 PED Assembly
 - 7.3.1 PEDs can be pre-assembled with prepared PE strips up to a few days prior to deployment depending on the target compounds of interest.
 - 7.3.2 FOR WATER SAMPLING WITH PE IN A STAINLESS STEEL MESH BAG. Since PE that is openly exposed in the water column has been observed to be eaten by aquatic organisms, the PE must be protected by deploying it in a mesh bag.

7.3.2.1 Cut rectangles from the mesh that are larger than the piece of PE to be deployed. Clean the mesh with methylene chloride, methanol, and water.

7.3.2.2 Wearing nitrile gloves, and using solvent-rinsed stainless steel forceps, lay a piece of the mesh on a clean surface such as an aluminum-foil covered lab bench. Remove the PE strip from its container and lay it on top of a stainless steel mesh. Place the second mesh on top. The two meshes are sealed together by folding the edges over on one another, and then sewing them together with nylon fishing line. Grommets can be added to the upper corners to facilitate mesh labeling and attachments in the field.

7.3.3 FOR SEDIMENT BED SAMPLING WITH PE IN AN ALUMINUM SHEET METAL FRAME. In order to insert the PE strips into a sediment bed, the PE must be carried by an aluminum frame (Figure 1).

7.3.3.1. Aluminum sheet metal is cut into two complementary pieces that can be bolted together such that a piece of PE sheet is held in place. After cutting, these pieces of aluminum must be washed with organic solvents (e.g., methylene chloride and methanol) and then rinsed with water.

~25 cm strips of PE an open window when the two pieces are overlapped and bolted together. (right panel) Drawing of two aluminum sheet pieces cut so as to sandwich a strip of PE and expose about 50 cm of length.

7.3.3.2 Wearing nitrile gloves, lay a piece of the aluminum frame containing the PE piercing points (sheet metal screws, see Figure 1), sharp side up, on a sheet of solvent-rinsed aluminum foil.

7.3.3.3 Using solvent-rinsed stainless steel forceps, remove the PE strip from its container and lay the strip lengthwise across both sets of PE piercing point junctions. PE strips should have been sized to fit the frame with a little extra length, allowing the investigator to cut a small strip of PE from one end to serve as sample for PRC concentration measures before the sampler is deployed. At one end of the PED frame, gently push the remainder of the PE strip onto the PE piercing points so all points penetrate the PE strip. Gently pull the other end of the PE strip over the adjacent PE piercing points, keeping the PE strip taut, and push that end of the PE strip into the PE piercing points. The tautness of the PE strip should have as minimal deflection as possible between the two PE piercing point junctions, but not too tight so that movement of the PE causes it to rip or tear. Place the other PED frame over the PED frame containing the PE strip so that each of the PE piercing point junctions meet and both PED frames are flush against each other. Secure the two frames together using the appropriate hardware (stainless steel machine screws, locking washers, and cap nuts).

7.3.3.4 Wrap the entire PED frame in solvent-rinsed aluminum foil to prevent exposure during transport and field preparation activities.

- 7.4 PE and PED Storage and Shipment:
 - 7.4.1 Prepared PEDs in their foil envelops may be stored a few days at ambient temperature prior to deployment. Freezing or excessive heat should be avoided to minimize the likelihood of changing the polymer crystallinity. It is recommended that PEDs be hand carried or shipped in a timely fashion (Overnight or Next Day if possible) to minimize chances sampler contamination or damage.
 - 7.4.2 If PE is to be shipped to another location for PED assembly, it is recommended that the PE strips are individually sealed in pre-cleaned glass vials that contain a little water. Freeze shipping should be avoided, but cold (refrigeration temperature) packing may be necessary depending on time of season and individual laboratory handling/quality control procedures.

8.0 QUALITY CONTROL

- 8.1 PRC Loading Validation: At least six representative samples of prepared PE should be collected (e.g., 6 x 10 mg pieces), extracted, and analyzed prior to field deployment to validate that the PRC concentrations are consistent with their intended loadings and these standards have uniform concentrations in a batch of PE.
- 8.2 Target HOC Blanks: Subsamples of prepared PE, commensurate in size with the planned environmental PE samples (e.g., 10 cm wide by 5 cm long by 25 um thick and therefore weighing about 120 mg), should be be collected, extracted, and analyzed prior to field deployment to demonstrate that other substances have not contaminated the PE which would contribute to interfering background for the target HOCs.

9.0 METHOD PERFORMANCE

- 9.1 PRC data, obtained from PE samples collected from >six parts of the prepared PE, should be consistent within about 10% (i.e., 100 x standard deviation / mean).
- 9.2 Target HOC concentrations should be undetectable in the prepared PE (e.g., < 1 ng/g PE assuming 100 mg PE subsamples).

10.0 REFERENCES

Adams, R.G., Lohmann, R., Fernandez L.A., MacFarlane, J.K., and Gschwend, P.M., Environ. Sci. & Technol. 2007, 41, 1317-1323.

Booij, K, Smedes, F., van Weerlee, E.M., Chemosphere 2002, 46, 1157-1161.

Fernandez, LA, MacFarlane, J.K., Tcaciuc, A.P., and Gschwend, P.M., Environ.

Sci. & Technol; 2009, 43, 1430-1436.

Hawker DW and Connell DW. 1988. Environ. Sci. Technol. 22: 382-387.

Lohmann, R. MacFarlane, J.K. and Gschwend, P.M., Environ. Sci. & Technol; 2005, 39, 141-148.

Lohmann, R. Environ. Sci. & Technol.; 2012, 46, 606-618.

Appendix 1 Suggested Performance Reference Compounds (PRCs), Surrogate Compounds (Recovery Standards), and Injection Standards.

A. PRCs, suitable for polycyclic aromatic hydrocarbon (PAH) determinations when Gas Chromatography-Mass Spectrometry (GCMS) is the preferred method of detection, include, but are not restricted to, deuterated PAH compounds. One subset should be used as PRCs, while reserving others for use as surrogate (recovery) compounds. Still other compounds such as terphenyl can be used as injection standards.

Targets: PAHs	Method: GCMS Dete	ection Limit ~ 100 pg	/ 100 mg PE
PRCs	d10-phenanthrene	d10-pyrene	d12-chrysene
Surrogates	d10-anthracene	d10-fluoranthene	d12-benz(a)anthracene
Injection Standards	d10-acenaphthene	d14-m-terphenyl	d12-perylene

B. PRCs and surrogate compounds suitable for polychlorinated biphenyl (PCB) determinations when GCMS is the preferred method of detection include, but are not restricted to, ¹³C-labeled or deuterated PCB congeners. One subset, for example including a tri-, tetra-, penta-, hexa-, and heptachloro-biphenyl, can be used as PRCs while reserving different tri-, tetra-, penta-, hexa-, and heptachloro-biphenyl congeners to serve as surrogate compounds. Still other compounds such as deuterated PAHs or rare PCBs (not contained in Aroclor/Clophan mixtures such as: PCB-39, PCB-55, PCB-104, PCB-150 and PCB-188) can be used as injection standards.

Targets: PCBs Method: GCMS			Detection			
PRCs	¹³ C PCB-28	¹³ C PCB-52	¹³ C PCB-101	¹³ C PCB-153	¹³ C PCB-180	
Surrogates	¹³ C PCB-19	d ₆ PCB-77	¹³ C PCB-105	¹³ C PCB-167	¹³ C PCB-170	¹³ C PCB-194
Injection	d17-39	d22-104	d34-55	d40-150	d52-188	
Standards						

C. When analyzing for organochlorine pesticides such as DDT using GCMS, ¹³C labeled compounds can serve as PRCs and surrogate standards. Since DDT has been seen to degrade to form DDE or DDD in certain situations, one should use the 4,4'- isomer of DDT and the 2,4'-isomers of DDE and DDD as PRCs to allow appearance of ¹³C-labelled 4,4'-DDE of 4,4'-DDD to be interpreted as arising from reaction of the DDT PRC during the deployment. Deuterated or ¹³C labeled PCBs can be used as surrogate (recovery) and injection standards.

Targets: DDTs	Method: GCMS	etection Limit ~ 200 pg / 100 mg PE				
PRCs	¹³ C 2,4'-DDE	¹³ C 2,4'-DDD	¹³ C 4,4'-DDT			
Surrogates	¹³ C-PCB111	¹³ C-PCB153	¹³ C 2,4'-DDT			
Injection Standards	d6 PCB 77	¹³ C PCB 105	¹³ C PCB 167			

Appendix 2. Example of spreadsheet used to design solution needed to impregnate PE with Performance Reference Compounds (PRCs) for PCB sampling. The leftmost section uses data from Booij et al. (2002) to establish a correlation between log K(polyethylene-80:20 MeOH:H2O) values and log K_{ow} values from Hawker and Connell (1988). With this relationship, the second section shows is use to estimate the PE-MeOH:H2O partition coefficients for PRCs of interest. Using these partition coefficients and a user-chosen mass of PE to prepare (here 0.82 g), the third section allows the user to find the PRC spiking solution concentration needed to obtain any desired initial PE concentration (here set to be 100 ng each PRC per g PE); for example, for congener 52, one needs to have 11 ng/mL of the initial 80:20 MeOH:H₂O solution to end up with about 100 ng/g PE. Finally, the right-most section uses the polyethylene-water partition coefficients (from Lohmann 2012) to check the importance of PRC losses from the PE when the MeOH is leached out in three successive steps after PRC loading. Successive calculations are described in the text below.

Solution concentration needed fraction in PE after each water fraction in PE in ng/mL in order to get soak to remove MeOH Training data for 100 ng/g PE 13C-labelled estimation of use correlation to Kpe-meoh:H2O PRCs estimate 0.82042 for PE mass (g) estim log Kpe-w 1st leach 2nd leach 3rd leach log Kpelog Kpew = with VMeOH:water PCB meoh:water (ref log Kow log Kow log Kpeng/mL 1.14*log Kow-1.14 (mL) congener 1) (ref 2) congener (ref 2) meoh:water(80:20) 125 MeOH:H2O congener (ref 3) using 1000 0.058 0.9966 0.9932 4 0.20 4.65 52 5.84 0.97 11.29 52 5.52 29 1.05 5.6 101 6.38 1.26 0.107 6.15 101 6.13 0.9990 0.9980 155 1.29 6.41 153 6.92 1.55 0.188 3.49 153 6.75 0.9997 0.9994 204 1.67 7.3 180 7.36 1.78 0.284 2.31 180 7.25 0.9999 0.9998 28 5.67 0.88 0.048 13.75 28 5.32 0.9950 0.9900 47 5.85 0.98 0.059 11.16 47 5.53 0.9967 0.9934 111 6.76 1.46 0.160 4.10 111 6.57 0.9996 0.9992 153 6.92 1.55 0.188 3.49 153 6.75 0.9997 0.9994 178 1.66 0.233 2.82 178 7.00 0.9998 0.9997 7.14 use to find following correlation:

Example spreadsheet calculation for spiking PCBs into LDPE with 80:20 methanol-water solutions.

log Kpe-mw(80:20) = 0.532 (+/- 0.094) * log Kow(Hawker) - 2.133 (+/- 0.572) N = 4, R2 = 0.94, S.E. 0.18

references

1. Booij, K, Smedes, F., van Weerlee, E.M., Chemosphere 2002, 46, 1157-1161.

2. Hawker DW and Connell DW. 1988. Environ. Sci. Technol. 22: 382-387.

3. Lohmann, R. Environ. Sci. & Technol.; 2012, 46, 606-618.

PE mass					
number of strips	1				
PE density (g/cm3)	0.95				
PE thickenss (cm)	0.00254	for 1 mil sheet			
PE length (cm)	68				
PE width (cm)	5				
length*width*thickness *number of strips*density					
mass of PE (g)	0.82				

mL water

0.9898

0.9971

0.9991

0.9997

0.9850

0.9901 0.9988

0.9991

0.9995

Step 1: find/estimate PE-spiking solvent partition coefficients for PRCs in solvents of interest. Here 80:20 MeOH:H₂O values from Booij et al. (2002) are used to develop a LFER with K_{ow} values from the literature (Hawker and Connell, 1988); this relation is then used to estimate $K_{pe-meoh:h2o}$ values for other PCB congeners.

Step 2: choose the size of PE needed for the sampling exercise (here a single 1 mil-thick strip of 5 cm width and 68 cm length) and solve for the PE mass (here 0.82 g). Also choose a vessel which is large enough in volume to fit the PE inside without extensive PE-PE surface contact, but small enough so that unacceptably expensive masses of the labeled PRCs are not used (here 125 mL ground glass stopped flask). For this PE mass and solution volume, use the PE-solution partition coefficients from step 1 to solve for the fractions of each PRC that will be in the PE at equilibrium using:

fraction in PE = $1 - (1 / (1 + Mass_{pe} * K_{pe-solution} / Volume_{solution}))$

(e.g., 5.8% for congener #52)

Step 3. solve for spiking solution concentrations of PRCs that result in desired PRC loadings in the PE (here 100 ng/g_{PE}) using:

 $C_{\text{initial spiking solution}} = C_{\text{desired in PE}} * Mass_{\text{pe}} / fraction in PE / Volume_{\text{solution}}$

(e.g., here find need about 11.3 ng congener #52 per mL to achieve 100 ng/g PE; this is concentration of the spiking solution that the investigator must make up to prepare PE for subsequent sampling at sites where it is expected that the (pore)water will cause the PE to accumulate about 10 to 100 ng of target PCBs/g_{PE}).

Step 4. PE is stored in the PRC loading solution until shortly before passive sampling use.

Step 5. if spiking solutions that contain organic cosolvents like MeOH were used, this MeOH must be leached out of the PE before it can be used for passive sampling. To insure that MeOH leaching will not substantially change PRC loading, calculate whether substantial fractions of the PRCs will be lost in subsequent steps required to leach the co-solvent from the PE. Since the leaching steps involve use of H₂O, use the PE-water partition coefficients; for PCBs, these are derived from a LFER found in the review by Lohmann (2012). With these values, we can solve for the fractional losses of individual PRCs to the leach water (assumes negligible MeOH builds up in the leach water) contained in 1000 mL ground glass stoppered flasks, using:

fraction remaining in PE after a single leach step = $1 - (1 / (1 + K_{pe-H2O} * Mass_{pe} / Volume_{H2O}))$

(e.g., in this case for congener #52, one finds 99.66% of the PRC remains in the PE after the first leach. Two additional leaches lower this to 99.32% and 98.98%, respectively. More hydrophobic congeners are leached even less.)

Attachment D-2

Standard Operating Procedure (SOP) Lower Duwamish Waterway Clamming Area Sediment Compositing, Homogenization, and Aliquoting

METHOD DESCRIPTION

This SOP provides instruction on the methods and equipment required to composite, homogenize, and aliquot clamming area sediment in the laboratory. Three composite samples will be created according to the compositing memorandum as discussed in Section 4.1.3.1 of the Surface Sediment Quality Assurance Project Plan (QAPP). The accompanying QAPP details the methods for sediment sample collection, transport, and storage, as well as methods for chemical analyses.

EQUIPMENT

- **u** Drill with stainless steel paddle
- u Stainless steel pot, bowls, spoons, and measuring scoops
- u Alconox
- u Laboratory grade deionized (DI) water
- u Camera
- u Glass or stainless steel measuring cup
- 18 x 26 in. stainless steel baking trays (modified with evenly-spaced stainless steel screws along the rim to provide frame for demarcation of equal grids)
- u Braided-nylon mason twine
- **u** Top loading balance (readability = 0.1 g)
- u Aliquot collection form
- **u** 8-oz. wide-mouth glass jars
- u 16-oz. wide-mouth plastic jars
- u Kimwipes

PERSONAL PROTECTIVE EQUIPMENT

- u Nitrile gloves
- Long pants
- u Closed-toe shoes
- u Safety glasses
- u Lab coat

SAMPLE COMPOSITING AND HOMOGENIZATION

Clamming area sediment will be composited and homogenized according to the following steps:

- 1. Clean stainless steel spoons, bowls, pot, and mixing paddle with Alconox and rinse with DI water.
- 2. Retrieve field samples from the refrigerator. Check sample IDs and organize samples into three compositing groups as listed in the compositing memorandum. Return samples for the composites not being processed to the refrigerator.
- 3. Transfer the contents of one 4-oz. jar into a stainless steel mixing bowl. Use a stainless steel spoon to help transfer sediment to the bowl including scraping sediment from the jar. Using the spoon, locate any rocks or pieces of organic matter (e.g., wood debris, shells) larger than approximately 5 mm and remove them from the sample. Scrape sediment off the surface of large pieces as much as possible prior to removal. Pour or spoon the contents of the mixing bowl into a large stainless steel pot.
- 4. Repeat step 3 for the remaining 4-oz. jars included in the composite. Use a spoon to scrape residual sediment from the bowl into the pot.
- 5. Using a drill with a stainless steel paddle bit, blend the contents of the pot for at least 20 minutes. Scrape the sides of the pot with a stainless steel spoon during blending to ensure that all sediment is thoroughly mixed. If a uniform color and texture is not achieved after 20 minutes, continue blending as long as needed and document if the sample was blended for longer than 20 minutes. Homogenization will be complete when the sediment is visually uniform in color and consistency.
- 6. Photograph homogenized sediment.
- 7. Repeat steps 3-6 for the second and third composites.

COLLECTION OF ALIQUOTS FOR CHEMICAL ANALYSIS

Aliquots of homogenized sediment will be collected in jars for chemical analyses according to the following steps:

- 1) Prepare materials:
 - a) Clean two 18 x 26 in. stainless steel baking trays with Alconox and rinse with DI water and dry. These trays will have evenly-spaced holes along the rim with screws that will be used to create a 30-square grid (i.e., 15 squares per tray) with string (Figure 1).

Figure 1. Baking tray with 15 grids

- b) Create grid labels adjacent to the baking trays using duct tape or bench liner to mark each square with a unique identifier (e.g., A1 corresponds to the first grid square and F5 corresponds to the last grid square).
- c) Clean stainless steel/glass spoons, scoops, measuring cups, and bowls with Alconox and rinse with DI water and dry.
- d) Label sample jars with composite sample IDs according to the QAPP.
- 2) Immediately after homogenizing the sediment, use a glass or stainless steel measuring cup to transfer the entire contents of the mixing pot in approximately equal masses onto two stainless steel baking trays. The aliquots collected in the measuring cup will be weighed to ensure that the sediment is evenly distributed between trays (total masses within 5% of each other). Scrape residual sediment from the pot and evenly distribute the sediment in each tray using a large stainless steel spoon.
- 3) Place string around the screws on the rim of the baking trays to create a 15square grid above the surface of the sediment in each tray.
- 4) Document the composite sample ID, date, and time on the aliquot collection form.
- 5) Collect aliquots of sediment from each grid square:
 - a) Tare sample jar on the balance.
 - b) Based on the sample mass specified in Table 1, use an appropriately-sized square stainless steel measuring spoon to collect an aliquot of sediment from a random location within the first square of the grid that has not been previously sampled. The scoop will equally sample the full depth of

ower **D**uwamish aterway of Seattle / City of Seattle / King County / The Boeing Comp

sediment in the tray (e.g., a vertical aliquot will be collected evenly from the surface to the bottom).

- c) Transfer the aliquot into the jar and weigh. Ensure that the aliquot mass falls within the range specified in Table 1. If the correct mass of sediment is not achieved, the sub-sampling procedure will be re-started using a clean jar. The sediment in the original jar will be disposed as laboratory waste.
- d) If there is excess sediment on the scoop, rinse the scoop with DI water and dry with a Kimwipe before collecting the next subsample.
- e) Check the appropriate box on the aliquot collection form to document which square was sub-sampled.
- f) Repeat steps 5b-e for the remaining 29 squares.

Lab	Analyte	Required Analytical Mass (g ww)	Jar Size	Target Mass (g ww)	Mass (and Range) of Acceptable Mass per Aliquot (g ww)
ARI	Grain size	600	16-oz. jar	600	20 (18–22)
	тос	6			_
ARI	Percent solids	45	8-oz. jar	8-oz. jar 90	3 (2-4)
	Metals (arsenic)	3			(~ 1)
	cPAHs	60	8-oz. jar		_
ARI	Toxaphene	75		8-oz. jar 240	8 (7-9)
	PCB Aroclors	75			(1-5)
Axys	Dioxins/furans	40	8-oz. jar	90	3 (2–4)
ARI	Archive	na	8-oz. jar	240	8 (7–9)

Table 1. Sediment mass required for each aliquot by analytical jar

ARI – Analytical Resources, Inc.

Axys - Axys Analytical Services Ltd.

cPAH - carcinogenic polycyclic aromatic hydrocarbon

PCB – polychlorinated biphenyl TOC – total organic carbon ww – wet weight

- 6) Repeat step 5 for the remaining sample jars for the composite. Collect each aliquot from a different random location within each grid.
- 7) Repeat steps 1-6 for the remaining two composites.
- 8) Five sample jars will be filled for each of the three composite samples. One composite will be selected for replicate analysis, this composite will be subsampled and analyzed for cPAHs in triplicate to assess variability. For this composite, two additional aliquots per grid will be collected in order to fill two additional 8-oz jars.

Lower Duwamish Waterway Group

The procedure described above assumes the homogenized sediment is sufficiently thick to show where previous subsamples have been collected within each grid. In the event that a sediment composite contains enough liquid that previous subsamples are not expected to be visible, EPA will be contacted to discuss how to divide and subsample the composite.

QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

One sample will be selected for triplicate subsampling and analysis for PAHs in order to assess the variability of the composite samples.

DATA MANAGEMENT

All data will be recorded immediately, legibly, and in ink on the appropriate benchsheets. Any recording mistakes will be struck out with a single line and initialed and dated by the analyst. Hard copies of completed forms will be compiled and stored. Forms will also be scanned electronically and electronic copies will be submitted to EPA as part of the data report.

WASTE DISPOSAL

Waste generated during this procedure, including remaining sediment from the composite samples, will be disposed appropriately per laboratory procedures.

APPENDIX E. FIELD NOTES FROM RECONNAISSANCE

This appendix presents a summary of notes from field reconnaissance of uncharacterized exposed bank areas and selected outfalls with potential sampleability issues. This reconnaissance was performed on August 31, September 1, and September 25, 2017.

Exposed Bank Area (RM)	Field Reconnaissance Notes	Select Photos
0.6–0.7 E	 Area is mostly exposed mud with some patches of vegetation. Large exposed area exists for potential sampling. Riprap exists around south area of bank. 	
0.9–1.0 W	 North section has large exposed area. South section has riprap but also an exposed area in the middle. Cove in south area—difficult to see entire area from boat but may be sampleable. Top portion of bank is steep, so may need to target low tide to access bank from river. 	

Table E-1. Uncharacterized exposed bank areas surveyed

Exposed Bank Area (RM)	Field Reconnaissance Notes	Select Photos
2.0–2.2 W	 Bank is behind structure for 1st Avenue bridge. Area was accessed from the south; boat access from north side of bridge seems difficult. Small area of riprap exists on north bank area. Most of bank area appears exposed and sampleable. Some patches of vegetation exist. Crew was unable to access inlet by boat. 	
2.5–2.7 W	 Two ramp structures, a catwalk, and a floating dock exist. There appear to be two sampleable areas: one may not be accessible by boat and the other is adjacent to the southern ramp structure. 	

Exposed Bank Area (RM)	Field Reconnaissance Notes	Select Photos
3.0–3.1 W	 Exposed beach area (Duwamish Waterway Park) is sampleable. 	
4.6–5.0 W	 Reeds exist, especially at north end. Large amounts of vegetation exist. Some exposed areas exist throughout and in northern inlet. Southern portion of this area is not visible due to fishing boats/kayaks and bridge over river. 	

Exposed Bank Area (RM)	Field Reconnaissance Notes	Select Photos
4.7 E	 Lots of fisher boating activity occurs. Riprap exists. Slope is steep. Dense vegetation exists. Area did not look to be sampleable, but it was difficult to get close by boat because of fisher boating activities. 	

Table E-2. Select outfalls surveyed

Outfall	Location (approx. RM)	Field Reconnaissance Notes	Select Photos
2503	2.0 E	 Team was unable to locate outfall, which was described as being at the head of a ditch. Shoreline is armored with riprap and concrete slabs and has areas of dense vegetation. 	
SCS Refd Services	2.1 E	 Team was unable to see outfall; it was likely under a structure. A building, floating boathouse, and wooden pier structure line the shoreline, which is armored with wood piles and riprap. The Muckleshoot Tribe fishing boats are tied up to the wooden pier. 	

Lower Duwamish Waterway Group

Outfall	Location (approx. RM)	Field Reconnaissance Notes	Select Photos
8134	0.0 W	 Team was unable to see outfall; it is likely under the pier structure or behind the area where a barge was being loaded during the reconnaissance. Shoreline is armored with riprap. 	
2157	0.4 W	 Team was unable to see outfall; it was likely either under the dock or behind barges. 	
2226 (Herring's House)	0.5 W	 There is a creek/inlet in this area that connects a lagoon to the river. The creek was observed to be at least partially armored with riprap, but may be sampleable by hand. Shoreline area north of creek/inlet is covered by a wooden pier. 	<image/>

Outfall	Location (approx. RM)	Field Reconnaissance Notes	Select Photos
2220	1.8 W	 Outfall is at edge of over-water structure. Overhead cable exists in vicinity of outfall. Riprap exists on bank in vicinity of outfall. 	
2114	2.4 W	 Team was unable to see outfall because of boats and barges. 	
2113	2.6 W	 Barges are present in vicinity of outfall. It is difficult to tell where the outfall is located from boat; there appears to be an outfall just south of the blue catwalk and another outfall in the retaining wall just south of the small floating dock. Riprap is present on slope but does not appear to be enough to necessarily impede sampling. Of the two observed outfalls in this area, the northern outfall is likely accessible by boat and the southern outfall may need to be sampled by land. 	
2109 and 2110	2.9 W	 Team observed three outfalls in the vicinity: the northern outfall is under the edge of a structure (based on maps, this may be an inactive outfall); barges are tied to the second outfall; and the southern outfall is under light vegetation. All three outfalls appear to be sampleable, barring refusal (due to riprap/rocky substrate). Some riprap is present on the bank. 	

Lower Duwamish Waterway Group

Lower Duwamish Waterway Group